How COVID-19 Impacted Data Science: a Topic Retrieval and
Analysis from GitHub Projects’ Descriptions

Amanda C. R. Tavares, Natércia A. Batista, Mirella M. Moro

! Universidade Federal de Minas Gerais — Belo Horizonte, Brazil

amandacrisrodriguest@gmail.com, {natercia,mirella}@dcc.ufmg.br

Abstract. We present a data-driven research over code repositories that are
data science oriented. The goal is to compare their topics of interest and evo-
lution over the COVID-19 pandemic period by analyzing Jupyter Notebook and
Python projects from a year before and during the pandemic. We employ a
state-of-art algorithm to find topics based on the repositories descriptions, and
compare the performance of tuning its hyperparameters for better accuracy.

1. Introduction

Since its first outbreak in December 2019, COVID-19 pandemic has put the world through
unprecedented situations. Specially in Computer Science, recent studies go over the ef-
fects on software developers and their projects [Ralph et al. 2020, |Silveira et al. 20211,
and characterize COVID-19 GitHub projects [de Oliveira et al. 2021, Wang et al. 2020]].
Nevertheless, few studies focus on the impacts of the pandemic on the Data Science field.

Data Science and its two main components (Artificial Intelligence — Al, and Ma-
chine Learning — ML) have recently become popular for collaborative development and
research. In GitHubﬂ the most used language for Al and ML is Python, followed by the
interactive literate programming paradigm of Jupyter Notebook [Gonzalez et al. 2020]].
The popularity of Jupyter Notebook among data scientists can be explained by its facili-
ties to document, modify, and experiment with data [Perkel 2018| Pimentel et al. 2021]].

Our work aims to fill such a gap by analyzing data science-oriented coding repos-
itories and comparing their topics pre and during the pandemic. Our novel methodology
includes: building a dataset of near 60 thousand GitHub repositories in Python or Jupyter
Notebook; finding their topics by using Latent Dirichlet Allocation (LDA); tuning LDA
after an extensive analysis of six metaheuristics to get the fittest models; and analyzing
such fitness according to a coherence measure (instead of the usual Silhouette coefficient
[Sharma et al. 2017]). Note that considering the repository own topics is not enough, as
its users manually assign them, making it an error-prone task [Sipio et al. 2020].

2. Related Work

This section summarizes recent work on topic classification techniques and characteriza-
tion over data science and COVID-19 related GitHub repositories.

Topic Classification. Saraiva and Medeiros (2018) introduce the CIMAL framework
that finds relationships between topics in educational material from textual sources, slides,

IGitHub is the largest collaborative software development platform with over 65 million developers
working on 200+ million repositories using different programming languages.

and videos. It uses Explicit Semantic Analysis (ESA) for topic classification by correlat-
ing relatedness between textual parts. Sharma et al. (2017) extract README files and
descriptions from 10,000 randomly selected popular GitHub repositories to identify cat-
egories by using a combination of LDA and Genetic Algorithm (LDA-GA) modeling.
They also performed manual analysis to generate categories based on the LDA topics.

GitHub and COVID-19. Wang et al. (2020) consider over 67,000 COVID-19 related
projects, then manually analyze only the top 200 repositories to identify six categories.
The classification uses the cosine similarity of the TF-IDF vectorization from all descrip-
tions, compared to manually categorized training data consisting of 100 repositories for
each category. Likewise, de Oliveira et al. (2021) consider 60,352 GitHub repositories
and 1,190 questions from Stack Overflow and Data Science Q&A related to COVID-19.
They also model the topics by using the LDA algorithm, then identifying eleven topics
from the descriptions of the GitHub projects and seven from the Q&A forums.

Contributions. There is no publication on data-driven research that evaluates data sci-
ence oriented GitHub repositories during the pandemics. In this initial work, we imple-
ment a topic modeling and analysis by applying LDA combined with unsupervised opti-
mization for its hyperparameter tuning over the repositories’ description (different from
[Sharma et al. 2017] that uses README files). For such tuning, we compare six meta-
heuristics and select the best performing one (as inspired by [Panichella 2021]]). For fit-
ness function, we use the ¢, coherence measure of the model, as it consumes less computer
memory and processing time compared to the Silhouette coefficient [Sharma et al. 2017,
based on our pre-analyses. The ¢, coherence measure is one of the best performing coher-
ence evaluation methods as it is strongly correlated to human ratings [Roder et al. 2015]],
meaning that a model with a higher ¢, score has topics with superior quality.

3. Methodology

To analyze and compare data science projects using Jupyter Notebooks and Python, we
introduce a methodology with: data extraction, data preparation, synthesis, and analysis.

Data Extraction. The first step uses a data crawler and the GitHub REST APIE] to
get projects with Jupyter Notebook and Python as programming languages and at least
six stars created in 2019 and 2020. The number of stars limits the search to repositories
with minimum relevance to the community, while still containing a general representation
for each language and not just the most popular repositories [Gonzalez et al. 2020]. As a
secondary filter, we classify the descriptions idiom using the package pylan and get only
English-written projects without empty text; then removing up to 40% of the repositories.

Data Preparation. Preparing the data requires: removing URLSs, emojis, non-ASCII
characters, punctuation, and stop words from the texts; performing word lemmatization
using the package spaC filtering identified non-software projects based on specific key-
words (e.g., “course”, “tutorial”); detecting bigrams using gensinﬂ Phrase (collocation)
detection; and grouping bigram terms that appear at least five times through all documents

for Jupyter Notebook and at least ten times for Python. Then, we calculate the TF-IDF

2GitHub REST APIL: https://docs.github.com/en/rest
3pylang: https://pypi.org/project/pylang/

4spaCy: https://spacy.io/

5gensim: https://radimrehurek.com/gensim/index.html

https://docs.github.com/en/rest
https://pypi.org/project/pylang/
https://spacy.io/
https://radimrehurek.com/gensim/index.html

Table 1. Statistics of the final dataset

2019 2020
Language Original Final Original Final
Jupyter Notebook 10,278 4,891 9,120 4,088
Python 43,731 26,644 39,229 23,288

(Term Frequency and Inverse Document Frequency) score of the words with the gensim
implementation to filter out very common words (low TF-IDF) that do not bring value
(e.g., “data”) and uncommon ones (high TF-IDF) that could be irrelevant or even typos
(e.g., “alogrithm” — sic). Initial analyses revealed values smaller than 0.2 or larger than
0.8 for such words; hence, those words were filtered out. Lastly, we consider the number
of words within a repository description. At this stage, an analysis informed most descrip-
tions have between two and eight words. To normalize by size, descriptions out of such
range were filtered out (normalizing by size seeks better results for topic classification).
To identify topics, LDA requires as input: a dictionary of terms (i.e., term and its fre-
quency over all documents) and the documents as bag of words, both of which are created
from the descriptions at this point. To improve the results, we also clean the dictionary by
removing terms that appear in less than five documents for Jupyter Notebook and less than
ten for Python to exclude infrequent words, as Python has double the words of Jupyter
in our final dataset. The dataset consists of 58,911 repository descriptions separated by
language and creation year, according to Table[I]and available at [Tavares et al. 2021].

Synthesis. After preparing the data, we may identify the topics from the repositories de-
scriptions. For topic modeling, we apply the LDA algorithm with the number of passes set
to 10 and iterations to 100 for the model, as those are correlated with the number of doc-
uments to be analyzed based on our testings. LDA also requires setting up near optimal
values for its parameters: £ reflects the number of topics for the model, « sets the topic
density for each document, and /3 regards the word density in the topic. Untuned LDA
leads to underperforming classification results. Hence, using metaheuristics algorithms
helps to optimize the tuning process by automatically finding near-ideal values for each
hyperparameter. Inspired by [Panichella 2021]], we test six of such algorithms over 10,000
descriptions of randomly selected Jupyter Notebook repositories: Differential Evolution-
ary (DE) and its Self Adaptive version (SADE), Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) and its Generational version (GPSO) and Simulated Annealing (SA).
SA is the only local search metaheuristic used, while the others (DE, SADE, GA, PSO,
GPSO) are population based. As aforementioned, we evaluate them with the ¢, score. For
a fair comparison, we set their stopping criterion to the same number of fitness evaluations
(FE) = 300 and use a fixed random seed value (0). The value range for the hyperparam-
eters are k = [10, 30], o = [0.001, 0.5] and 8 = [0.001, 0.5]. After comparing the results
from the metaheuristic algorithms, we select the best according to ¢, score and run it for
each language and creation year with the value of FE for which the results from the pre-
vious test converged (as presented in Section 4). We use gensim implementation of the
LDA and pygmolﬂ framework to build our parameter tuning optimization for the LDA.

Analysis. After running LDA, we analyze its resulting topics to define their domain

6pygmo: https://esa.github.io/pygmo2

https://esa.github.io/pygmo2

0.675

.62
0620 — 0.670

0.615
0.665
30.610 | ———
2) / : © 0.660
3 0.605 — / / 8
5 AR A Tyoe £0.655
O 0.600 yp! S
%{’; //_I —— PSO % 0.650 Language
m 0.595 74 GPSO & Jupyter Notebook
— / —— DE 0.645 Python
05% —— saDE Year
4 0.640
0.585 / 2: ;8; 2
’ 0.635
50 100 150 200 250 300 20 3 40 5 60 70 80 90 100
Fitness Eval. # Fitness Eval.
(a) Metaheuristics evolution (b) PSO evolution for each language and year

Figure 1. Coherence Values Evolution

Python Jupyter Notebook
60 62.3 625 66.1
. 56.3 60 i
= 437 3
3 40 377 3 Domain
= : Domain =40 -
2 Tools i) B Classification
8 Al & ML é Prediction
320 @ 20 20075 16,0179 W= Others
’) I | I
0
2019 2020 2019 2020
Year Year

Figure 2. Percentage of repositories for each domain, language and year

by creating word clouds for each topic. Note that we create four LDA models: one for
each language/year pair. We also select the top 50 descriptions for each topic to help our
manual topic labeling and the domain classification. The next section sums up the results.

4. Results and Discussion

This section presents results in three parts: (i) algorithm performance for choosing the
fittest LDA parameters according to the coherence measure, (i7) the domains and their
distributions for each language/year, (iii) and topic analysis for each domain/year.

LDA tuning algorithms performance. Figure|l|(a) shows the coherence score for each
algorithm: PSO and GPSO provide the best results; although PSO converged in fewer
fitness evaluations than GPSO. Hence, we use PSO to tune the LDA parameters for the
descriptions of each language and year. Figure [I] (b) presents the best coherence score
values regarding FE specifically for PSO algorithm. As the best coherence was achieved
with /'E = 100 for most language/year pairs, such value is used as stop criterion.

Domain distribution. From the topics for each language, we may identify two domains
for Python repositories and three for Jupyter Notebook as follows: Al & ML (applications
focused on Data Science) and Tools (related to web development, servers, utility scripts,
and others) for Python; and Classification (Data Science projects aiming to classify data),
Prediction (projects aiming to predict future data behavior), and Others (repositories with
study annotations and tools in general) for Jupyter Notebook. Figure 2] presents their dis-
tribution per year. Overall, such distribution across domains is similar in both years. Still,

w.collection=* §

dataset J convertiiit

mod

o control. | toolkit a

ptimization

neural_network , aer Learning s

real_time:, . service ™ cloud

utility
nnect user,

apldetecthmm

mewo

;,bgfast home_: ass;stant

Figure 3. Words in Python repositories descriptions per domain/year

Classmcatlon . Prg%lctlo)rg task]_ . Others hine 1
. 7 C = x4 e mnls «supRRrt @t tention”sonltas machine_learning
2.3 bayesmfl:pt det s gl m e e r' l e S S lmu daep learnlpg ne r a l
ac 1ne_ ea g deno . ~
learn: resource =9 C rea t eﬂ s 42 pcst%e pal(pellne soun i o g

ﬁ
:(D
Q
=
ﬁ

I ylasslflcatlon e

cognitions

processing @segmentation: '—dimcmm) frain=Li

p l ea r- n l ng financegeneration

processing

(’:}naalsystllc th 3
§ 'model C OV l d fa5t1

N e f”e;framework
predlctlgh el ot speech, no) \Vi ldeO rrrrrrr

‘/
quantum EEEEE

natural_lan

programmlng packageuser S%\gllee cell p
analyze

@Unsuperyised

enmethody sy ® time
analysis

sapping

policy

‘o
o chage
.00 4
o
o semantic

databasecuston

§ book coronav1rus er\) 1nfere an T -
N Tan uag g dete - ,L” I :
ngmo”en Umza:{oﬁn‘openc dmtextarcmtecnure g e = B g]
H I € S isualize
detect earnlng ngipesrind r‘ansf()rmerr pre D LS ST 85 ! : convert graph problem

Figure 4. Words in Jupyter Notebook repositories descriptions per domain/year

the gap difference between Tools and Al & ML has increased for Python, and between
Classification and the others for Jupyter Notebook, which are better explored next.

Topic analysis. Figure [3]shows the word cloud of the 200 (for easier visualization) most
relevant words for Python based on their topic scores for each domain and year. For Al
& ML, the topics are similar, with some small changes in relevance. For Tools, topics
are more different between years, but they are still in the context of tools, APIs, servers,
and frameworks. Figure] shows the word clouds for Jupyter Notebook. The results are
generally similar, but in the Classification domain, the keyword covid_19 clearly appears
in 2020. Such a result highlights the increased proportion of classification methods due
to the pandemic, showing an interest in using Data Science to detect, identify and classify
data related to COVID-19. The covid_19 keyword is the only relevant topic that indicates
the repository subject in any domain, as the other words are more generic or technical.

5. Conclusion

This work has three main contributions: comparing different metaheuristics approaches
to define the fittest algorithm when tuning LDA for modeling topics from GitHub repos-
itories descriptions; finding domains based on topics from Jupyter Notebook and Python
projects; and checking the impact of the COVID-19 pandemic on data science related
repositories. Our results found that PSO achieved the highest LDA model coherence in
fewer FE than other common metaheuristics. We also identified distinct domains for both

languages: Al & ML and Tools for Python, and Classification, Prediction, and Others
for Jupyter Notebook, which indicate a more specific and applied use in Data Science
projects. Our results also suggest an increase in Data Science projects for classifying
data, and a growing number of Python repositories unrelated to Data Science. Overall,
such initial results highlight the viability of our methodology and raise questions to better
understand the pandemics impact. Hence, the next steps include amplifying the study to
other languages and repositories’ features for correlation analyses, deeper studies over
the repositories content in terms of data science methods and datasets, as well as team
collaboration, as previous works from our research group [Oliveira et al. 2018)]].

Acknowledgements. Research funded by CNPq, Brazil.

References

de Oliveira, P. A. M. et al. (2021). Software development during covid-19 pandemic: an
analysis of stack overflow and github. In SEH, co-located with ICSE.

Gonzalez, D. et al. (2020). The state of the ml-universe: 10 years of artificial intelligence
& machine learning software development on github. In MSR, page 431-442.

Oliveira, G. P, Batista, N. A., Branddo, M. A., and Moro., M. M. (2018). Utilizacdo de
redes heterogéneas para medir a forca dos relacionamentos no github. In SBBD.

Panichella, A. (2021). A systematic comparison of search-based approaches for Ida hy-
perparameter tuning. Information and Software Technology, 130:106411.

Perkel, J. M. (2018). Why jupyter is data scientists’ computational notebook of choice.
Nature, 563:145-146.

Pimentel, J. F., Oliveira, G. P, Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021).
Ciéncia de dados com reprodutibilidade usando jupyter. In Jornada de Atualizacdo em
Informdtica 2021, pages 11-59. SBC.

Ralph, P. et al. (2020). Pandemic programming: How COVID-19 affects software devel-
opers and how their organizations can help. Empir. Softw. Eng., 25:4927-4961.

Roder, M., Both, A., and Hinneburg, A. (2015). Exploring the space of topic coherence
measures. In WSDM, pages 399—408.

Saraiva, M. C. and Medeiros, C. B. (2018). Correlating educational documents from
different sources through graphs and taxonomies. In SBBD, pages 121-132.

Sharma, A. et al. (2017). Cataloging github repositories. In EASE, page 314-319.

Silveira, P. et al. (2021). A deep dive into the impact of covid-19 on software development.
IEEE Transactions on Software Engineering.

Sipio, D. et al. (2020). A multinomial naive bayesian (mnb) network to automatically
recommend topics for github repositories. In Procs. EASE, page 71-80.

Tavares, A. C. R., Batista, N. A., and Moro., M. M. (2021). Greed: Github repositories
and descriptions. Zenodo. DOI 10.5281/zenodo.5138079.

Wang, L. et al. (2020). When the open source community meets covid-19: Characterizing
covid-19 themed github repositories. arXiv, 2010.12218.

	Introduction
	Related Work
	Methodology
	Results and Discussion
	Conclusion

