
Managing Sparse Spatio-Temporal Data in SAVIME: an
Evaluation of the Ph-tree Index

Stiw Herrera1, Larissa Miguez da Silva1, Paulo Ricardo Reis1,
Anderson Silva1,2, Fabio Porto 1,2

1 National Laboratory for Scientific Computing, Rio de Janeiro, Brazil, 2DEXL Lab

{stiw, lamiguez, paulorbr, anderson, fporto}@lncc.br

Abstract. Scientific data is mainly multidimensional in its nature, presenting
interesting opportunities for optimizations when managed by array databases.
However, in scenarios where data is sparse, an efficient implementation is still
required. In this paper, we investigate the adoption of the Ph-tree as an in-
memory indexing structure for sparse data. We compare the performance in
data ingestion and in both range and punctual queries, using SAVIME as the
multidimensional array DBMS. Our experiments, using a real weather dataset,
highlights the challenges involving providing a fast data ingestion, as proposed
by SAVIME, and at the same time efficiently answering multidimensional queries
on sparse data.

1. Introduction
A few Array data processing systems have appeared recently offering a data model
and query algebra adequate for representing and processing non-Relational data
[Baumann et al. 1998, Stonebraker et al. 2011, Lustosa et al. 2016, Zalipynis 2018]. In
particular, SciDB was conceived having large scale scientific data management as target
applications [Brown 2010], such as data produced by the Sloan Digital Sky Survey.

Array data considers cells indexed in a multi-dimensional coordinate system. For
instance, in an 2D image, pixels can be implicitly indexed by their corresponding width
and height values. In astronomy, a typical sky representation involves a 2 dimensional
coordinate system based on right-Ascension (RA) and declination (DEC), similar to lat-
itude and longitude on earth coordinate system. Thus, to model these type of data, array
data processing systems consider an array data model, where cells are implicitly referred
by the values of indexes in a multi-dimensional coordinate system. Such implicit index-
ing structure facilitates the direct access to the desired cells and simplifies the database
schema (i.e. no need to plan for extra indexing structures).

The above described scenarios cover a wide spectrum of array based applications.
However, there are a few applications whose coordinate system takes a particular and
relevant variation. This is the case of data with incomplete coverage of the indexing
domain. As an example, take a set of meteorology stations distributed on the ground in
the city of Rio de Janeiro. There is a total of 31 of such weather stations spread through the
state, so that they can capture and distribute the observations on temperature, rainfall and
wind speed, to name a few. If we consider a geo-reference coordinate system, latitude-
longitude, to index each of these weather stations, the resulting array would have many
pairs of (lat-long) to which no value would be assigned. This is referred to as a sparse
array in the literature.

Managing sparse arrays is a challenge for array data processing systems
[Lustosa et al. 2016]. This is due to two main factors: (i) if a dense data structure is
used, there will be many empty cells which will hamper the query access time while allo-
cating huge non-used memory and disk space; (ii) conversely, when a sparse allocation is
adopted, the coordinate system indexes are allocated as cell attributes, which jeopardizes
the performance of index-based queries.

In this paper, we investigate this problem using the SAVIME array in-memory
system as a test-bed for managing and answering queries on sparse data. We compare
SAVIME’s TOTAL strategy with the use of a Ph-tree multidimensional indexing in an-
swering point and range queries. Our objective is to evaluate whether Ph-tree can be an
efficient solution to store and query sparse data in array data processing systems. Ph-
tree is not currently implemented in SAVIME but experiments show that it could be a
candidate indexing structure supporting range and punctual queries in sparse data.

The remaining of this paper is structured as follows. Section 2 describes the Re-
lated Work. In Section 3, we describe the main methods involved in our research. Section
4 depicts our Experiments and finally, Section 5 concludes and proposes future work.

2. Related Work
Much of the data produced in many different fields from both science and engineering
can be more naturally represented as multidimensional arrays. These arrays can be dense
or sparse, and array DBMSs must feature data structures suitable to both situations.

The system SciDB [Stonebraker et al. 2011] is a popular implementation of a
full-stack array database. It provides support for sparse arrays, however, by partition-
ing them on ranges of fixed size indexes on each dimension. Since SciDB splits the
array into chunks, which are equally sized subarrays, it becomes necessary to define
a balanced partitioning scheme when dealing with irregularly distributed data. For
sparse arrays, this is seldom a trivial task, since a poor partitioning scheme may im-
pact query response time, greatly affecting database performance [Lustosa et al. 2016].
Rasdaman [Baumann et al. 1998] was a pioneer array DBMS that estabilished arrays as
first-class database structures. In Rasdaman, array structures are stored as objects on top
of a relational DBMS. Despite being more flexible than SciDB, allowing the decom-
position of sparse arrays into tiles of variable sizes, it still requires the user to man-
ually partition the array into chunks of a approximately the same number of elements
[Papadopoulos et al. 2016]. ChronosDB [Zalipynis 2018] multidimensional dataset rep-
resentation also accounts for sparse data, however, it is still under development.

SAVIME [Lustosa et al. 2020] is an in-memory array DBMS developed for the
management of multidimensional data that implements the TARS array data model. SAV-
IME was designed to provide a flexible storage format, while having the ability of pro-
cessing the data the way it is generated, without carrying out costly conversions during
ingestion. It also provides support for sparse arrays, heterogeneous memory layouts and
functional partial dependencies with respect to dimensions, using special purpose memory
mapping functions. It combines three kinds of dimension specifications for representing
different layouts of data organization: Ordered, Total and Partial for respectively dense,
sparse or partially sparse arrays.

Besides array DBMSs, there are other kinds of systems developed

with the special purpose of performing array data access or management.
TileDB [Papadopoulos et al. 2016] presents itself as an array storage management
system to support scientific applications. It proposes dealing with dense and sparse arrays
as organized collections of data updates called fragments in order to improve writing
performance. Each fragment is associated to a directory on the file system that contains
one file per array attribute. In the case of sparse arrays, an additional file with the exact
coordinates indicate the non empty cells. HDF5 [The HDF Group 2021] is a popular
library used for representing array data. However, it has no specific support for sparse
arrays, requiring users to represent them as an additional array layer indicating the dense
regions (i.e., arrays of arrays), which also has an impact on query performance.

3. Methodology

SAVIME implementation is based on the TARS data model. A Typed ARray (TAR)
has a set of dimensions and attributes. A set of Typed ARrays compose a TAR Schema
(TARS). The attributes tuple that compose a TAR cell are accessed via a set of indexes,
that indicate the cell location within the TAR. To provide support for sparse arrays and
non-integer dimensions, the TARS model define mapping functions, this way it is possible
to have array data coming from different sources and storage layouts simply by having
different mapping functions for different subarrays, the so called subTARs.

A subTAR is defined by the TAR region it represents; the position mapping func-
tion, that reflects the data layout; and the data mapping function, that translates the linear
address into data values. In summary, SubTARs cover n-dimensional slices of a TAR.

The indexing of a multidimensional array system, such as SAVIME, considers
a constant mapping between index keys and the corresponding cell values. In a most
simplistic mapping, each dimensional value in a k-multidimensional indexing space can
point directly to its corresponding slice of the array. If k values are passed as an index
value to a k-dimensional array then a single cell can be retrieved.

However, in the case of sparse data, a large number of k-index values do not have
an associated cell value. Thus, an efficient allocation would require a special mapping
function for each k-index value. This is why tree indexing structures use pointers to map
index key values to cell values.

The current solution in SAVIME considers the TOTAL representation, in which
each cell value is qualified with its corresponding k-index values. Finding a particular key
engenders scanning every cell within all SUBTARS that intersect with the range query.
This has a drastic effect in the query performance. The TOTAL representation turns the
data into a degenerated array, basically tabular data.

This paper explores an alternative for allocating and indexing sparse data in SAV-
IME, considering the Ph-tree multidimensional indexing structure. A Ph-tree is a type
of tree suitable to represent hierarchies. According to [Zäschke et al. 2014] Ph-Tree is a
multidimensional spatial index that has been designed to work with large datasets. The
experiments reported in [Zäschke et al. 2014] demonstrate that the data structure is effec-
tive for memory (space efficiency), which is achieved by combining or compartmental-
izing binary prefixes. Another advantage is the fact that it uses hypercubes to navigate
between nodes and sub-nodes of the tree, allowing data to be efficiently found (Efficient

data access). The important properties of this structure are: it doesn’t need rebalancing; it
does not require moving data after insertion of a given key-value entry; it allows punctual
queries and range queries, and according to the [Vancea 2015] it allows greater scalability
using distributed systems architectures.

Concerning the storage and indexing of sparse multidimensional data, Ph-tree of-
fers an interesting alternative. First of all, it is a native multidimensional data structure.
Secondly, each dimension key is mapped to its binary representation, and all dimension
keys share the same size. Thus, in a k-dimensional space, each cell is indexed by k binary
strings of size d. As a matter of fact, there may be some savings of bits space with reuse
of bits prefixes, see [Zäschke et al. 2014]. From a storage allocation viewpoint, as a tree
data structure, Ph-tree separates cell allocation in memory from indexing. The mapping
of an index leaf node to a cell node is provided through a pointer data structure.

We expect that Ph-tree will provide fast direct access to indexed cell values, even
on sparse multi-dimensional indexed arrays. Our experiments evaluate this hypothesis.

4. Experiments
In our experiments, we use a sparse dataset based on data from the Consortium for Small-
scale Modeling (COSMO). In total, the dataset has over 47 million array cells, 3.3GB of
data and information such as date, latitude, longitude, precipitation, temperature among
others. In our experiments, we used a subset of these attributes. The data was represented
as in a single 3-dimensional structure (a TAR in SAVIME and a binary PATRICIA-tries
combined with hyper-cubes in Ph-three) containing the X, Y, and Z dimensions, repre-
senting date, latitude and longitude respectively. We created and loaded the corresponding
TAR in SAVIME using the following commands.

CREATE_TAR("COSMO", "*", "explicit, data, data | explicit, latitude,
latitude | explicit, longitude, longitude", "precip,double");
LOAD_SUBTAR("COSMO", "total, data, 0, 47497001, precip_dim_spec |
total, latitude, 0, 47497001, precip_dim_espec | total, longitude, 0,
47497001, precip_dim_espec ", "precip, precip");

All experiments were performed on the same computer architecture provided by
the research group of the National Laboratory of Scientific Computing (LNCC), the Data
Extreme Lab (DEXL Lab). The computer’s specifications are: 768 GB of memory and
2 x Intel Xeon CPU E5-2690 processors. Additionally, reported measurements in all
experiments represent the average results of 5 runs.

Experiment 1: In the first experiment, we measured the time taken to insert the data both
into SAVIME and in the Ph-Tree. An insertion time of 3899 ms with standard deviation
of 133 ms was measured in SAVIME, while the Ph-tree took 68756 ms with standard
deviation of 1158 ms, almost 18 times higher. That is expected, since the Ph-Tree has an
intrinsic cost associated with keeping the structure updated through each value received,
while SAVIME’s data ingestion process is straightforward, without requiring a costly
data conversion. It is important to highlight that fast data ingestion time was one of
the guidelines for the development of the SAVIME system. Thus, it incurs in negligible
bookkeeping processes during data ingestion.

Experiment 2: Although the insertion time is shorter for SAVIME, Figure 1 shows that
the elapsed-time for running range queries by SAVIME is orders of magnitude higher

https://www.cosmo-model.org/
http://dexl.lncc.br/

than those for running the same queries using the Ph-tree indexing. In this experiment, we
considered an increasing range query size returning 1.703.975, 7.779.863 and 12.286.703
cells, respectively. Observe that the fast data ingestion time, as observed in Experiment 1,
is penalized once sparse data is considered as target for range queries. The three queries,
represented by scenarios 1, 2 and 3, are described below.

Scenario 1: scan(subset(COSMO, data, 2001010000, 2003200000));
Scenario 2: scan(subset(COSMO, data, 2001010000, 2008210000));
Scenario 3: scan(subset(COSMO, data, 2001010000, 2012120000));

Figure 1. Range query in a date interval: SAVIME vs Ph-Tree

The standard deviation calculated for Scenarios 1 to 3 is, respectively, 89 ms, 220
ms and 244 ms for SAVIME, and 21 ms, 112 ms and 100 ms for the PH-tree.

Experiment 3: In this experiment, we want to evaluate the difference in elapsed-time
between the two implementations when considering point queries. We designed an ex-
periment with three randomly selected points within the data space. The three queries,
represented by scenarios a, b and c, are shown below.

Scenario a: subset(COSMO, data, 2001010000, 2001010000, latitude,
-32.905, -32.905, longitude, -60.782, -60.782);
Scenario b: subset(COSMO, data, 2001010000, 2001010000, latitude,
-22.373, -22.373, longitude, -50.975, -50.975);
Scenario c: subset(COSMO, data, 2012121500, 2012121500, latitude,
-14.700, -14.700, longitude, -52.350, -52.350);

Results in Table 1 are even more flagrant. As queries look for a single cell, Ph-tree
can very efficiently use its index structure to directly retrieve the requested cell. In con-
trast, SAVIME does a SCAN in the SUBTAR containing the keys, looking sequentially
for the requested cell.

5. Conclusion and future work

In this work, we discussed some of the implementation challenges regarding the repre-
sentation of sparse arrays on database management systems, and presented the results of
comparative experiments using SAVIME’s non-indexed operations and using a Ph-Tree
as an index data structure.

SAVIME Time Ph-tree Time

Scenario Mean
Standard
Deviation Mean

Standard
Deviation

a 8126 ms 179 ms 0.1847048 ms 0.150914 ms
b 6461 ms 118 ms 0.0326342 ms 0.012131 ms
c 6248 ms 98 ms 0.0250956 ms 0.009485 ms

Table 1. Elapsed-time for point queries.

Our results indicate the potential of using indexes as powerful mechanisms for
dealing with sparse arrays, despite the cost of keeping them updated through each data
loading and updates. As future work, we plan to implement this index structure as part of
SAVIME’s query mechanism while improving Ph-tree insertion time, as well as studying
the effects of using different data structures as indexes and to test on array benchmarks.

References
Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., and Widmann, N. (1998). The mul-

tidimensional database system rasdaman. In Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, pages 575–577.

Brown, P. G. (2010). Overview of scidb: Large scale array storage, processing and anal-
ysis. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’10, page 963–968, New York, NY, USA. Association for
Computing Machinery.

Lustosa, H., Porto, F., Blanco, P., and Valduriez, P. (2016). Database system support of
simulation data. Proceedings of the VLDB Endowment (PVLDB), 9(13):1329–1340.

Lustosa, H. L. S., Silva, A. C., da Silva, D. N. R., Porto, F. A. M., and Valduriez, P. (2020).
Savime: An array dbms for simulation analysis and ml models prediction. Journal of
Information and Data Management, 11(3).

Papadopoulos, S., Datta, K., Madden, S., and Mattson, T. (2016). The tiledb array data
storage manager. Proceedings of the VLDB Endowment, 10(4):349–360.

Stonebraker, M., Brown, P., Poliakov, A., and Raman, S. (2011). The architecture of scidb.
In International Conference on Scientific and Statistical Database Management, pages
1–16. Springer.

The HDF Group (1997-2021). Hierarchical Data Format, version 5.
http://www.hdfgroup.org/HDF5/.

Vancea, B. A. (2015). Cluster-computing and parallelization for the multi-dimensional
ph-index. Master’s thesis, ETH Zurich.

Zalipynis, R. A. R. (2018). Chronosdb: Distributed, file based, geospatial array dbms.
Proc. VLDB Endow., 11(10):1247–1261.

Zäschke, T., Zimmerli, C., and Norrie, M. C. (2014). The ph-tree: a space-efficient storage
structure and multi-dimensional index. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 397–408.

	 Introduction
	Related Work
	Methodology
	Experiments
	Conclusion and future work

