
How COVID-19 Impacted Data Science: a Topic Retrieval and
Analysis from GitHub Projects’ Descriptions

Amanda C. R. Tavares, Natércia A. Batista, Mirella M. Moro

1 Universidade Federal de Minas Gerais – Belo Horizonte, Brazil

amandacrisrodriguest@gmail.com, {natercia,mirella}@dcc.ufmg.br

Abstract. We present a data-driven research over code repositories that are
data science oriented. The goal is to compare their topics of interest and evo-
lution over the COVID-19 pandemic period by analyzing Jupyter Notebook and
Python projects from a year before and during the pandemic. We employ a
state-of-art algorithm to find topics based on the repositories descriptions, and
compare the performance of tuning its hyperparameters for better accuracy.

1. Introduction
Since its first outbreak in December 2019, COVID-19 pandemic has put the world through
unprecedented situations. Specially in Computer Science, recent studies go over the ef-
fects on software developers and their projects [Ralph et al. 2020, Silveira et al. 2021],
and characterize COVID-19 GitHub projects [de Oliveira et al. 2021, Wang et al. 2020].
Nevertheless, few studies focus on the impacts of the pandemic on the Data Science field.

Data Science and its two main components (Artificial Intelligence – AI, and Ma-
chine Learning – ML) have recently become popular for collaborative development and
research. In GitHub,1 the most used language for AI and ML is Python, followed by the
interactive literate programming paradigm of Jupyter Notebook [Gonzalez et al. 2020].
The popularity of Jupyter Notebook among data scientists can be explained by its facili-
ties to document, modify, and experiment with data [Perkel 2018, Pimentel et al. 2021].

Our work aims to fill such a gap by analyzing data science-oriented coding repos-
itories and comparing their topics pre and during the pandemic. Our novel methodology
includes: building a dataset of near 60 thousand GitHub repositories in Python or Jupyter
Notebook; finding their topics by using Latent Dirichlet Allocation (LDA); tuning LDA
after an extensive analysis of six metaheuristics to get the fittest models; and analyzing
such fitness according to a coherence measure (instead of the usual Silhouette coefficient
[Sharma et al. 2017]). Note that considering the repository own topics is not enough, as
its users manually assign them, making it an error-prone task [Sipio et al. 2020].

2. Related Work
This section summarizes recent work on topic classification techniques and characteriza-
tion over data science and COVID-19 related GitHub repositories.

Topic Classification. Saraiva and Medeiros (2018) introduce the CIMAL framework
that finds relationships between topics in educational material from textual sources, slides,

1GitHub is the largest collaborative software development platform with over 65 million developers
working on 200+ million repositories using different programming languages.



and videos. It uses Explicit Semantic Analysis (ESA) for topic classification by correlat-
ing relatedness between textual parts. Sharma et al. (2017) extract README files and
descriptions from 10,000 randomly selected popular GitHub repositories to identify cat-
egories by using a combination of LDA and Genetic Algorithm (LDA-GA) modeling.
They also performed manual analysis to generate categories based on the LDA topics.

GitHub and COVID-19. Wang et al. (2020) consider over 67,000 COVID-19 related
projects, then manually analyze only the top 200 repositories to identify six categories.
The classification uses the cosine similarity of the TF-IDF vectorization from all descrip-
tions, compared to manually categorized training data consisting of 100 repositories for
each category. Likewise, de Oliveira et al. (2021) consider 60,352 GitHub repositories
and 1,190 questions from Stack Overflow and Data Science Q&A related to COVID-19.
They also model the topics by using the LDA algorithm, then identifying eleven topics
from the descriptions of the GitHub projects and seven from the Q&A forums.

Contributions. There is no publication on data-driven research that evaluates data sci-
ence oriented GitHub repositories during the pandemics. In this initial work, we imple-
ment a topic modeling and analysis by applying LDA combined with unsupervised opti-
mization for its hyperparameter tuning over the repositories’ description (different from
[Sharma et al. 2017] that uses README files). For such tuning, we compare six meta-
heuristics and select the best performing one (as inspired by [Panichella 2021]). For fit-
ness function, we use the cv coherence measure of the model, as it consumes less computer
memory and processing time compared to the Silhouette coefficient [Sharma et al. 2017],
based on our pre-analyses. The cv coherence measure is one of the best performing coher-
ence evaluation methods as it is strongly correlated to human ratings [Röder et al. 2015],
meaning that a model with a higher cv score has topics with superior quality.

3. Methodology
To analyze and compare data science projects using Jupyter Notebooks and Python, we
introduce a methodology with: data extraction, data preparation, synthesis, and analysis.

Data Extraction. The first step uses a data crawler and the GitHub REST API2 to
get projects with Jupyter Notebook and Python as programming languages and at least
six stars created in 2019 and 2020. The number of stars limits the search to repositories
with minimum relevance to the community, while still containing a general representation
for each language and not just the most popular repositories [Gonzalez et al. 2020]. As a
secondary filter, we classify the descriptions idiom using the package pylang3 and get only
English-written projects without empty text; then removing up to 40% of the repositories.

Data Preparation. Preparing the data requires: removing URLs, emojis, non-ASCII
characters, punctuation, and stop words from the texts; performing word lemmatization
using the package spaCy4; filtering identified non-software projects based on specific key-
words (e.g., “course”, “tutorial”); detecting bigrams using gensim5 Phrase (collocation)
detection; and grouping bigram terms that appear at least five times through all documents
for Jupyter Notebook and at least ten times for Python. Then, we calculate the TF-IDF

2GitHub REST API: https://docs.github.com/en/rest
3pylang: https://pypi.org/project/pylang/
4spaCy: https://spacy.io/
5gensim: https://radimrehurek.com/gensim/index.html

https://docs.github.com/en/rest
https://pypi.org/project/pylang/
https://spacy.io/
https://radimrehurek.com/gensim/index.html


Table 1. Statistics of the final dataset

2019 2020
Language Original Final Original Final

Jupyter Notebook 10,278 4,891 9,120 4,088
Python 43,731 26,644 39,229 23,288

(Term Frequency and Inverse Document Frequency) score of the words with the gensim
implementation to filter out very common words (low TF-IDF) that do not bring value
(e.g., “data”) and uncommon ones (high TF-IDF) that could be irrelevant or even typos
(e.g., “alogrithm” – sic). Initial analyses revealed values smaller than 0.2 or larger than
0.8 for such words; hence, those words were filtered out. Lastly, we consider the number
of words within a repository description. At this stage, an analysis informed most descrip-
tions have between two and eight words. To normalize by size, descriptions out of such
range were filtered out (normalizing by size seeks better results for topic classification).
To identify topics, LDA requires as input: a dictionary of terms (i.e., term and its fre-
quency over all documents) and the documents as bag of words, both of which are created
from the descriptions at this point. To improve the results, we also clean the dictionary by
removing terms that appear in less than five documents for Jupyter Notebook and less than
ten for Python to exclude infrequent words, as Python has double the words of Jupyter
in our final dataset. The dataset consists of 58,911 repository descriptions separated by
language and creation year, according to Table 1 and available at [Tavares et al. 2021].

Synthesis. After preparing the data, we may identify the topics from the repositories de-
scriptions. For topic modeling, we apply the LDA algorithm with the number of passes set
to 10 and iterations to 100 for the model, as those are correlated with the number of doc-
uments to be analyzed based on our testings. LDA also requires setting up near optimal
values for its parameters: k reflects the number of topics for the model, α sets the topic
density for each document, and β regards the word density in the topic. Untuned LDA
leads to underperforming classification results. Hence, using metaheuristics algorithms
helps to optimize the tuning process by automatically finding near-ideal values for each
hyperparameter. Inspired by [Panichella 2021], we test six of such algorithms over 10,000
descriptions of randomly selected Jupyter Notebook repositories: Differential Evolution-
ary (DE) and its Self Adaptive version (SADE), Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) and its Generational version (GPSO) and Simulated Annealing (SA).
SA is the only local search metaheuristic used, while the others (DE, SADE, GA, PSO,
GPSO) are population based. As aforementioned, we evaluate them with the cv score. For
a fair comparison, we set their stopping criterion to the same number of fitness evaluations
(FE) = 300 and use a fixed random seed value (0). The value range for the hyperparam-
eters are k = [10, 30], α = [0.001, 0.5] and β = [0.001, 0.5]. After comparing the results
from the metaheuristic algorithms, we select the best according to cv score and run it for
each language and creation year with the value of FE for which the results from the pre-
vious test converged (as presented in Section 4). We use gensim implementation of the
LDA and pygmo6 framework to build our parameter tuning optimization for the LDA.

Analysis. After running LDA, we analyze its resulting topics to define their domain

6pygmo: https://esa.github.io/pygmo2

https://esa.github.io/pygmo2


(b) PSO evolution for each language and year (a) Metaheuristics evolution

Figure 1. Coherence Values Evolution

Figure 2. Percentage of repositories for each domain, language and year

by creating word clouds for each topic. Note that we create four LDA models: one for
each language/year pair. We also select the top 50 descriptions for each topic to help our
manual topic labeling and the domain classification. The next section sums up the results.

4. Results and Discussion
This section presents results in three parts: (i) algorithm performance for choosing the
fittest LDA parameters according to the coherence measure, (ii) the domains and their
distributions for each language/year, (iii) and topic analysis for each domain/year.

LDA tuning algorithms performance. Figure 1 (a) shows the coherence score for each
algorithm: PSO and GPSO provide the best results; although PSO converged in fewer
fitness evaluations than GPSO. Hence, we use PSO to tune the LDA parameters for the
descriptions of each language and year. Figure 1 (b) presents the best coherence score
values regarding FE specifically for PSO algorithm. As the best coherence was achieved
with FE = 100 for most language/year pairs, such value is used as stop criterion.

Domain distribution. From the topics for each language, we may identify two domains
for Python repositories and three for Jupyter Notebook as follows: AI & ML (applications
focused on Data Science) and Tools (related to web development, servers, utility scripts,
and others) for Python; and Classification (Data Science projects aiming to classify data),
Prediction (projects aiming to predict future data behavior), and Others (repositories with
study annotations and tools in general) for Jupyter Notebook. Figure 2 presents their dis-
tribution per year. Overall, such distribution across domains is similar in both years. Still,



tool
api

package
image
file

generate

build

c
r
e
a
t
e

server

django

automate

web

s
e
r
v
i
c
e

graph

plugin

platform

app

extension

bot

run

fastmethod

cloud

download

3d game

utilitypipeline information

home_assistant

flask

database

discord_bot

function

integration

search

a
c
c
e
s
s

m
a
n
a
g
e
m
e
n
t

kera

automatic
scalea

u
t
o
m
a
t
i
c
a
l
l
yresearch

development

google

format

device

d
o
c
u
m
e
n
t
a
t
i
o
npower

task

ai

structure

linux

w
e
b
s
i
t
e

multiple

efficient

design

discord

d
i
s
p
l
a
y

engine

level

estimation

software

gui

map

log

type

embed

read

chinese

face

monitor

online

l
i
s
t

audio

window

t
e
m
p
l
a
t
e

sdk

channel

local

cnn

t
e
n
s
o
r
f
l
o
w
_
2

music

node

a
u
t
o
m
a
t
i
o
n

domain

r
e
a
l
_
t
i
m
e

d
i
s
t
r
i
b
u
t
e

w
o
r
k
f
l
o
w

configuration

d
o
c
u
m
e
n
t

apis

guide

robust

play

action

manager

cluster

resource

generative_adversarial

analyze content

develop

command_tool

easily

send

ml

iccv_2019

message
tree

transfer

w
o
r
d

numpy

protocol

common

memory

query

detect

integrate

connect

backend

experiment

parser

evaluation

link

drive

pure

a
u
t
o

study

rule

remote

style

field

evaluate

save

storage
component

interactive

json

neurip_2019

scrape

annotation

c
l
i
e
n
t
_
l
i
b
r
a
r
y

robotic

2_0

predict

personal

site

setup

fastapi

signal

adversarial

community

single

compatible

import

trading

note

weight

c
u
s
t
o
m
_
c
o
m
p
o
n
e
n
t

r
a
s
p
b
e
r
r
y
_
p
i

demo

a
d
v
a
n
c
e
d

d
e
p
e
n
d
e
n
c
y

simulator

energy

s
m
a
r
t

store

quality

m
o
t
i
o
n

cross_platform

azure

scan

helper

powerful

p
r
o
x
y

monitoring

p
o
r
t

rest_api

engineering

match

interact

browser

computer_vision

markdown

facebook

computer

maintain

focus

authentication

home

light

v2

complex

shot

random

data_science

schema

book

modeling

20
19

20
20

library
framework
apif

i
l
e

detection

createbuild server

modulecollection

d
j
a
n
g
o

p
l
u
g
i
n

download

fast

g
e
n
e
r
a
t
e

convert control

home_assistant

3dgame

p
l
a
t
f
o
r
m

task

machine_learning

web

client

manage

app

bot

attention

neural

device

search

ai

run

wrapper

add

telegram

toolkit

action

method

discord

google

aw

format

automatic

eccv_2020

engine

environment
fastapi software

extension

database

command

flask

o
b
j
e
c
t
_
d
e
t
e
c
t
i
o
n

generator

check

structure

document

m
a
n
a
g
e
m
e
n
t

website

bert

t
e
l
e
g
r
a
m
_
b
o
t

music

gui

d
e
v
e
l
o
p
m
e
n
t

a
u
t
o
m
a
t
i
o
n

r
e
a
d

interactive

protocol

backend

event

easily

g
r
a
p
h
_
n
e
u
r
a
l

update

integrate

list
local

custom_component

instance

v
i
s
u
a
l
i
z
a
t
i
o
n

docker

a
c
c
o
u
n
t

public

sdk

play

query

book

scan

blender
ml

unsupervised

live

view

f
a
c
e

command_tool

display

word

youtube

group

http

remote

random

visualize

message

light

assistant

upload

report

generative

distribution

dashboard

k
n
o
w
l
e
d
g
e
_
g
r
a
p
h

share

memory

minimal

rest_api

advanced

markdown

site

deploy

convolutional_neural

quantum

personal

import

plot

annotation workflow

motion

web_apppredict

e
n
h
a
n
c
e

virtual

statistic

azure

key

binary

minecraft

animation

rule

publish

component

fork

exploit

enable

compression

art

profile

note

downloader

eccv2020

building

style

trading

helpershape

g
p
u

proxy

mesh

authentication

localization

serverless

password

stack

token

reference

meta

host

hand

spotify

hack

parser

scraper

collect

vehicle

asyncio

browser

tracking

call

private

semi_supervised

compatible
parameter

save

strategy

selenium

icml_2020

maintain

photo
real

core

state_art

p
r
o
g
r
a
m
m
i
n
g
_
l
a
n
g
u
a
g
e

editor

mapping

a
t
t
e
n
t
i
o
n
_
n
e
t
w
o
r
k

process

s
m
a
r
t

tweet

weatherpytorch
video

model

image network

deep_learning

text
automate

deep

neural_network

g
e
n
e
r
a
t
i
o
n

supportgraph

paper

cloud

multi

information segmentation

service

covid_19

set

object

b
o
tfunction

multiple
classification

training

real_time

user
utility

p
r
e
d
i
c
t
i
o
n

t
e
m
p
l
a
t
e

efficient

optimization

domain

scale

level

track

n
e
u
r
i
p
_
2
0
2
0reinforcement_learning guide develop

sequence channel

json

knowledge

experiment

power

connect embed

c
o
n
f
i
g
u
r
a
t
i
o
n

link

metric

parse

opencv

semantic_segmentation

common
shot

c
o
m
m
u
n
i
t
y

content

extract

flow

single

learningadversarial

problem

analyze

end_end

auto

l
a
n
g
u
a
g
e
_
m
o
d
e
l

documentation

chat

n
o
d
e

adaptive

drive

k
u
b
e
r
n
e
t
e

s
u
p
e
r
v
i
s
e

s
u
p
e
r
_
r
e
s
o
l
u
t
i
o
n

g
a
n

hierarchical

chinese

r
o
b
u
s
t

e
x
t
r
a
c
t
i
o
n

quality
t
e
a
m

label

release

email

t
r
a
c
k
e
r

programming

instagram

n
a
t
u
r
a
l
_
l
a
n
g
u
a
g
e

question_answer

recommendation

modeling

s
t
o
r
e

cluster
people

block

digital

kera

async

target

flexible

loss

gradient

discovery

s
o
l
v
e

inspire

entity

single_image
response

a
l
i
g
n
m
e
n
t

url

n
u
m
p
y

metadata

detector

accept

jax

match

speed

conditional

filter

signal

tensorflow_2

backup

static

chart serve

baseline

analytic

apply

matching reconstruction

similarity

depth

interact

energy

output

movie

data_science

emnlp_2020

standard

recognition

translation

technique

s
c
h
e
m
a

unified

name

uncertainty

whatsapp
mobilespecific

embedding

monitoring

speech

generative_adversarial

convolution

transformation

developer

archive

e
x
c
h
a
n
g
e

completion

student

box

range

maco

font

option

config

name_entity
p
r
o
p
e
r
t
y

classifier

graph_convolutional

extend

relation

exploration

hub

future

b
l
e
n
d
e
r
_
a
d
d
o
n

AI & ML Tools

library

pytorch
data

deep_learning

model

a
n
a
l
y
s
i
s

m
o
d
u
l
e

network
video

learning

deep

d
e
t
e
c
t
i
o
n

collection

dataset

c
l
i
e
n
t

neural_network

toolkit

e
n
v
i
r
o
n
m
e
n
t

segmentation

classification

simulation

f
e
a
t
u
r
e

recognition

object

a
w

track

control

o
p
t
i
m
i
z
a
t
i
o
n

convert

security

toolbox

neural

extract

p
r
e
d
i
c
t
i
o
n

representation

o
b
j
e
c
t
_
d
e
t
e
c
t
i
o
n

dynamic

attention

generator

training

performance

command

asynchronous

robot

layer

update

visual

time

aware

train

convolutional_neural

terminal

flexible

architecture

public

ansible

bert

l
o
s
s

machine

sequence

transformer

u
n
s
u
p
e
r
v
i
s
e
d

d
e
p
l
o
y

net

cvpr_2019

end_end

metric

label

benchmark

agent

gan

d
e
e
p
_
r
e
i
n
f
o
r
c
e
m
e
n
t

speech

state

parse

interaction

product
asyncio

p
r
o
g
r
a
m
m
i
n
g

t
e
l
e
g
r
a
m
_
b
o
t

core

addon

v
u
l
n
e
r
a
b
i
l
i
t
y

semantic_segmentation

extraction

kubernete
key

blender

m
e
d
i
u
m

export

t
i
m
e
_
s
e
r
i
e
s

a
d
a
p
t
i
v
e

inference
oral

path

live

enable

stack

visualize

mirror

gpu

knowledge

sql

output

batch

nlp

k
n
o
w
l
e
d
g
e
_
g
r
a
p
h

js

g
r
a
p
h
_
n
e
u
r
a
l

statistic

group

scene

lightning

distribution

2d

building

strategy
tracking brain

p
r
o
d
u
c
t
i
o
n

real

board

mining

chain

multimodal

supervise

input

c
e
l
l

transform

standalone

active

d
r
i
v
e
r

c
o
n
v
o
l
u
t
i
o
n

life

email

k
e
r
n
e
l

standard

optimize
short

lstm

super_resolution

article resolution

editor

c
h
a
r
a
c
t
e
r

openai_gym

differentiable

report

ssh
a
i
m

m
o
d
e
r
n

infrastructure

unified

load

exchange

amazon

sqlalchemy
frame

acl_2019

convolutional

deployment

current

photo
stochastic

pytest

c
h
a
n
g
e

microsoft

hand

f
o
n
t

question

alignment

indicator

edit

info

directory

j
o
i
n
t

medical

sentence

r
o
b
u
s
t
n
e
s
s pre

bayesian

form

talk

beginner

malware

scalable

detector

block

traffic

inspire

call

pretraine

enhancement

parallel

html

dns

synthesis

g
r
a
p
h
_
c
o
n
v
o
l
u
t
i
o
n
a
l

Figure 3. Words in Python repositories descriptions per domain/year

Others

pytorch
machine_learning

recognition i
m
a
g
e

cnn

learn

detect

m
o
d
e
l

segmentation

resource

training

paper

g
r
a
p
h

processing

buildlstm

classification

set

ai

research

function

face

n
a
t
u
r
a
l
_
l
a
n
g
u
a
g
e

bayesian
fast

detection

feature

representationnet

automatic

m
u
s
i
c

e
s
t
i
m
a
t
i
o
n

reinforcement_learning

regression

language

search

game

recommendation

information

t
i
m
e

opencv

language_model

generation

app

interactive

analytic convolutional

apply

robust

statistical

service

anomaly_detection

real_time

a
d
a
p
t
i
v
e

talk

automate

single

news

kera
adversarial

method

human

t
r
a
c
k

dataset

s
e
n
t
i
m
e
n
t
_
a
n
a
l
y
s
i
s

stock

visual

university

type

loss

state_art
statistic

d
e
e
p
_
l
e
a
r
n
i
n
g

p
e
r
f
o
r
m
a
n
c
e

process

traffic

evaluation

public

module

platform

control

p
o
r
t
f
o
l
i
o

embedding

metric
play

sequence

g
e
n
e
r
a
t
o
r

linear

k
n
o
w
l
e
d
g
e

n
e
u
r
a
l
_
n
e
t
w
o
r
k

recommender

t
r
a
n
s
f
e
r

face_recognition

scratch

software

r
e
c
u
r
r
e
n
t
_
n
e
u
r
a
l

study

space

real

optimization

tensorflow_kera

toolkit

accompany

s
c
a
l
e

s
e
r
i
e
s

online

i
d
e
n
t
i
f
i
c
a
t
i
o
n

theory

f
i
n
a
n
c
i
a
l

learning

network

text

topic

b
e
g
i
n
n
e
r

c
a
r

classify

gradient

domain

probability

evaluate

modeling

flow

p
o
w
e
r

gpt_2

blog reproduce

optimize

s
l
i
d
e

building

identify

convolution embed

exploration

group

classifier

azure

style

reference

extension

advanced

c
o
n
v
e
r
t

plot

summer

gaussian_process
pretraine

comparison

numpy

cell

voice

text_classification

aware

scikit_learn

kernel

state

lstms

audio

local

robustness

distribution

autoencoder

fun

computational

math

web

stock_market

run

level

visualization

computing

transfer_learn

l
o
c
a
t
i
o
n

market

map

target
teach

customer

shot

player

normalization

c
l
i
m
a
t
e

localization

report

sparse

input

unsupervised

p
e
o
p
l
e

variational

mining

economic

s
e
s
s
i
o
n

day

transformer

google

style_transfer

ensemble

s
u
p
e
r
_
r
e
s
o
l
u
t
i
o
n

description

s
u
m
m
a
r
i
z
a
t
i
o
n

data_science

recipe

Classification

file
tool

neural

framework

simulation

video
develop

pytorch

programming

end_endbook

package

sound

problem

user

solve

twitter

note
quantum aw

single_cell

deep_learning

machine_learning

deep_reinforcement

visualize

3d

google_colab

read

generate

agent

temporal

matrix

learning

event

data_visualization

nlp

neurip_2019

behavior

product

c
l
o
u
d

ibm

youtube

spark

2d

perform

historical

semantic_segmentation

explain

sql

translation

tweet

denoise
image

resolution

change fundamental
extract

access

medical

p
r
i
o
r

road

digital

series
fastai

gradient_descent

layer

patient

classification

mobile

c
o
l
a
b

channel

edition

check

client

matplotlib

particle

complex

option

scientific

stream

icml_2019

i
n
s
t
r
u
c
t
i
o
n

compare

variable
neural_network

rank

library

communication

supervised

date

wasserstein

spring_2019

emotion_recognition

art

scan

active

prediction
time_series

deep_learning

create

attention

dataset

train

pipeline

computer_vision

ml

predict

support

data

lab

speechreview

task

p
r
i
c
e

demo

mnist

blog_post

d
y
n
a
m
i
c

machine_learning

medium

wordcustom

machine

label
team

efficient analysis

w
e
b
s
i
t
e

deploy

policy

spatial

person

benchmark

weight

action

data_set

question

pattern

c
o
m
p
u
t
e
r

m
a
p
p
i
n
g

wrapper

s
n
i
p
p
e
t

database

protein

forecasta
n
n
o
t
a
t
i
o
n

o
b
j
e
c
t

documentation

b
u
i
l
d

tensorflow_2

g
e
n
e
r
a
t
e

disease

score

chapter

interface

s
e
m
a
n
t
i
c

amazon_sagemaker

seismic

p
h
y
s
i
c
s

demonstration

common

sensor

a
r
t
i
f
i
c
i
a
l
_
i
n
t
e
l
l
i
g
e
n
c
e

trend

compute

google

list

graph_neuraltransform
attack

share

post

interaction

interpret

r
e
c
u
r
r
e
n
t

l
e
c
t
u
r
e

concept

call

bias

cover

easily

serve

iot

explanation

main

arxiv

descriptor

short

car

n
e
u
r
a
l
_
n
e
t
w
o
r
k

Prediction

covid_19

machine_learning

image detection

deep_learning
classification

model p
y
t
o
r
c
h

transformerlearning

language
text

train

v
i
d
e
o

fastanalytic

bertbook

detect

coronavirus

training

analysis

opencv

map

nlp

inference

processing

architecture
estimation

face_mask

api
optimization

engineering

information

kera

t
e
c
h
n
i
q
u
e

gradient

recommendation supervise

convolutional_neural

function

mask

public

learn

beginner

network

statistical

twitter

sequence

study

extract

create

feature

r
e
c
o
g
n
i
t
i
o
n

artificial_intelligence covid19

s
e
n
t
i
m
e
n
t
_
a
n
a
l
y
s
i
s

strategy

pretraine

publish_packt

automate

deep_reinforcement

single

stock

module

medical

classifier

lecture

adversarial

spread

explain

blog

lstm

real_time

scale music

plot

run

dataset

end_end

speech

movie

e
n
s
e
m
b
l
e

visual

design

t
o
o
l

people

user traffic

automatic

flow

t
r
a
d
i
n
g

financial

web

concept

covid

statistic

outbreak

control

t
o
p
i
c experiment

p
a
t
i
e
n
t

reinforcement_learning

app

a
c
t
i
o
n b
o
tpractical

online

series

personal

task

predict

motion

article

cnn

tree

interface

aw
aim

computational

template

field

random

n
a
t
u
r
a
l
_
l
a
n
g
u
a
g
e

release

multiple

tweet

n
e
w
s

perform

guide

q
u
a
n
t
u
m

sentiment

emotion

generative

selection

segmentation

estimate

type

package

o_reilly

f
o
r
e
c
a
s
t

robust

global

medium

a
n
o
m
a
l
y
_
d
e
t
e
c
t
i
o
n

s
c
r
a
t
c
h

rl

matplotlib

measure

d
o
c
k
e
r

agent

clinical

search

demonstrate

d
e
v
e
l
o
p
m
e
n
t

classify

rnn

state_art

state

advanced

pandemic

d
e
p
l
o
y
m
e
n
t

graph_neural

spark

amazon

host

t
e
n
s
o
r
f
l
o
w
_
2

master

extraction

community

icml_2020

input

word

p
l
a
t
f
o
r
m

label

real

u
p
d
a
t
e

s
i
m
u
l
a
t
i
o
n

g
e
n
e
r
a
t
o
r

recommender

session

r
e
c
o
n
s
t
r
u
c
t
i
o
n

c
o
m
p
r
e
s
s
i
o
n

person

o
p
t
i
c
a
l

image_classification

store

day

q
u
a
l
i
t
y

hierarchical

single_cell

job

clean

chest_x

trend

rate

research_paper

event

cvpr

prototype

paper
pipeline

resource

google_colab
explore

scrape

university
d
a
t
a
_
s
c
i
e
n
c
e

human data

convert

programming

document graph

analyze

game

solve
website

process
c
o
m
p
u
t
e
r

accompany customperformance

unsupervised

benchmark

visualize

v
i
s
u
a
l
i
z
a
t
i
o
n

problem

amazon_sagemaker

ml

google_drive

domain

research

develop

tool

download

environment

rank

power

detector
car

filter
benchmarke

bias

file

numpy

parameter

bayesian

figure

p
r
o
b
a
b
i
l
i
s
t
i
c

support yolov3

stylegan2

short

jax

e
x
p
e
r
i
m
e
n
t

cover

scan

convolution

t
r
a
n
s
f
o
r
m

step_step

azure

machine

s
p
r
i
n
g
_
2
0
2
0 mapping market

container

signal

hold

digital

c
o
m
p
a
r
i
s
o
n

easily

s
i
m
i
l
a
r
i
t
y

julia

structural

sparse

cell

interactive

pytorch

talk

a
n
a
l
y
s
i
s

analyse

kernel

m
a
c
h
i
n
e
_
l
e
a
r
n
i
n
g

learn

3d

k
n
o
w
l
e
d
g
e
_
g
r
a
p
h

r
e
s
o
l
u
t
i
o
n

presentation

companion

recipe

baseline

binary

kit

cool

adaptive

oral

query

comprehensive

analysis

prediction
network ai

gan

notelibrary

predictregression

representationcloud

fastai

multi

u_net deploy

report

time_seriesmethodgenerationfinance

c
o
m
p
a
r
e

d
e
e
p
_
l
e
a
r
n
i
n
g

hand

databasesemantic

autoencoder

f
o
r
e
c
a
s
t
i
n
g

generative_adversarial

sar_cov

integrateexplanationstudent

building

energy

local

policy

list

s
e
g
m
e
n
t
a
t
i
o
n

recurrent_neural

u
n
c
e
r
t
a
i
n
t
y

time

t
r
a
n
s
f
e
r

target

engine

convolutional

data_scientistsummary

stock_price

weight

minimal

dataset

advance
mri

quick

tensorflow_2

link

generate

n
e
u
r
a
l
_
n
e
t
w
o
r
k

predictive

workflow

customer

g
u
i
d
e

interaction

dynamic

component

numerical

net

dash

matching

demonstration

stat

mining

package

s
u
p
e
r
v
i
s
e
d

leverage

object_detection

plotly

rapid

20
19

20
20

Figure 4. Words in Jupyter Notebook repositories descriptions per domain/year

the gap difference between Tools and AI & ML has increased for Python, and between
Classification and the others for Jupyter Notebook, which are better explored next.

Topic analysis. Figure 3 shows the word cloud of the 200 (for easier visualization) most
relevant words for Python based on their topic scores for each domain and year. For AI
& ML, the topics are similar, with some small changes in relevance. For Tools, topics
are more different between years, but they are still in the context of tools, APIs, servers,
and frameworks. Figure 4 shows the word clouds for Jupyter Notebook. The results are
generally similar, but in the Classification domain, the keyword covid 19 clearly appears
in 2020. Such a result highlights the increased proportion of classification methods due
to the pandemic, showing an interest in using Data Science to detect, identify and classify
data related to COVID-19. The covid 19 keyword is the only relevant topic that indicates
the repository subject in any domain, as the other words are more generic or technical.

5. Conclusion
This work has three main contributions: comparing different metaheuristics approaches
to define the fittest algorithm when tuning LDA for modeling topics from GitHub repos-
itories descriptions; finding domains based on topics from Jupyter Notebook and Python
projects; and checking the impact of the COVID-19 pandemic on data science related
repositories. Our results found that PSO achieved the highest LDA model coherence in
fewer FE than other common metaheuristics. We also identified distinct domains for both



languages: AI & ML and Tools for Python, and Classification, Prediction, and Others
for Jupyter Notebook, which indicate a more specific and applied use in Data Science
projects. Our results also suggest an increase in Data Science projects for classifying
data, and a growing number of Python repositories unrelated to Data Science. Overall,
such initial results highlight the viability of our methodology and raise questions to better
understand the pandemics impact. Hence, the next steps include amplifying the study to
other languages and repositories’ features for correlation analyses, deeper studies over
the repositories content in terms of data science methods and datasets, as well as team
collaboration, as previous works from our research group [Oliveira et al. 2018].

Acknowledgements. Research funded by CNPq, Brazil.

References
de Oliveira, P. A. M. et al. (2021). Software development during covid-19 pandemic: an

analysis of stack overflow and github. In SEH, co-located with ICSE.

Gonzalez, D. et al. (2020). The state of the ml-universe: 10 years of artificial intelligence
& machine learning software development on github. In MSR, page 431–442.

Oliveira, G. P., Batista, N. A., Brandão, M. A., and Moro., M. M. (2018). Utilização de
redes heterogêneas para medir a força dos relacionamentos no github. In SBBD.

Panichella, A. (2021). A systematic comparison of search-based approaches for lda hy-
perparameter tuning. Information and Software Technology, 130:106411.

Perkel, J. M. (2018). Why jupyter is data scientists’ computational notebook of choice.
Nature, 563:145–146.

Pimentel, J. F., Oliveira, G. P., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021).
Ciência de dados com reprodutibilidade usando jupyter. In Jornada de Atualização em
Informática 2021, pages 11–59. SBC.

Ralph, P. et al. (2020). Pandemic programming: How COVID-19 affects software devel-
opers and how their organizations can help. Empir. Softw. Eng., 25:4927–4961.

Röder, M., Both, A., and Hinneburg, A. (2015). Exploring the space of topic coherence
measures. In WSDM, pages 399–408.

Saraiva, M. C. and Medeiros, C. B. (2018). Correlating educational documents from
different sources through graphs and taxonomies. In SBBD, pages 121–132.

Sharma, A. et al. (2017). Cataloging github repositories. In EASE, page 314–319.

Silveira, P. et al. (2021). A deep dive into the impact of covid-19 on software development.
IEEE Transactions on Software Engineering.

Sipio, D. et al. (2020). A multinomial naı̈ve bayesian (mnb) network to automatically
recommend topics for github repositories. In Procs. EASE, page 71–80.

Tavares, A. C. R., Batista, N. A., and Moro., M. M. (2021). Greed: Github repositories
and descriptions. Zenodo. DOI 10.5281/zenodo.5138079.

Wang, L. et al. (2020). When the open source community meets covid-19: Characterizing
covid-19 themed github repositories. arXiv, 2010.12218.


	Introduction
	Related Work
	Methodology
	Results and Discussion
	Conclusion

