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Abstract. Spatial approximations simplify the geometric shape of complex spa-
tial objects. Hence, they have been employed to alleviate the evaluation of costly
computational geometric algorithms when processing spatial queries. For in-
stance, spatial index structures employ them to organize spatial objects in tree
structures (e.g., the R-tree). We report experiments considering two real datasets
composed of ~1.5 million regions and ~2.7 million lines. The experiments
confirm the performance benefits of spatial approximations and spatial index
structures. However, we also identify that a second processing step is needed
to deliver the final answer and often requires higher processing time than the
step that uses index structures only. It leads to the interest in studying how spa-
tial approximations can be efficiently used to improve both steps. This paper
presents a systematic review on this topic. As a result, we provide an overview
and comparison of existing approaches that propose, evaluate, or make use of
spatial approximations to optimize the performance of spatial queries. Further,
we characterize them and discuss some future trends.

1. Introduction

Spatial information retrieval i1s a common task required by advanced applica-
tions [|Carniel 2020], such as location-based services, smart cities, and mobile recommen-
dation systems. The goal of such applications is to enrich the data analysis by taking into
the importance of “where”. For this, geographical and spatial phenomena are modeled as
instances of spatial data types (e.g., points, lines, and regions). Spatial database systems
and Geographical Information Systems (GIS) are powerful tools for storing, managing,
and retrieving spatial objects.

To retrieve spatial objects, applications perform spatial queries containing a set
of conditions that the retrieved spatial objects must satisfy. Spatial relationships, such as
topological relationships (e.g., overlaps, contains) [Schneider and Behr 2006], are often



employed as conditions in spatial queries. Thus, several types of spatial queries have been
defined in the literature (see [[Carniel 2020] for a survey).

Spatial approximations play an important role in the challenging task of reduc-
ing the elapsed time required to process a spatial query. Due to the high complexity of
the geometric format of spatial objects (e.g., number of points of a region or line ob-
ject), spatial objects are approximated to a simpler geometric shape to reduce the com-
plexity of the computation of spatial relationships. The Minimum Bounding Rectangle
(MBR) [Papadias et al. 1995] is a very popular approximation employed in the literature.

On the other hand, the use of spatial approximations introduces at least another
needed step to process spatial queries. This is because the result of a spatial query an-
swered by spatial approximations is not fully accurate. In this case, the needed step
called refinement has to evaluate the spatial relationship by accessing the original spatial
object. This ensures the correct result of the spatial query; but, it consists of comput-
ing costly geometric algorithms. A common goal is to reduce the number of objects to
be checked in the refinement step by using spatial index structures built on a specific
approximation. A typical index is the R-tree [Guttman 1984] and its variants like the
R*-tree [[Beckmann et al. 1990], which are based on MBRs.

Due to the importance of spatial information retrieval, several studies in the
literature have been focused on optimizing the indexing of spatial objects (e.g.,
see [Gaede and Gunther 1998] for a survey). However, for many types of queries (e.g.,
Window Query), the step processed by the spatial index requires a small elapsed time
if compared to the total elapsed time to deliver the final result of the spatial query (as
pointed out in Section[2.2). This motivates the development of a multi-step spatial query
processing that combines different types of approximations to reduce the cost of execut-
ing the refinement step. However, there is a lack of recent studies in the literature that
compare, understand, and show the applicability of spatial approximations.

This paper fulfills this gap by presenting a comprehensive study on the existing
spatial approximations in the literature. Our contributions include the following topics:

e A systematic review of the literature by employing a reproducible methodology
that can serve as a foundation for future trends on spatial approximations.

e An overview and comparison of existing approaches. We classify them as ap-
proaches that propose, evaluate, or make use of spatial approximations.

e A characterization of existing approaches that allows us to understand how they
use a spatial approximation to optimize spatial queries. Further, we present future
trends in the area of spatial query processing.

This paper is organized as follows. Section [2] summarizes needed basic concepts.
Section [3|introduces our systematic review and the overview of existing approaches. Sec-
tion {] discusses how existing approaches employ spatial approximations. Section [5|con-
cludes the paper and presents future work.

2. Needed Concepts from Spatial Database Systems and GIS

In this section, we sketch definitions related to spatial queries (Section [2.1)) and discuss
how they are processed by using two steps (Section [2.2)).



2.1. Spatial Data Types and Spatial Query Processing

Spatial database systems and GIS store, query, and handle spatial or geographic informa-
tion represented by homogeneous geometries in the Euclidean space. For modeling them,
formal definitions of spatial data types for points, lines, and regions have been provided
in the literature [Schneider and Behr 2006]. Instances of these data types can be simple
or complex where complex objects may contain finitely many components.

As a basic feature, spatial database systems and GIS allow users to pose different
types of spatial queries [Gaede and Glinther 1998| (Carniel 2020]. Topological relation-
ships are widely used to define conditions in spatial queries. For instance, the Window
Query (WQ) finds all spatial objects that intersect an axis-parallel search object (i.e., a
rectangle also known as window). A variant is the Containment Query (CQ), which finds
all objects that are inside the window. Another example is the Point Query that returns
all objects that have a particular simple point object. In addition, two spatial datasets can
be associated according to a particular topological relationship, leading to Spatial Joins.
Other queries use the distance notion. For instance, the k-Nearest Neighbor Query (kNN)
finds a set of spatial objects that are the k-nearest neighbors of the search object.

The evaluation of topological relationships can be performed by employing the 9-
intersection model and variants [Egenhofer and Herring 1994, [Schneider and Behr 2006].
They leverage point sets and point set topology to create a matrix from the nine possible
intersections of the boundary, interior, and exterior of two spatial objects, considering
the invariant criteria of emptiness and non-emptiness. However, this processing is costly
since it involves the computation of complex geometric algorithms.

In this sense, spatial approximations play an important role. A spatial approxima-
tion represents a spatial object by using a simpler geometric format, such as rectangles or
circles (more approximations are introduced in Section [3.2). For instance, a complex re-
gion containing several points can be approximated to a rectangle that minimally encom-
passes its boundary (called MBR) by storing only four numbers in the two-dimensional
case (Figure[Ijp). Spatial approximations allow us to improve the performance of evaluat-
ing topological relationships [Papadias et al. 1995]].

Some types of spatial queries can be directly answered by using spatial approxima-
tions only, such as the CQ (Figure[Ib). However, this is not the case for several other types
of spatial queries, such as the WQ (Figure [If). This is due to the introduction of an area
that does not belong to the original spatial object, called dead space. When processing the
relationship intersects on approximations only, the result may contain spatial objects that
do not belong to the final answer (Figure[Ic). On the other hand, approximations avoid the
computation of those objects that certainly do not belong to the result. Due to this and the
fixed size to store an approximation, spatial index structures [Gaede and Guinther 1998]
often employ approximations to reduce the search space of spatial queries.

2.2. Filter and Refinement Steps

Two steps are employed to process a spatial query [Gaede and Giinther 1998]]. The first
step called filter uses approximations (commonly in a spatial index structure) to get a set
of candidates of spatial objects that answer the query. The next step called refinement
gets these candidates as input and accesses their original geometric format to evaluate the
spatial relationship of the query and return the final answer of the query. This step usually



Figure 1. The use of MBRs (dashed lines) for a given search object (a), a CQ (b),
and a WQ (c). The final answer of (b) and (c) consists of the spatial objects
in dark gray, whereas the false candidate is shown in light gray.

requires more processing time than the filter step. Hence, there is an interest in reducing
the number of objects that are evaluated by the refinement step.

There are several approaches that focus on improving the elapsed time of
spatial index structures (i.e., filter step) (as described in [Gaede and Giinther 1998,
Carniel et al. 2020]]). However, the use of a spatial index is not sufficient to answer many
types of spatial queries. In such cases, the refinement step requires more processing time
than the filter step because of the number of objects evaluated by costly computational
geometric algorithms. This is also supported by our experiments, as follows.

We used two real spatial datasets described in [Carniel et al. 2020]
(i) brazil_buildings2017_v2, containing 1,485,866 region objects, and (ii)
brazil_highways2017, containing 2,644,432 line objects. We evaluated the execu-
tion of 200 WQs. Two different sets of 100 windows were used in the WQs. The first set
had 0.01% of the area of the total extent of Brazil. The second set had 0.1%, increasing
the number of objects returned in the WQs. In the filter step, we used two distinct spatial
indexes that make use of MBRs: (i) the R-tree with the linear split algorithm, and (ii)
the R*-tree with 30% of reinsertion by using the close reinsert policy. They were built
under different page sizes, from 2KB to 32KB, employing an LRU buffer of 512KB. The
refinement step used the GEOS library, an open-source geometry engine implemented
in C/C++ that is employed by PostGIS. We employed a local computer equipped with
an Intel Core 13-4170 with a frequency of 3.70GHz, 8GB of main memory, and a Lexar
NS100 128GB SSD. We used the FESTIval [Carniel et al. 2020] installed in the Ubuntu
Desktop 18.04.5 64 bits. FESTIval is a PostgreSQL/PostGIS extension to conduct
experimental evaluations of spatial indexes. It provides several types of spatial queries
and allows users to define workloads to be executed with spatial indexes. We executed
sequentially the WQs 5 times, flushing the system cache after the execution of each time.
Then, we calculated the average elapsed time to execute the WQs with the two different
sets of windows. We did not report the results of index construction (used by the filter
step) because this kind of analysis goes beyond the scope of this paper.

Figure [2| depicts the obtained results. The refinement step was the most costly
part of the queries, independently of the employed filter step. The refinement step cor-
responded from 50.24% to 87% of the total elapsed time. Further, the experiments show
that the cost of the refinement step is worst when manipulating spatial datasets containing

I'They are extracted from the OpenStreetMaps (http://www.openstreetmap.org/)
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Figure 2. Results of our motivating experiments for the R-trees (a) and R*-trees
(b). Since the spatial index structures are not sufficient to answer the WQs,
the refinement step was required. The stacked bars show the elapsed
times of the filter (in light gray) and refinement (in dark gray) steps. Note
the different scales in the plots.

region objects only. This motivates us to understand how to improve spatial query pro-
cessing. However, the focus should be beyond the spatial indexing, which corresponds to
less than 50% of the total elapsed time according to our experiments.

In this sense, our focus is to provide a comprehensive study on how the spatial
approximations have been adopted in the literature to mitigate the effects of the refinement
step. We also discuss how spatial approximations are imposing challenges and future
trends when processing spatial queries, as discussed in Section §.2]

3. The Application of Spatial Approximations to Spatial Query Processing

Approximations play a fundamental role in the optimization of spatial queries by reducing
the number of objects to be evaluated by the refinement step. In this section, we present
a systematic review that aims to select available and relevant literature on spatial approx-
imation (Section [3.1). We employ strict relevance criteria that strive for novelty (i.e., it
goes beyond the incremental improvement in well-known approximations) (Section [3.2).
With this, we are able to gather a small and preeminent group of studies that significantly
advanced the state-of-the-art in spatial approximations.

3.1. Methodology

To gather relevant studies on approximation-based spatial querying, we developed the
following search string:

(spatial index” OR spatial indexing” OR “spatial access method” OR “spatial
information retrieval”) AND (”spatial approximation” OR ”spatial approximations” OR
”bounding box” OR “approximation-based spatial query”’) AND (”performance” OR
“efficiency” OR “experiment” OR ”performance evaluation” OR “empirical
evaluation” OR “empirical study”)

We used the search string in the following search engineﬂ IEEEEL Science Di-

2The searching period was from April 27, 2020, to May 04, 2020.
3https://ieeexplore.ieee.org/Xplore/home.jsp
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Figure 3. The employed methodology of our systematic review of the literature.

recﬂ SpringerE], ACM DLE], and Google Schol resulting in 1,385 studies. The inclu-
sion criteria included studies that provide implementations and comparisons of spatial
approximations, propose novel approximations, or use different spatial approximations
when executing spatial queries. It leads to exclusion of studies that apply well-known
approximations only (i.e., MBRs) or approaches that focus on spatial indexing without
the use of spatial approximations.

For the sake of feasibility, the inclusion criteria were considered in multiple steps,
where further steps are more detailed but over a reduced number of studies. The steps,
in order, consider the publications’ (i) title and abstract, (ii) introduction and conclusion,
and (iii) full text. This process is detailed in Figure [3| which reveals the number of studies
removed and kept in each step. In the last step, we classified the studies by considering the
categories: (Cy) novel spatial approximations, (Cs) performance evaluations of spatial
approximations, and (Cs) spatial approximations within spatial data index structures. It
is important to emphasize that a study can belong to more than one category. We selected
seven studies that are summarized in the following section.

3.2. Overview of Existing Approaches

Table |1| presents the selected studies, a summary of their main features, and their catego-
rization. In addition to the category and reference of the study (first two columns), we
provide the search engine that the study was retrieved by our selection (third column).

Further, we list the approximations that are conceptually discussed and empiri-
cally compared by a study (fourth and fifth columns). They are: (i) Minimum Bounding
Rectangle (MBR), (ii) Minimum Bounding Circle (MBC), (iii) Minimum Bounding El-
lipse (MBE), (iv) Convex Hull (CH), (v) Minimum Bounding n-corner (n-corner), (vi) Ro-
tated Minimum Bounding Rectangle (RMBR), (vii) Clipped Bounding Box (CBB), (viii)
Maximum Inscribed Rectangle (MIR), (ix) Enclosed Line Segments (ELG), (x) Interior
Approximation (1A), and (x1) n-sided Regular Polygon. The conceptual discussion is im-
portant to understand the intrinsic characteristics of a spatial approximation, whereas the

“https://www.sciencedirect.com
Shttps://link.springer.com
®https://dl.acm.org
https://scholar.google.com



Table 1. Characterization of the studies selected by our systematic review.

Catesor Search Conceptually Empirically Spatial Index Spatial
gory Study  Engine Discussed Approx. Compared Approx. Structures Queries
. MBR, MBE, CH, N
refl Springer n-corner MBR, n-corner R*-Tree wQ
Science MBR, CH, n-corner, WwQ,
C2 ref2  Direct ~ MIR,IA 1A, MBR Retree, Quadirees Spatial Join
Springer MBR, CH, IA MBR, IA R-Tree WQ, kNN
ref3
C1 and Co
IEEE n-sided RP n-sided RP Unknown
refd
EEE MBR, RMBR, MBC, = MBR, RMBR, MBC, R*-Tree Point
ref5 MBE, CH, n-corner MBE, CH, n-corner Query
MBR, RMBR, MBC, = MBR, RMBR, MBC,
Cg and C3 of6 Springer  MBE, CH, n-corner, MBE, CH, n-corner, R*-Tree Spatial Join
* MIR, ELG MIR, ELG
C1,Ca, g MBRRMBRMBC,  MBRRMBRMBC,  RRIEEL L Wo
and C3 ref’7 CH, n-corner, CBB CH, n-corner, CBB ’ ’ Spatial Join

revised R*-Tree

References: ref1: [Brinkhoff et al. 1993]]:, re f2:[Bandi et al. 2007], ref3: [Kothuri and Ravada 2001]], ref4: [Suetal. 2017],
ref5: [Brinkhoff et al. 1993], ref£6: [Brinkhotf and Kriegel 1994, Brinkhoff et al. 1994], re£7: [Sidlauskas et al. 2018]]

empirical study highlights the performance behavior of the approximation. The MBR
is widely employed for testing or validation in all studies, indicating that this particular
spatial approximation is a standard benchmark. This is due to its popularity and the low
cost of computing topological relationships. In terms of validation usage, besides MBR,
four other spatial approximations are typically used for validation: RMBR, MBC, CH,
and n-corner (with n € {4,5}). They are compared in terms of elapsed time to process
topological relationships or the area of its dead space. Figure[|depicts examples of spatial
approximations employed by the existing approaches, which are discussed in Section ]

We also check whether the study employed some spatial index structure in its ex-
periments (sixth column). Recall that spatial approximations are widely employed when
indexing spatial data. All these studies employ an R-tree variant in their performance
evaluation. This is strongly related to the use of MBR as a baseline and popular spatial
approximation. Further, we highlight that some other spatial index structures based on
Quadtrees are also employed in experiments. This is due to the characteristic of the data
being manipulated (e.g., point datasets) or to compare the spatial query processing by
using other techniques. In terms of types of spatial queries evaluated in the studies (last
column), WQ is a popular type of query used by four studies. The main reason is that
this type of query requires the refinement step. Hence, the spatial approximation is fun-
damental to reduce the overhead of such a step. We also note that spatial join is treated
by approaches since it is a costly operation in spatial database systems.

4. Strategies for using Spatial Approximations to Optimize Spatial Queries

In this section, we shortly describe the seven selected approaches (Section {.T)). It pro-
vides the foundation to further discuss related topics (Section [4.2).

4.1. Existing Approaches

In this section, we describe the key ideas of existing approaches. They are sorted by
their publication year. The authors in [Brinkhoff et al. 1993]] provide a performance
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Figure 4. Examples of spatial approximations. In (g-h), the MBR and CBB are
applied over a set of objects (i.e., a node of an R-tree), while the other
methods (a-e) are applied over a single spatial object. Observe how CBB
reduces the dead space of the MBR.

evaluation that shows the importance of spatial approximations and introduce the term
approximation-based query processing, which consists of the filter and refinement steps.
In fact, many spatial query processing techniques are based on these steps, including the
experiments conducted in Section Three classes of approximations are identified: (1)
conservative approximations, (ii) progressive approximations, and (iii) generalizing ap-
proximations. A conservative approximation preserves all points of the original spatial
object; however, it may include points that do not belong to the spatial object. Examples
include MBR, RMBR, MBC, MBE, CH, and n-corner (Figure —e). Possible implemen-
tations and storage requirements of these approximations are discussed by the authors. A
progressive approximation is inside of the spatial object; thus, it may not include all the
points of the spatial object. This type of approximation can be used to identify objects
that actually belong to the final answer of the query. A generalizing approximation is a
simplification of the contour of the object that does not belong to the aforementioned ap-
proximations. The authors focus on empirically evaluating conservative approximations
(Table [T)), which are analyzed by considering the approximation quality (i.e., a measure
based on the dead space area). Further, the approximations are used on single elements
stored in the leaf nodes of R*-trees. Finally, the authors conclude that the 5-corners de-
livered good performance results.

The authors in [Brinkhoff et al. 1993]] detail a geo architecture that comprises con-
cepts and techniques for efficiently processing spatial queries. The authors claim that an
efficient architecture consists of combining spatial index structures, spatial approxima-
tions, decomposition techniques, and secondary indices for thematic attributes. Concern-
ing spatial approximations, the authors show their importance as geometric pretest and
conceptually describe some of them (Table([I). The experiments conducted by the authors
were focused on validating the proposed architecture and used previous results to justify
the use of the 5-corner in the architecture.

The aforementioned studies are extended in [Brinkhotf and Kriegel 1994] to deal
with spatial joins. The authors consider that the filter step is processed by R*-trees. Then,
according to empirical evaluations, the 5-corner provides good performance when em-
ploying it as an additional step. After executing performance evaluations, the authors
propose to use a combination of progressive approximations to identify positive hits of
the query without accessing the original geometry of the object. The proposed combina-
tion consists of the MIR (Figure df) and the ELG.

In [Kothurt and Ravada 2001], the authors also describe an intermediate step be-
tween the filter and refinement steps. The input of this intermediate step is the set of



candidates returned by the filter step. The intermediate step is able to identify the ob-
jects that either (i) need to be computed by the refinement step, or (i) can be included
in the final result of the query. This is possible due to the use of progressive approxi-
mations, called Interior Approximations (IA), which are based on the MIR (Figure Hf).
The authors extend the area of the MIR by dividing the spatial object into several par-
titions. Such partitions are built on the MBR of the spatial object by using Quadtrees
decomposition. Then, their algorithm selects the cells that are inside of the original ob-
ject. Experiments conducted by the authors show that subdividing the space four times
delivers good performance results when computing the approximation and maximizing
the IA’s area.

In [Bandi et al. 2007]], the authors introduce the use of GPUs to process topolog-
ical relations in spatial queries. They propose an intermediate step, between the filter
and refinement steps, where additional filters are employed. For intersection queries an
interior filter is used, while for within-distance joins the intermediate step uses 0-Object
and 1-Object filters. The former consists of IAs and the latter are filters that calculate an
upper bound of the distance between a pair of objects. This strategy reduces the number
of objects sent to the refinement step. The GPU is accessed through OpenGL’s graphical
API. The authors integrated their implementation with Oracle Spatial, based on an archi-
tecture known as dual-thread. This architecture utilizes a primary and a graphics thread.
The primary thread runs the initial MBR filter step and a Point in the Polygon test, whilst
the graphics thread performs the hardware filter (i.e., by using IAs) by using the GPU.
They report a reduction of 5.9 times in the query processing time due to the dual thread
system and synchronization.

In [Su et al. 2017], the authors evaluate approximations that consist of n-sided
regular polygons (n-sided RP). The idea is to build outer-type and inner-type n-sided
RPs. It is important to emphasize that a regular polygon is an equilateral polygon. Hence,
an outer-type (inner-type) 4-sided RP is not necessarily equivalent to the MBR (MIR) of
an object. The authors discuss that the search precision can be improved by increasing
the number of sides of the regular polygon. In this sense, the authors compare the search
precision of outer-type and inner-type 4-sided regular polygons. The number of sides in
the polygon can be adjusted, trading search precision and storage usage.

The authors in [Sidlauskas et al. 2018]] propose the Clipped Bounding Box (CBB)
to reduce the dead space of groups of spatial objects. Given an MBR that minimally
encompasses a group of spatial objects (or MBRs), a CBB consists of this MBR and
a set of clip points. A clip point is formed by a point in the d-dimensional space and
an array of d bits. Each position of this array refers to a dimension in the space. The
bit O represents the minimum extent of the object, whereas bit 1 indicates the maximum
extent. For instance, in the 2-dimensional case, bitmask 00 refers to the bottom-left corner
of an MBR. Hence, the bitmask supplies the direction in which the clipping should be
performed. The CBB is useful for indexing techniques that group MBRs of spatial objects
into nodes, which in turn are organized hierarchically (e.g., the R-tree and its variants).
In addition to the tree structure, the CBB requires a mapping between the nodes and
their clip points, which is employed when traversing the tree in index operations (e.g.,
insertions and queries). Hence, the CBB is not directly stored in the tree but is calculated
as needed. The authors experimentally show that the CBB reduces the dead space of



Table 2. Spatial libraries and their support for spatial approximations.

Name Home Page Language  Approximations

JTS https://locationtech.github.io/Jjts/ Java CH, MBR, MBC, RMBR

GEOS https://trac.osgeo.org/geos C/C++ CH, MBR, MBC, RMBR

CGAL https://www.cgal.org/ C++ CH, MBR, MBC, RMBR, RMBP, MBE
Geometric Tools https://www.geometrictools.com/ C++ CH, MBR, MBC

Boost.geometry https://www.boost.org C++ CH, MBR

Wykobi https://www.wykobi.com/ C++ CH, MBR, MBC

ESRI Geom. APl  https://github.com/Esri Java CH

JSI https://github.com/aled/jsi Java MBR

nodes if compared to other spatial approximations. The CBB was also applied to the R-
tree and other three variants, as shown in Table |l The main benefit of using the CBB is
that it reduces the number of paths to be traversed in index operations.

4.2. Discussions

In this section, we analyze existing implementations of spatial approximations (Sec-
tion4.2.1)) and discuss open challenges and future trends (Section 4.2.2)).

4.2.1. Existing Implementations

Spatial libraries implement spatial type systems that include data structures for spatial
data types, geometric operations, and spatial index structures. They serve as an under-
lying basis of the operations executed by spatial database systems and GIS. An example
is the PostGISﬂ, a PostgreSQL extension that employs the spatial libraries GEOS and
GDAL. There are few studies that compare existing spatial libraries, such as the work in
[Pandey et al. 2020] that conducts experiments to analyze the performance of spatial li-
braries when executing spatial queries by using spatial index structures. However, a study
that compares the support for spatial approximations is still missing.

By using the conducted systematic review and considering eight popular open-
source spatial libraries, Table 2] compares the support for spatial approximations provided
by the libraries. A popular programming language of these libraries is the C++. In addi-
tion, common approximations provided by them are MBR, MBC, and CH. JTS, GEOS,
and CGAL provide additional support for the RMBR as a more complex and higher-
quality alternative to MBR. CGAL has more variety of spatial approximations. Compared
to other libraries, CGAL is the only one to enable the use of MBE and Rotated Minimum
Bounding Parallelogram (RMBP).

4.2.2. Challenges and Future Trends

As a result of our systematic review of the literature, we identify some topics that can
serve as a foundation for advances in spatial information retrieval by using spatial ap-
proximations. These topics are: (i) the incorporation of distinct spatial approximations
within spatial index structures, (ii) the use of spatial approximations in modern hardware

8https://postgis.net/
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environments, (iii) the conduction of empirical studies by using multi-step query process-
ing with spatial approximations.

The first topic relates to the use of novel spatial approximations in the nodes of
spatial index structures aiming to reduce the number of paths traversed by index opera-
tions. In the era of big data, trends in this topic include the use of distributed and parallel
frameworks, such as Hadoop and Spark, to efficiently deal with a large volume of spatial
data (see [Pandey et al. 2018] for a survey). In this sense, many spatial index structures
are adapted to such environments. This has led to rethinking how spatial indexing should
be performed in these environments. Unfortunately, the power of spatial approximations
is not well exploited and needs more comprehension (e.g., the application of spatial ap-
proximations to sets of objects).

The second topic corresponds to understanding the performance behavior of dif-
ferent spatial approximations in modern hardware environments. In addition to the paral-
lel and distributed environment, the use of GPUs and modern storage devices may change
how spatial approximations are employed in spatial query processing. As for the latter,
efforts are needed when considering modern storage devices like flash-based Solid State
Drives (SSDs). Many spatial index structures have been modified to deal with the intrinsic
characteristics of SSDs (see [Fevgas et al. 2019] for a survey).

Finally, the last topic is the application of approximations as intermediate steps.
This trend is identified by many studies discussed in this paper and leads to a potential
strategy that can be applied to different contexts, such as SSDs and distributed systems.

5. Conclusions and Future Work

In this paper, we have provided a systematic review of literature on the use of spatial
approximation in spatial query processing. By using a reproducible methodology, we
have compared and described seven approaches that employ different types of spatial
approximations. We identified that the spatial approximations are mainly used either as
intermediate steps of the filter and refinement steps or within spatial index structures. The
combination of both usages is still a challenging task.

By considering the future trends introduced in this paper, our future work include
the empirical analysis of spatial approximations as intermediate steps. Given n inter-
mediate steps, we plan to discover the most efficient order of execution of the spatial
approximations in different types of spatial queries.
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