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Abstract. In the industrial sector, outlier detection makes it possible to quickly
identify equipment failures. The evolution of Industry 4.0 is bringing challenges
previously uncommon in the area. The large number of data constantly gener-
ated represents a processing challenge and can lead to the identification of a
large number of outliers simultaneously. This scenario slows the troubleshoot-
ing process, delaying the identification of the source of the fault. This work
presents a solution to support decision-making in a widespread failure sce-
nario. Dependencies are represented using ontologies, to provide a clear and
user-facilitated interpretation. An inference engine is used to identify the most
probable causes of the failure. Performance tests demonstrate its scalability.

1. Introduction

In general terms, an anomaly, also called an outlier, is discordant information, an excep-
tion [Chandola et al., 2009]. Outliers can create problems if not detected properly. Outlier
detection techniques are used in several sectors of the economy: to detect failures in aero-
nautical sensors, detect credit card fraud and identify early signs of latent disease, among
others. However, modern society imposes new challenges to the problem of detecting
outliers. New technologies and devices are launched every day, and the industrial sector
is at the forefront of this evolution. The advent of Industry 4.0 is equipping plants with
sensors and automation devices to monitor and control production processes with high
precision. All these sensors, systems and software generate a large amount of data that
must be analyzed to have outliers properly detected. Such connectivity, however, ends up
resulting in an also expressive number of detected outliers, up to the point of making it
impractical for them to be analyzed manually.

Typical examples of widespread failures are natural events such as a lightning
strike, where a single physical incident can prompt many outliers in several devices in a
given geographic region. Another scenario, harder to interpret, is when an event causes
the occurrence of cascading outliers. A failure causes an outlier observed by a sensor,
and this failure is propagated to other devices that depends on the first. To make those
outliers easier to interpret and use resources efficiently, it is crucial to identify these cases
and present to the user a higher-level knowledge related to the origin of the failure.

The identification of the source of failure is a challenging task. Finding a flexible
solution that allows representing the most diverse industrial setups and their relationships
in a clear and objective way is difficult in itself. In our proposal, the relationships be-
tween the devices are described in an ontology, using the OWL language (Section 3). The
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ontology simplifies knowledge management, especially in such complex scenarios of In-
dustry 4.0. The ontology is stored in a graph database, which also receives and stores the
detected outliers (Section 4). A graph query language is used to perform the inferences
needed to determine the probable causes of the failure. The proposal was tested on large
ontologies simulating complex industrial scenarios (Section 4.4). Test results demonstrate
the scalability and feasibility of the proposal.

2. Fundamentals and Related Work

2.1. Sensors, IoT and Industry 4.0

Although there is no clear definition of Industry 4.0, it is characterized by a list of tech-
nologies and scenarios [Herrman et al., 2015]: Interoperability, with companies, systems
and humans connected to each other; virtualization, where systems monitor physical pro-
cesses through sensors and use this data in models and simulations; decentralization, as
the large number of connected systems makes centralized control impractical; real-time
capability, as data analysis and reaction must be immediate; service orientation, to allow
easier use of all resources, they are encapsulated in large sets; and modularity, which
allows quick adjustments, adaptations and scalability.

The concept of Industry 4.0 is deeply related to IoT. As Wang et al. [2022] have
written, the Internet of Things (IoT) is an extended and expanded system network based
on the Internet, built to achieve real-time interaction among things, machines and humans
through various advanced technological means. IoT is bigger than Industry 4.0 and has
applications in diverse fields, such as health, sports and home automation. The concepts
and the technologies, either hardware, software and protocols used are complementary to
those of Industry 4.0.

This increasing amount of sensors leads to an also increasing number of outliers
generated in those new industrial environments. According to Gaddam et al. [2020], sen-
sors used for IoT applications are often installed in harsh environments and are typically
made of inexpensive electronic components, thus it is hard to guarantee a correct opera-
tion, free of malfunctions.

2.2. Outlier detection

Outlier detection seeks to identify patterns of behavior in the data and use this to classify
which data does not belong to this pattern. As defined by [Hawkins, 1980], an outlier is
an observation that deviates so much from others that it creates suspicion it was generated
by a different mechanism. This type of technique is used in the most varied sectors of the
industry: to detect failures in aeronautical sensors, detect credit card fraud, identify early
signs of latent disease, etc.

In an IoT environment, data is constantly being generated, transmitted and stored.
Thus, outlier detection techniques should be able to work with datasets that are not only
big but also constantly receiving more data. Solutions to detect outliers in these architec-
tures almost always involve the use of [Yu et al., 2014] data windows. In this approach,
only a sample with a defined size is used for data analysis, and the window of samples
used is constantly moved to accommodate newly received data.

Among the most easily implemented techniques to detect outliers are the distance-
based algorithms [Orair et al., 2010]. On them, a radius is defined in which other data will
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be considered as part of the neighborhood of the analyzed sample and data that do not have
a minimum number of elements in their neighborhood are considered outliers. Despite
being simple, there are quite sophisticated implementations of this type of algorithm that
allow good precision and efficiency.

A different approach to obtain more details about an outlier is using outlying as-
pect mining (OAM). OAM complements traditional outlier detection because by identi-
fying characteristics that make the observation different from other objects [Duan et al.,
2015]. This technique is useful in understanding why a single data was detected as an
outlier, it is not designed to detect the source of a group of outliers.

In this work, outlier detection is used as the first step of our architecture, identify-
ing anomalies in the data generated by each device individually. This may lead to a large
number of outliers generated as a consequence of the same real-world event. The outlier
detection is run in a stream processing platform to allow a better performance with large
volumes of data, in a similar way as described in [Toliopoulos et al., 2020]. The inference
over the detected outliers is our main contribution.

2.3. Ontologies and OWL

Knowledge representation is a challenge in Industry 4.0. In the past, it was usual to
represent entities, their properties and relationships directly on the code, using object-
oriented programming. In Industry 4.0, however, this is not a viable method. New types
of devices are added to the network constantly, and their relationship changes accordingly
to what is needed in the production line. To deal with the problem of heterogeneity,
ontologies emerge and play an important role to integrate seamlessly business processes
with technical processes [Cheng et al., 2016].

According to Guarino [1998], in Al an ontology usually refers to an engineering
artifact, constituted by a specific vocabulary used to describe a certain reality, plus a set
of explicit assumptions regarding the intended meaning of the vocabulary words. In this
scenario, an ontology is a document that describes entities that are part of a system, listing
their properties and how they are related to each other. In an analogy with object-oriented
programming, the ontology would be the classes, with their hierarchies and properties.

The OWL is the Web Ontology Language, an ontology language for the Semantic
Web with formally defined meanings [Group, 2012]. An OWL file contains an ontology
with classes, properties, individuals and data values, allowing entities to share the entire
ontology easily between different software and platforms.

In this work, an ontology was used to describe the dependencies (functional and
geographic) of industrial equipment in large industrial settings, following Industry 4.0
practices. This makes the solution generic enough to be easily adapted to different indus-
trial plants, or even to be used on other environments than industrial ones.

2.4. Related Work

Ontologies have been used in outlier detection scenarios. However, the focus is usually
on detecting anomalies in the data relationships themselves. In other words, finding data
that are related in ways they were not supposed to. A typical use for ontologies on outlier
detection is to detect fraud in banking systems. Ramaki et al. [2012] used an ontology to
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describe how each piece of information in a credit operation relates to each other, making
it easier to create a model of an expected behavior. This model is then used to detect
transactions that do not follow that expected behavior.

Fleischhacker et al. [2014] shows that ontologies can also be used to detect outliers
in numeric datasets. Numeric values present in Wikipedia articles are extracted from the
texts (countries’ populations for example). An ontology describes how those values are
related to each other (what is being counted, country or other geographic entity relevant,
the year the data was collected, etc). Then, all numeric values present in the texts are
compared with the inferred ontology, and those that are dissonant are quickly identified
for verification.

In our work, ontologies are not the subject of outlier detection.. Instead, they are
used to identify, among outliers that were previously detected with traditional methods,
the most probable source of the real-world event.

3. Proposed Architecture

The proposed architecture consists of two main processing steps: (1) the outlier detection
and (ii) the source inference. As shown in Figure 1, data are collected by telemetry
devices and are sent to a server that performs traditional outlier detection, independently,
in each of the sensors that feed the system. In this step, there is a detection model to
analyze each sensor individually, detecting outliers in its regular operation. Given the high
volume of data and processing demands, our solution uses a distributed stream processing
architecture. However, the distributed outlier detection is out of the scope of this paper.

Once the outlier detection is finished, data and the detected outliers are moved
to the second step, where data from all sensors are aggregated for each time window.
Therefore, for a given time window (configurable), a set of detected outliers represents
the current state of the facility. The detected outliers are then associated with ontologies
representing functional and spatial dependencies among devices. This approach makes
both steps completely independent, allowing any outlier detection implementation to work
with the source inference. The inference engine determines the probable cause of the
failure based on the ontologies and the outliers. Finally, the outliers identified as the
sources of the anomalies are presented to the user in a report.
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Figure 1. Proposed architecture for outlier detection and fault contextualization.

The main goal of using ontologies in this architecture is to streamline knowledge

270



Proceedings of the 37t" Brazilian Symposium on Data Bases September 2022 — Bizios, RJ, Brazil

representation, making it easier to maintain and modify the dependencies among devices.
In addition, this allows the use of relationship names directly in queries, making them
much more descriptive and easier to understand. Finally, as the relationships are only
described in the ontology, the solution becomes more flexible and easily adaptable to
other scenarios, without the need to modify the source code of the application.

3.1. Case Study

The case used to test and explain the system is based on a real scenario for water resources
management in an industrial plant. The data are related to the production of water in deep
wells, pipelines, reservoirs, distribution systems and various industrial equipment that
consume and manage the water. Those facilities are operated by different companies in
various Brazilian cities.

Each location of interest has devices that collect data continuously with a fixed
sampling rate. The data are sent on a recurring basis to a server to be processed and
stored. Each installation can have one or more variables, according to the device being
monitored. Table 1 shows an example of data collected from two of those devices, with a
column Device identifying the source. Level is the well water depth, Flow is how much
water is being pumped out of it, Volume is how much water was pumped so far, and 7Time
is how many minutes the water was pumped. The full scenario includes several types of
devices with multiple monitored variables.

Table 1. Data sample

Timestamp Device | Level (m) | Flow (m3/h) |Volume (m3)| Time (min)
2021-06-01 10:00 | Well 1 250,6 23,1 25685,4 100
2021-06-01 10:00 | Well 2 123,4 0 57483,2 5
2021-06-0110:01 | Well1 252,1 23,5 25687,8 101
2021-06-01 10:01 | Well 2 124,4 0 57483,2 5
2021-06-0110:02 | Well 1 252,4 23,7 25692,3 102
2021-06-01 10:03 | Well 2 124,3 0 57483,2 5

Among the possible scenarios where multiple outliers caused by the same failure
can occur in this environment, the most directly related to this particular industrial ar-
chitecture is the propagation of anomalies through the pipelines. If there is a leak in the
piping right before the location where a device is measuring the flow of the water, this
device and possibly all the others that are supplied by it will generate outliers.

On the other hand, external factors, such as a power failure, for example, may
render an entire industrial plant offline, causing all its equipment to generate outliers at the
same time. The goal of our proposed system is to automatically identify, in a knowledge
representation sense, the probable cause in such multi-outlier scenarios.

4. Implementation and tests

4.1. Data collection and processing

The devices collect data in regular intervals and transmit those data packages to the server
in the order they were generated (first in, first out). Each package contains a full set of all
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variables monitored by that device, and all devices collect data on the same timestamps.
Data are then transmitted to the MQTT broker (Message Queuing Telemetry Transport,
a very popular message protocol for telemetry and sensors communication) by using a
mobile internet connection. Figure 2 shows an example of this data flow, in the order that
it happens. In the figure, the first block (top left) represents the readings from a set of
sensors (volume, flow and time) from a device at timestamp 2021-08-01 00:04:00).
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Figure 2. Data flow from the telemetry devices.

Once the data are received, the server waits for all devices to transmit their pack-
ages for each timestamp, group them and then send them to an outlier detection step where
detected anomalies are combined with the original data. Figure 3 shows how the data is
saved after the outliers are detected.

Data Package: Device 1 Data Package: Device 2 Data Package: Device 3

2021-08-01 00:02:00 2021-08-01 00:02:00 2021-08-01 00:02:00

Volume: 2,0 Volume: 200,00 Volume: 500,00
Flow: 120,00 Flow: 0,00 Flow: 0,00
Time: 2 Time: 0 Time: 22
Outlier: No Outlier: Yes Outlier: Yes

Figure 3. Data packages after the outlier detection.

4.2. Knowledge representation

An important aspect taken into account during the project was knowledge representation.
The goal is to centralize the knowledge about the dependencies between devices, where
they are and how they relate to each other.

This ontology contains two types of relationships. The first represents the geo-
graphic organization of the devices (in which company, sector, city and state they are
contained), as is shown in Figure 4. The ontology contains information about where the
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sensor is geographically located, grouping sensors at different levels of hierarchy, thus al-
lowing generalized faults located in a specific region (power supply failure for example)

to be classified as unique failures.
o States
Part of
Located at
Owned by
Production 1 Distribution Production 2 Production 3 Sectors
Part of

Figure 4. An ontology representing geographic distribution of devices.

The devices are distributed at various geographic levels. In the study case, each
device is part of a sector, which is owned by a client. The client is a single industrial unit,
located in a city, that is part of a state.

The ontology also contains a second type of relationship, that represents the de-
pendency between the devices, that is, a malfunction in one device affects others down
the line. Figure 5 shows an example of this dependency, where water is collected on Well
01, sent through a pipe on Distribution 01, then stored on Tank 01. From there, it is sent
to either Cleaner 01, or to be stored on Tank 01b using Pump 01, from where it can be
sent to Fillers 01. One failure on Tank 01, for example, may also cause issues on Pump
01 and Cleaner 01, and as a consequence all devices that are supplied by them.

Distribution
01
Supplies Supplies Supplies
Supplies

Supplies Supplies

Figure 5. An ontology representing dependency between devices.

All this information, including the definition of what a sensor is, what informa-
tion it contains, how it can relate to other sensors, and how it can be contained within a
geographic region, is saved on an OWL file. The same file also contains details about the
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spatial relationship between those elements. Finally, the file also contains all the elements
instances of the project - the sensors and spatial entities.

4.3. Inference

A central step of our implementation, the inference is the moment in which the outlier
that most probably originated the sequence of outliers is identified. Once the ontology
is built with all devices, data, and its respective outliers, the information is loaded into a
database to make inference easier and faster.

The solution was implemented using the graph database Neo4j with the Neose-
mantics ontology library. The detected outliers are mapped to the ontology in each ana-
lyzed timestamp, then two queries in Cypher language are used to detect the regional and
dependency outliers sources, as discussed next.

4.3.1. Geographic Inference

In this implementation, a region is considered an outlier if all devices it contains are
outliers in a given time window. This rule is applied recursively, so when all devices of
all sets of a client are outliers, the client is considered an outlier, and so on. This permits
to quickly identify anomalies from external agents, like issues with the power supply
network, for example. Figure 6 shows this detection being activated.

° States
Part of
Located at
Owned by
Part of

Figure 6. Example of data failure in an entire client.

Listing 1 shows the query that does the inference on regional dependency. First,
it matches all region entities, then it selects only those that contain devices and that all
devices have outliers.

Listing 1. Geographic inference query
match (n:region)
where (n)-[:contains]—>(:device {outlier: true} )
and not (n)-[:contains]->(:device {outlier: false})
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return n

4.3.2. Dependency Inference

In our use case, the dependency between the devices is given according to the flow of
water. The points of origin are the wells, where the water is captured, and then each
device supplies one or more other devices, until reaching the final point of the distribution
network. In the opposite direction, the device is supplied by each other.

In this scenario, a physical failure in Distribution 01, for example, can cause a
variation in the data, and consequently new outliers, in devices that are supplied by it.
Figure 7 illustrates this example, where the device in red is where the actual failure oc-
curred, but the device in yellow also showed inconsistent data as a result.

Distribution
01
Supplies Supplies Supplies
Supplies

Supplies Supplies

Figure 7. Example of data failure transmitted from one device to another.

Listing 2 shows the query that does the inference of the source of outliers based on
the dependency between devices. First, it matches all device entities that are outliers, then
it filters out the ones that are supplied by other devices that are outliers too. Therefore,
only the devices that are the firsts in a sequence of outliers are listed.

Listing 2. Dependency inference query

match (n:device {outlier: true})
where not (n)-[:supplied]->(:device {outlier: true})
return n

4.4. Tests

Extensive tests were done to simulate the system operating on industrial plants of various
sizes and setups. Testing was done in two steps: The first, qualitative, uses a hand-
crafted ontology,representing a series of real-world fault scenarios. The sample contains
18 devices, divided into two cities and three different clients, and simulates six fail events
where the first outlier is known. This ontology and fail cases were validated by a domain
expert. This ontology was used during development to assure the queries were detecting
the expected location in each expected scenario.

The second test scenario was designed for performance evaluation. A Python
script was developed that generates random ontologies using the same device and ge-
ographic entities, with different numbers of entities and outliers. The script loads the
ontologies into the graph database and runs the queries, keeping track of the time it took
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to process. The script run tests using ontologies with 5000 to 100000 entities, increasing
in steps of 5000 entities, and varying the number of outliers between 10% and 70% of
the entities. Each test was run five times, all of them as cold-runs (the envionment was
restarted between each run), and the median value of all runs were used as a reference.

For this test, an Ubuntu Linux 21.04 virtual machine was used, running in a PC
Intel 15-3470s with four cores at 2.90Ghz, 1TB SSD disk and 8GB of RAM. The computer
was running the hypervisor operational system ESXI, and the virtual machine received
four virtual cores with 1Ghz each, and 4GB of RAM. To avoid any interference between
the tests, no other virtual machine was running on the server during the tests. Between
each data sample size change, the virtual machine state was reverted to a snapshot taken
at the beginning of the tests, thus assuring the results are not affected by any type of cache
in the database.

4.5. Results

The qualitative test, using the manually written ontology, suggested that the solution could
correctly classify the expected location on all simulated fail events. For both dependency
and geographic inference, all simulations resulted in the expected most probable source
identified.

The results of the performance tests were divided into two, showing the variation
in the time for processing the ontologies when the number of entities is increased, and
when the number of synthetic outliers is also increased.

4.5.1. Scalability

The graph in Figure 8 shows the median result of how much time (in milliseconds) it
took to run the regional and dependency inferences. There is a visible but linear increase
in the processing time of the regional inference while the size of the ontology is also
increased. The time needed to process the dependency inference also increases linearly
but at a slower rate. Tendency lines were added for an easier interpretation and suggest
consistent linear growth, conclusive to good scalability.
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Figure 8. Time variation while ontology size is increased.

276



Proceedings of the 37t" Brazilian Symposium on Data Bases September 2022 — Bizios, RJ, Brazil

4.5.2. Increasing ontology size

Table 2. Results increasing ontology size

Outliers Regional (ms) Dependency (ms)

10% 297.9806662 80.47699928
30% 312.7410412 81.6538935

50% 365.3517962 77.27694511
70% 347.4471569 76.98905468

Table 2 shows how the inference time varies according to the number of synthetic outliers
present. The number is the median result between all tested sizes of ontologies. Analyzing
this data in the graph in Figure 9, there is again a tendency of increase in time for regional
inference when more synthetic outliers are added. The dependency inference, in this case,
stays stable between the different tests. Again, scalability trends suggest that the proposal
is applicable in large industrial settings.
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Figure 9. Time variation while ontology size is increased.

5. Conclusion

The proposed architecture tackles challenging aspects introduced by Industry 4.0, includ-
ing the large number of sensors and the complexity of their dependencies. By combining
ontology-based knowledge representation and graph-based inference, our proposal en-
ables timely decision-making in a failure scenario with such challenging settings. As far
as we know, this is the first time that ontologies and outlier detection were combined in
such a manner.

Our tests showed the feasibility of the proposal, both in terms of semantics (using
manually created ontologies and qualitative analysis of the results) and scalability. The
performance tests evidence good performance even in the off-the-shelf hardware used.
The fact that the processing time increases linearly as the number of entities in the ontol-
ogy increases makes it more predictable in terms of required hardware as the industrial
installations expand.
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The implementation used off-the-shelf languages and software, showing that the
solution is effective and possible in a real production environment. Also, all tools used
Were open source.

In a future work, we plan to add a higher-level language for inference specifica-
tion, allowing more flexibility in the expansion of the inference capabilities. Also, we
plan to add an aspect mining step to provide further information about the detected source
of the failure.
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