
A Rule-based Conversion of an EER Schema to Neo4j Schema
Constraints

Telmo Henrique Valverde da Silva1, Ronaldo dos Santos Mello2

1INE - Universidade Federal de Santa Catarina (UFSC) – Florianópolis, SC

2PPGCC - INE - Universidade Federal de Santa Catarina (UFSC) – Florianópolis, SC

telmo.trooper@gmail.com,r.mello@ufsc.br

Abstract. Several application domains hold highly connected data, like sup-
ply chain and social network. In this context, NoSQL graph databases raise
as a promising solution since relationships are first class citizens in their data
model. Nevertheless, a traditional database design methodology initially defines
a conceptual schema of the domain data, and the Enhanced Entity-Relationship
(EER) model is a common tool. This paper presents a rule-based conversion
process from an EER schema to Neo4j schema constraints, as Neo4j is the most
representative NoSQL graph database management system with an expressive
data model. Different from related work, our conversion process deals with
all EER model concepts and generates rules for ensuring schema constraints
through a set of Cypher instructions ready to run into a Neo4j database in-
stance, as Neo4J is a schemaless system, and it is not possible to create a schema
a priori. We also present an experimental evaluation that demonstrates the vi-
ability of our process in terms of performance.

1. Introduction
NoSQL graph Databases (DBs) are becoming popular as they are suitable to application
domains where relationships are first class citizens, like social network, telecommunica-
tion and supply chain [Robinson et al. 2015]. Different from traditional relational DBs,
which impose integrity constraints over a predefined schema, and sometimes require a lot
of additional tables to model relationships, NoSQL graph DBs provide more scalability
and availability as they are usually schemaless and follow a weak consistency paradigm
based on the BASE properties [Sadalage and Fowler 2012].

Nevertheless, schema constraints control for NoSQL graph DBs can be important,
specially when a DB design methodology is considered [Elmasri and Navathe 2016]. An
initial conceptual modeling step, for example, imposes several restrictions over a rela-
tionship type ri, including valid entity types associated to ri, cardinality constraints, and
allowed attributes for ri. In a supply chain scenario, for example, we may have specific
routes that limit the road and city connections on which a mean of transportation must
move. To be schema-aware is also important to several data management tasks, like data
integration and optimization of query processing [Ruiz and et al. 2015].

This paper tries to cope with this problem of providing schema integrity control to
NoSQL graph DBs by proposing a process that converts an Extended Entity-Relationship
(EER) conceptual schema to a set of constraint specifications for the Neo4j DB Manage-
ment System (DBMS)1. The EER model is a common tool for conceptual DB design,

1https://neo4j.com

and Neo4j is the most representative NoSQL graph DBMS2. We assume a from-scratch
design of a Neo4j DB based on a conceptual modeling. Our main contributions are: (i)
a set of conversion rules that maps EER schema constraints to Cypher instructions, and;
(ii) a conversion process that considers the analysis of all EER model concepts. Cypher
is the Neo4j data manipulation language3.

Some efforts in the literature are similar to our proposal [Virgilio et al. 2014,
Daniel et al. 2016, Akoka et al. 2017, Pokorny 2017, Sousa and Cura 2018]. However,
they neither deal with all the EER concepts nor automatically generates a complete set of
schema constraint specifications for a NoSQL graph DBMS language.

The rest of this paper is organized as follows. Section 2 formalizes the EER model
and gives a background for Neo4j data model. Section 3 discusses related work and
Section 4 details our conversion process. Section 5 evaluates our proposal and Section 6
is dedicated to the conclusion.

2. Background

2.1. EER Model

The EER model is a de facto standard for conceptual database design
[Elmasri and Navathe 2016]. It extends the ER model, which comprises real-world
entities, relationships, as well as attributes for both of them.

Besides the aforementioned concepts, an EER schema allows the definition of:
(i) optional, multivalued and composite attributes; (ii) inheritance relationships (entities
that inherit attributes and relationships from another entity); (iii) union types (entities
unified into another entity that categorizes them); (iv) weak entities (an entity that depends
on one or more entities to exist); (v) associative entities (a relationship promoted to an
entity in order to be related to another entities); and (vi) n-ary relationships (a relationship
connecting three or more entities). We next formalize an EER schema.

Definition 1 (EER Schema). An EER schema is a tuple eer = (n,E,R, SP, UT), where
n is the name of the schema, E is the set of entities, |E| > 0, R is the set of relationships,
|R| >= 0, SP is the set of specialization relationships, |SP | >= 0, and UT is the set of
union type relationships, |UT | >= 0;

Definition 2 (Entity). An entity ei ∈ eer.E is a tuple ei = (n, type, rbase, Re, Ae, Aid),
where n is the name of the entity, type ∈ {regular, weak, associative} is the entity
type, rbase ∈ eer.R is the relationship promoted to an associative entity, if ei.type =
′associative′, Re ⊆ eer.R is the set of relationships that connects ei to other entities, if
ei.type =

′weak′, Ae is the set of ei attributes, |Ae| > 0, and Aid is the set of attributes
that solely identifies ei, Aid ⊆ Ae and |Aid| >= 0.

In case of a weak entity, ei.Re holds the relationships with the entities on which ei
depends for existing. Figure 1 shows an EER schema for a library domain. Books, Copies
and loan are examples of a regular, weak and associative entity, respectively.

2https://db-engines.com/en/ranking/graph+dbms
3https://neo4j.com/developer/cypher/

Figure 1. An EER schema example

Definition 3 (Relationship). A relationship rj ∈ eer.R is a tuple rj =
(n, type, Er, Ar, Aid), where n is the name of the relationship, type ∈
{regular, recursive, n − ary}, Er = {(e1, c1, r1), ..., (en, cn, rn)} is the set of rj
connections, with (ex, cx, rx) ∈ Er being an entity ex ∈ eer.E, cx = (cmin, cmax) the
cardinality constraints for ex, rx is an optional role if rj.type 6=′ recursive′, Ar is the
set of rj attributes, |Ar| >= 0, and Aid is the set of attributes that helps in identifying rj ,
Aid ⊆ Ar and |Aid| >= 0.

A regular relationship is a usual binary relationship connecting two different enti-
ties, and a recursive one has two connections with the same entity. A role in a relationship
is a semantic meaning that can be defined for better sake of relationship understanding.
Examples in Figure 1 are referred by and referred in the recursive relationship referral.
We also have examples of a 3-ary relationship (internship contract) and a recursive rela-
tionship with roles (referral).

Definition 4 (Attribute). An attribute ak ∈ eer.E.Ae ∪ eer.R.Ar is a
tuple ak = (n, type, ca, Aa), where n is the attribute name, type ∈
{regular, composite,multivalued, comp mv}, ca = (cmin, cmax) is the attribute car-
dinality, and Aa is the set of inner attributes if ak is a composite attribute.

An attribute with type comp mv is an attribute that is composite and multivalued.
The attribute cardinality allows the definition of optional, regular or multivalued attribute,
like (0,1), (1,1) or (1,n), respectively. Address and Phone are examples of composite and
multivalued attributes in Figure 1, respectively.

Definition 5 (Specialization). A specialization sl ∈ eer.SP is a tuple sl =
(esuper, Esub, type), where esuper ∈ eer.E is the generic entity, Esub ⊂ eer.E is the
set of specialized entities, and type is the type of the specialization relationship, with
type ∈ {(t, d), (t, s), (p, d), (p, s)};

Definition 6 (Union Type). A union type um ∈ eer.UT is a tuple um =
(category, Emembers), where category ∈ eer.E is the entity that unifies a set of entities
into a category, and Emembers ⊂ eer.E is the set of entities that belongs to the category.

The types of specialization relationships are a combination of two possible set-
tings: total or partial, as well as disjoint or shared. The hierarchy headed by Librarians
is an example of a total and disjoint specialization in Figure 1. We also have a union type
that defines a category SearchFilters comprising Authors, Books and Publishers.

2.2. Neo4J Data Model
A NoSQL graph DB is usually a property graph of data, i.e., a graph struc-
ture where vertices may hold properties [Angles 2012, Sadalage and Fowler 2012,
Robinson et al. 2015]. Despite this consensus, there is not a standard graph data model.
Vertex and edge are basic concepts, as well as vertex properties. A vertex models a labeled
real-world object, an edge represent a relationship between two vertexes, and a property is
an attribute-value pair where the value is restricted to a datatype. Most of the data models
also provide additional details for edges: properties, label and relationship direction.

A few data models support multiple labels for vertexes, in sense that an object be-
longs to more than a type (e.g., customer and employee). It is also possible that properties
hold complex datatypes (e.g., arrays, geographic types) besides traditional atomic ones.

The Neo4j DBMS supports all of these aforementioned data model concepts. Fig-
ure 2 shows an example of a Neo4j DB that is in accordance to the EER schema of Figure
1. The vertexes exhibit the name of one of their labels, and the same holds for the edges.

Figure 2. A Neo4J database

3. Related Work
Some approaches in the literature are similar to our work. UMLtoGraphDB proposes a
mapping of a UML conceptual schema, with embedded OCL business rules, to a graph

DB schema described in the Gremlin language [Daniel et al. 2016]. Such a schema can be
then extended by the designer to generate schema constraints in a NoSQL graph DBMS.

The work of Akoka et al. [Akoka et al. 2017] introduces a limited EER meta-
model with some statistics about entities, relationships, attributes and specializations vol-
ume and variety in order to guide the designer to choice the best mapping alternatives to
a property graph schema. In fact, it is a theoretical conversion solution, having not focus
on the generation of schema constraints to one or more NoSQL graph DBMS.

The Binary ER approach maps an ER schema to a limited set of corresponding
graph schema constraints for Neo4j, Titan and OrientDB graph DBMSs [Pokorny 2017].
Another work called Orient ER also converts a basic ER schema to a labeled graph
[Virgilio et al. 2014]. However, it does not generate schema constraints for a NoSQL
graph DBMS. Instead, it only provides a set of rules to be considered by the designer
when creating a graph DB. Finally, we have a work that proposes a set of extensions to
the Cypher language to specify DB schema constraints [Sousa and Cura 2018]. The focus
is on constraint specifications to guarantee disjoint, uniqueness and identification control.

Different from the related work, our approach treats all EER concepts and pro-
poses an automatic process to generate a complete set of schema control instructions for
Neo4j from an EER schema, being a more robust solution for this NoSQL graph DBMS.

4. Proposed Approach

4.1. Conversion Strategy

Our strategy to force Neo4j data to respect a conceptual schema is to specify a set of
Cypher constraints. Two Cypher instructions allow data constraint specification:

• Constraint: it has the format CREATE CONSTRAINT ON label ASSERT rule,
where label is a vertex or edge label, and rule is one of the following constraints:

– EXISTS(property): mandatory property;
– property IS UNIQUE: uniqueness constraint for a property;
– (property1, ..., propertyn) IS NODE KEY: node composite identifier.

• Trigger: it has the format MATCH pattern [WHERE condition] action, where pat-
tern is the path expression to be matched into the DB graph, condition is an op-
tional set of filters that must be true in order to fire the action, and action is the set
of Cypher instructions to be executed.

We consider these instructions in the definition of schema constraint rules, which
are the core of our conversion process. Figure 3 shows examples of constraint definitions
in Cypher. Figure 3 (a) shows a trigger that controls valid labels for vertexes. This is one
of the generated triggers for the EER schema of Figure 1.

The same holds for relationship control, as shown in Figure 3 (b). It limits the
valid relationship types to the ones defined in the EER schema. Figure 3 (c), in turn,
shows constraint definitions that control valid properties for an entity or relationship. It
defines constraints over the Publishers’ attributes. Finally, Figure 3 (d) illustrates a trigger
that controls valid relationship cardinalities. It avoids that a Copy be associated to more
than one Book (see Figure 1). If it happens, the extra connections of a copy are deleted.

Figure 3. Examples of constraint definitions in Cypher

Our conversion strategy is summarized in Table 1. We base some mappings from
the related work, and define several other ones to deal with EER concepts not treated be-
fore. From all related approaches we borrow the consensual mapping of regular entities,
attributes and relationships, and the n-ary relationship conversion reasoning comes from
UMLtoGraphDB [Daniel et al. 2016]. Two works [Akoka et al. 2017, Pokorny 2017]
propose conversions for specializations by generating IS-A edges between the vertexes
that represent generic and specialized entites. Instead, we propose multilabels for the
vertexes of specialized entities to avoid such edges. There is only one work that also in-
troduces a conversion algorithm [Sousa and Cura 2018]. However, it covers only regular
entities, relationships and attributes.

In short, we map entities to vertexes as they represent relevant real-world facts.
It includes entities in hierarchies (specializations and union types). In turn, relationships
are mapped to edges as they represent entities’ associations. The exception is a n-ary
relationship, which becomes a vertex vn ary as it connects more than two entities, being
not possible to be represented as an edge due to its limitation to connect only two facts. In
this case, vn ary has edges to all vertexes representing the associated entity occurrences.

Table 1. EER-to-Neo4j conversion strategy

EER Neo4j EER Neo4j
Regular entity vertex Regular relationship edge
Weak entity vertex Recursive relationship edges

Associative entity vertex N-ary relationship vertex
Regular attribute property Specialization vertexes

Composite attribute vertex Union type vertexes
Multivalued attribute array property

Entity and relationship attributes are converted to vertex and edge properties, re-
spectively. The exception is a composite attribute, which is mapped to a vertex that holds
the inner attributes, as Neo4j does not support composite properties. On the other hand,
Neo4j supports properties with an array domain, which is suitable for multivalued at-
tributes. More details are given by the conversion rules formalized in the next section.

4.2. Conversion Rules
The conversion rules are the core of our conversion process. Definitions 7 and 8 show two
basic rules responsible to specify valid labels and property names for vertexes and edges

that correspond to entities and relationships, respectively. By label we mean the name of
a entity, relationship or composite attribute. The first one contributes to the definition of
a trigger that control valid labels for vertexes and edges, as exemplified in Figure 3 (a)
and Figure 3 (b). The second one generates constraints for controlling valid vertex and
edge properties. Figure 3 (c) exemplifies these constraints for the Publishers vertex. The
first part of this rule also considers composite attributes, which hold properties and, as a
consequence, are converted to vertexes. More details are given in Section 4.3.

Definition 7 (Label Rule: Label(label, type)). include a predicate NOT "label" IN
LABELS(n) in Valid Vertex Labels trigger, if type = ′vertex′; include a predicate
TYPE(r) <> "label" in Valid Edge Labels trigger, if type = ′edge′;

Definition 8 (Property Rule: Prop(property, concept)). generate a constraint:
(i) CREATE CONSTRAINT ON (c:concept.n) ASSERT EXISTS (c.property),
if concept ∈ eer.E or concept ∈ eer.E.Ae ∪ eer.R.Ar;
(ii) CREATE CONSTRAINT ON ()-[r:concept.n]-() ASSERT EXISTS
(r.property), if concept ∈ eer.R.

Definition 9 controls valid identifications for vertexes and edges based on the iden-
tifiers of entities and relationships. If an identifier is composed of one attribute, then a
UNIQUE constraint is created. Otherwise, a IS NODE KEY constraint is created. Defi-
nition 10 rules the conversion of a multivalued attribute through the creation of a trigger
that avoids an array property to disrespect the minimal and maximal number of values.

Definition 9 (Identity Rule: Id(property set, concept)). generate a constraint:
(i) CREATE CONSTRAINT ON (c:concept) ASSERT (c.au.n) IS UNIQUE, if
|property set| = 1 and property set = {au};
(ii) CREATE CONSTRAINT ON (c:concept) ASSERT (a1.n, ..., ax.n) IS
NODE KEY, if |property set| > 1 and property set = {a1, ..., ax};
Definition 10 (Multivalued Attribute Rule: MV Att(ai, cname)). generate a
trigger MATCH (n:"cname") WHERE size(n."ai.n") < ai.ca.cmin OR
size(n."ai.n") > ai.ca.cmax DETACH DELETE n.

Valid weak entities are ruled by Definition 11. This rule avoids a vertex that corre-
spond to a weak entity we to exist without being connected to the vertexes that represent
the entities on which we depends on (strong entities). It also extends we identification to
add the identification of its strong entities, as a identification dependency also holds.

Definition 11 (Weak Entity Rule: WEnt(we)). for each entity es ∈ we.Re.Er, es 6= we:
(i) generate a trigger MATCH (n:we.n) WHERE NOT (:es.n)-[:has]-(n)
DETACH DELETE n;
(ii) we.Aid ← we.Aid ∪ es.Aid.

Definition 12 controls valid connections between vertexes according to the car-
dinalities of a relationship r involving a source entity e1 and a target entity e2. Part (i)
avoids more than one connection if the maximal cardinality (maxcard) is 1. Part (ii) avoids
a number of connections less than the minimal cardinality, and part (iii) avoids a number
of connections higher than maxcard, if maxcard is fixed. Definition 13, in turn, rules a
recursive relationship rj: two edges are necessary for the two rj roles connecting two
vertex instances that represent the same entity ei that holds rj . If one of the two edges is
missing or they are not connected to ei vertexes, then the edges must be deleted.

Definition 12 (Cardinality Rule: Card(r.n, e1.n, e2.n, mincard, maxcard)). generate
the triggers:
(i) MATCH (n:"e1.n")-[r:"r.n"]-(:"e2.n") WITH n, COLLECT(r) AS
rs WHERE SIZE(rs) > 1 FOREACH (r IN rs[1..] | DELETE r), if
maxcard = 1;
(ii) MATCH (n:"e1.n")-[r:"r.n"]-(:"e2.n") WITH n, COLLECT(r) AS
rs WHERE SIZE(rs) < mincard FOREACH (r IN rs | DELETE r), if
mincard > 1;
(iii) MATCH (n:"e1.n")-[r:"r.n"]-(:"e2.n") WITH n, COLLECT(r) AS
rs WHERE SIZE(rs) > maxcard FOREACH (r IN rs[maxcard..] |
DELETE r), if maxcard 6= ”N”;

Definition 13 (Recursive Rule: Recur(rj)). generate the triggers:
(i) MATCH (n)-[r:"rj.Er.r1"]->() WHERE NOT "rj.Er.e1.n" IN
LABELS(n) AND NOT ()-[r:"rj.Er.r2"]->(n) DELETE rj;
(ii) MATCH (n)-[r:"rj.Er.r2"]->() WHERE NOT "rj.Er.e1.n" IN
LABELS(n) AND NOT ()-[r:"rj.Er.r1"]->(n) DELETE rj .

The last two rules control valid entities’ hierarchies. The first one (Definition 14)
regards specialization hierarchies, and the second one (Definition 15) regards union type
hierarchies. The Spec(sp) rule initially requires that all vertexes that correspond to spe-
cialized entities hold a label for the generic entity besides its own label. Part (ii) controls
disjoint specializations. It avoids that a vertex holds a label for more than one specialized
entity. Part (iii) rules total specializations by prohibiting a vertex with a generic entity
label that does not also hold a label for any of the specialized entities. Partial and shared
specializations are more flexible, so no constraints are needed for them.

Definition 14 (Specialization Rule: Spec(sp)). generate the triggers:
(i) MATCH (n) WHERE ("sp.Esub.e1.n" IN LABELS(n) OR ... OR
"sp.Esub.en.n" IN LABELS(n)) AND NOT "sp.esuper.n" IN LABELS(n)
DETACH DELETE n;
(ii) MATCH (n) WHERE ("sp.Esub.e1.n" IN LABELS(n) AND
"sp.Esub.e2.ne") OR ... OR ("sp.Esub.e1.n" IN LABELS(n) AND ...
AND "sp.Esub.en.n") IN LABELS(n) DETACH DELETE n, if sp.type = (t, d) or
sp.type = (p, d);
(iii) MATCH (n:sp.esuper.n) WHERE NOT "sp.Esub.e1.n" IN LABELS(n)
AND ... AND NOT "sp.Esub.en.n" IN LABELS(n) DETACH DELETE n, if
sp.type = (t, d) or sp.type = (t, s);

Definition 15 (Union Type Rule: Union(ut)). generate the triggers:
(i) MATCH (n:ut.category.n) WHERE NOT "ut.Emembers.e1.n" IN LABELS(n)
AND ... AND NOT "ut.Emembers.en.n" IN LABELS(n) DETACH DELETE
n;
(ii) MATCH (n) WHERE NOT n:ut.category.n AND (n:ut.Emembers.e1.n OR
... OR n:ut.Emembers.en.n) DETACH DELETE n.

The Union(ut) rule requires that the label for the vertex vi that represent the
category never be alone, i.e., at least one label of a member entity must also be present at

vi. The opposite situation is also required: a vertex with a label of a member entity must
also holds the label of the entity that represents the category.

4.3. Conversion Process
Our conversion process adapts the methodology for logical design of relational DBs
[Elmasri and Navathe 2016] to NoSQL graph DBs. The input is an EER schema and the
output is a set of Neo4j constraints. It has four steps: (i) Label Constraints Initialization;
(ii) Entity Conversion; (iii) Hierarchy Conversion; and (iv) Relationship Conversion.

The first step is a pre-processing procedure that initializes two triggers related
to valid labels for vertexes and edges that correspond to entities and relationships. In
short, we generate the headers "MATCH (n) WHERE" and "MATCH ()-[r]-()
WHERE", which are extended with valid labels for entities and valid types for relation-
ships while the EER entities and relationships are analyzed, respectively. Examples of
these triggers are shown in Figure 3 (a) and Figure 3 (b).

The next step converts the entities and their attributes in order to constraint most
of the valid vertexes. Then, we proceed the conversion of the hierarchies to specify ad-
ditional vertex constraints that control valid hierarchical relationships (see Definition 13
and Definition 14) followed by the conversion of the relationships, which constraints most
of the valid edges. The overall process is detailed in Algorithm 1.

The process first initializes the set of output Cypher constraints Ccons (line 2) as
an empty set, and executes the first step (line 3). In the following, we deal with entity
conversion (lines 4 to 9). We execute the Label rule to include valid vertexes’ labels in
the V alid V ertex Labels trigger (line 4), and then we analyze again all entities (line 5)
to generate constraints for weak entities (line 6) and entity identification (line 8).

We define another algorithm for attribute conversion (Algorithm 2). It receives
an entity, relationship or composite attribute, its set of attributes, and Ccons, and appends
specific constraints for attributes into Ccons. The algorithm first verifies if an attribute
ak is a composite or composite/multivalued one (line 3). If so, ak generates a vertex vak
(line 4) and an edge between the vertex that represent the concept ci and vak (line 5). The
vertex label is a concatenation of ci and ak names, and the edge label includes addition-
ally the string ’has’ as a prefix. One example is shown in Figure 2 for the conversion
of the composite attribute Address in Figure 1. Next, the ak nested attributes are recur-
sively converted (line 6). We also deal with the cardinality constraints of the relationship
between ci and vak (an specific procedure - line 7). In this case, the cardinality in the
ci → vak direction is the ak cardinality, and the opposite direction is (1,1) as vak is depen-
dent on ci. Finally, if ak is not a composite one (line 9), we consider it as a valid property
for ci (line 10), and, at last, we deal with the conversion of a multivalued ak (line 11).
For sake of paper space, we do not detail the case where ci is a recursive relationship. In
this situation, ci.n is replaced by the ci roles’ names, generating double invocations for
Label, Card and Prop rules to constrain each one of the two roles names, cardinalities
and properties, respectively.

Back to Algorithm 1, we deal with the conversion of EER hierarchies (lines 10 and
11), and then relationships (lines 12 to 48). We first check if a relationship rj is a n-ary one
or rj holds a composite attribute. In these cases, rj must be converted to a vertex as it has
connections with several entities, or it must be connected to another vertex representing

Algorithm 1: EER-to-Neo4j conversion
Input : EER schema eer
Output: set of Cypher constraint instructions Ccons

1 begin
2 Ccons ← ∅;
3 Init(V alid V ertex Labels, V alid Edge Labels);
4 for each ei ∈ eer.E do Label(ei.n,

′vertex′);
5 for each ei ∈ eer.E do
6 if ei.type = ′weak′ then Ccons ← Ccons ∪WEnt(ei);
7 Attributes Conversion(ei, Ccons);
8 if |ei.Aid| > 0 then Ccons ← Ccons ∪ Id(ei.Aid, ei.n)

9 end
10 for each sl ∈ eer.SP do Ccons ← Ccons ∪ Spec(sl);
11 for each um ∈ eer.UT do Ccons ← Ccons ∪ Union(um);
12 for each rj ∈ eer.R do
13 if exists ak ∈ rj .Ar(ak.type = ′composite′ or ak.type = ′comp mv′) or rj .type = ′n− ary′ then
14 Rel to V ertex(rj , Ccons)
15 else
16 if rj = ei.rbase | ei ∈ eer.E and ei.type = ′associative′ then
17 if rj .type = ′recursive′ then
18 Cardinalities(ei.rbase,

′ recursive′, Ccons);
19 Recur(rj)

20 else
21 Cardinalities(ei.rbase,

′ associative′, Ccons)
22 end
23 if |rj .Aid| > 0 then
24 rj .Aid ← rj .Aid ∪ rj .Er.e1.Aid ∪ rj .Er.e2.Aid;
25 Ccons ← Ccons ∪ Id(rj .Aid, ei.n)

26 end
27 else
28 if rj .type = ′recursive′ then
29 Label(rj .Er.r1, ′edge′); Label(rj .Er.r2, ′edge′);
30 Cardinalities(rj ,

′ recursive′, Ccons);
31 Recur(rj)

32 else
33 Label(rj .n,

′edge′);
34 Cardinalities(rj ,

′ regular′, Ccons)

35 end
36 Attributes Conversion(rj , Ccons);
37 if |rj .Aid| > 0 then
38 rj .Aid ← rj .Aid ∪ rj .Er.e1.Aid ∪ rj .Er.e2.Aid;
39 Ccons ← Ccons ∪ Id(rj .Aid, rj .n)

40 end
41 end
42 end
43 end
44 Ccons ← Ccons ∪ V alid V ertex Labels ∪ V alid Edge Labels;
45 return Ccons

46 end

the composite attribute (lines 13 and 14). One example is the Internship Contract vertex
in Figure 2, which is the result of the conversion of the same name n-ary relationship in
Figure 1. The Rel to V ertex procedure is responsible to the conversion of rj . For sake
of paper space, we do not detail it. In short, it defines constraints considering rj a regular
entity, and also constraints the allowed edges from rj to the vertexes representing the
associated entities or the vertex representing the composite attribute. These edges hold a
predefined label with the format ”connected to ”vertex label” rj.n” in the vertex→ rj
direction (see Figure 2), and ”connected to rj.n ”vertex label” in the opposite direction.

Finally, if rj does not fit into the previous cases, then it is a regular or recursive
relationship (lines 15 to 42), and the rules for valid relationship label, properties, cardi-

Algorithm 2: Attributes Conversion
Input : EER concept ci, EER concept attribute set Ac, set of Cypher constraint instructions Ccons

1 begin
2 for each ak ∈ Ac do
3 if ak.type = ′composite′ or ak.type = ′comp mv′ then
4 Label(ci.n+′ ′ + ak.n,

′vertex′);
5 Label(′has′ +′ ′ + ci.n+′ ′ + ak.n,

′edge′);
6 Attributes Conversion(ak, ak.Aa, Ccons);
7 Cardinalities(ak,

′ attribute′, Ccons)

8 else
9 Ccons ← Ccons ∪ Prop(ak.n,ci);

10 if ak.type = ′multivalued′ then Ccons ← Ccons ∪MV Att(ak, ci.n);
11 end
12 end
13 end

nalities, identification, and the recursive case are applied on it. At this point we still have
to check if rj is promoted to an associative entity (line 16) in order to provide the proper
cardinality constraints with the involved inner entities (lines 17 to 26). In this case, the
Cardinalities procedure deals with the conversion of all cardinalities (line 21) related to
the ”associated to ”vertex edges (see Figure 2). The algorithm also verifies if rj type
is recursive (line 17) in order to constraint the rj labels and cardinalities for the defined
roles in both directions (see the relationships between Customer1 and Customer2 in
Figure 2). Lines 27 to 41 treat an rj that is not an associative entity, so a label constraint
must be defined and its attributes converted. This conversion depends again on whether
rj is a recursive relationship or not (lines 28 to 35). At the end of Algorithm 1, we append
the completed label triggers to Ccons and returns it. The worst-case complexity of this
algorithm is O(#E+#R) as each entity and relationship type is accessed once.

5. Evaluation
Our initial intention was to evaluate the overhead introduced with the schema constraint
checking when manipulation operations were executed over a Neo4j DB designed by our
approach. However, Neo4j provides no immediate verification of triggers and constraints,
which makes hard the overhead analysis. Thus, we decided to analyze the impact of ex-
ecuting our process over several sizes of EER schemas to evaluate its performance. We
implemented a prototype for our conversion process, and a synthetic EER schema gener-
ator where we can set the number of created regular entities (E) and regular relationships
(R), as well as the cardinality distribution for the relationships ((1,1), (1,n) and (m,n)),
and the number of regular attributes. Four test scenarios were produced, starting from 50
E and 50 R, and doubling these numbers three times. For all of these scenarios we assume
Es and Rs with five attributes, and an equal distribution of R cardinalities.

The tests were run in a computer with an Intel i7 3770 processor with 3.9 GHz and
16 Gb RAM. We performed twenty executions of each test scenario and got the average
execution. Figure 4 shows the plotted times for the scenarios. Except for the 50/50-
100/100 interval, we see a linear behaviour of our conversion process as the number or E
and R doubles. It demonstrates the expected complexity of Algorithm 1.

6. Conclusion
This paper presents a rule-based conversion of an EER schema to Neo4j constraint speci-
fications. These specifications allow Neo4j to accept only DB transactions that respect the

Figure 4. Processing times for the four test scenarios

EER schema, contributing to turn Neo4j a schema-aware DBMS. We also contribute to
the design of a Neo4j DB from a conceptual schema. Our conversion algorithm presents
a linear complexity w.r.t. to the number of EER entities and relationships, which makes
it feasible to be reproduced and applied in real-world scenarios. Our proposal is also the
only one that supports all EER concepts conversion by a complete automatized process.

As future works, we will try to have access to the source code of the related works
to compare result quality and performance. We do not have success to obtain such a codes
by now. We also intend to develop a Web tool to support our conversion process.

References
Akoka, J., Comyn-Wattiau, I., and Prat, N. (2017). A four v’s design approach of nosql

graph databases. In ER Conference, pages 58–68. Springer.

Angles, R. (2012). A Comparison of Current Graph Database Models. In ICDE Confer-
ence Workshops, pages 171–177. IEEE.

Daniel, G., Sunyé, G., and Cabot, J. (2016). Umltographdb: mapping conceptual schemas
to graph databases. In ER Conference, pages 430–444. Springer.

Elmasri, R. and Navathe, S. B. (2016). Fundamentals of Database Systems. Pearson
Higher Education, 7 edition.

Pokorny, J. (2017). Modelling of graph databases. Journal of Advanced Engineering and
Computation, 1(1):04–17.

Robinson, I., Webber, J., and Eifrem, E. (2015). Graph Databases: New Opportunities
for Connected Data. O’Reilly Media, Inc., 2 edition.

Ruiz, D. S. and et al. (2015). Inferring Versioned Schemas from NoSQL Databases and
its Applications. LNCS, 9381:467–480.

Sadalage, P. J. and Fowler, M. (2012). NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. Pearson Education.

Sousa, V. M. d. and Cura, L. M. d. V. (2018). Logical design of graph databases from an
entity-relationship conceptual model. In iiWAS Conference, pages 183–189. ACM.

Virgilio, R. D., Maccioni, A., and Torlone, R. (2014). Model-driven design of graph
databases. In ER Conference, pages 172–185. Springer.

