
TuningChef: an approach for choosing the best
cost-benefit database tuning actions

Victor Augusto Lima Lins de Souza1, Sergio Lifschitz1

1 Departamento de Informática – PUC-Rio

{vlins,sergio}@inf.puc-rio.br

Abstract. While many research works propose a way to list a set of fine-tuning
options for a given workload, only a few offer a way to help the DBA make better
decisions when encountering a set of available options, especially when taking
his possibilities into consideration. We propose and develop a step-by-step de-
cision process. Given a set of fine-tuning options, we recommend the most cost-
benefit subset. Enough context for the DBA accompanies the recommendation
to understand its reasoning, with the possibility of letting the user build his own
subset and check the expected impact. We show some experimental results on
actual database systems that further explain our approach and solution.

1. Introduction and Related Work
Although vastly researched, a complete (automatic) fine-tuning process for Relational
Database Systems (RDBMS) is still highly dependent on specialized users such as
Database Administrators (DBA). One must be able to analyze the database workload,
list as many fine-tuning actions that might have a positive impact as possible, and then
make a cost-benefit analysis on them to decide which are worthy of being implemented.

This ongoing research work proposes a way of helping the DBA make more rea-
sonable decisions and even automate them when deciding which fine-tuning actions are
worth it, given an initial set of options and a workload. We do this by presenting enough
context to understand the reasoning behind each decision made our recommendation.

Many researchers have proposed ways to increase relational database system’s
performance in different ways. Some focus on database configuration options, while
others suggest index or materialized views that might benefit a given workload.

OtterTune [Aken et al. 2017], CDBTune+ [Zhang et al. 2021] and DB-BERT
[Trummer 2022] are examples of works focused on parameter tuning with applied Ma-
chine Learning techniques. OtterTune uses supervised and non-supervised machine learn-
ing methods to determine near-optional configuration parameters for PostgreSQL. In
contrast, CDBTune+ uses Deep Reinforcement Learning (DRL), and DB-BERT uses
natural language processing (NLP) to provide near-optimal configurations for multiple
RDBMSs. Some authors focus on creating access methods, like indexes and materialized
views. We may cite those making use of inference through ontology, like OnDBTuning
[Perciliano et al. 2021] and OuterTuning [Oliveira 2015]. Others suggest access struc-
tures using machine learning techniques [Ding et al. 2019].

All those works have in common is that they focus on generating a specific sub-
group of fine-tuning strategies options and do not compare nor combine those options
with others, or even against ones that the DBA might find beneficial. They also do not

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

391



provide enough context to justify why one option might be better than another. It is up to
the DBA to see the expected cost-benefit of his own selected set of options.

2. TuningChef Proposal
The RDBMS fine-tuning process can be divided into two main steps: (1) listing the avail-
able options and (2) choosing the best ones. During this research, we are focusing on the
latter, the decision step.

For a DBA to decide on the best fine-tuning options in a given set, one needs to
evaluate their cost and benefit in a given workload. Here the cost can be, for example,
using more disk space for increased performance (better query execution times).

Let us consider that for making decisions for each available fine-tuning option and
an RDBMS workload, one must be able to check how much an option might impact each
workload query and its trade-off/cost. TuningChef proposes a solution for the decision
step, enabling even a mix of multiple tuning actions.

Figure 1. Proposed architecture

Our tool must be extensible and able to run independently. Therefore, we have
designed the architecture (Figure 1): green blocks represent TuningChef components that
run separately from one another. Orange ones are external systems that can be plugged in
TuningChef, while blue ones are auxiliary modules that bind everything together.

In order to make backed-up decisions, collecting workload statistics is crucial.
For this reason, workload collection is considered a part of TuningChef. This module is
responsible for collecting executed queries and, for each of them, their total and mean
execution time, total times executed, and parameter distribution. Once collected (step 1),
this workload information can be used by other tools by translating it (steps 2 and 3).

The analysis module (Figure 1) does all the decision work. For this reason, it
needs a set of fine-tuning options. Those can come from many different sources and be
translated for a format that TuningChef accepts (steps 4 and 5) through a YAML file. The
cost of each option is calculated and compared to its expected impact on the workload
[Souza 2022]. If lower than the gain, it is considered beneficial.

The interface module is responsible for showing the recommended decisions with
enough context to understand its reasoning (step 7). It also lets the administrator make his

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

392



own decisions and see the expected impact and trade-offs. Putting the DBA in the loop let
him use future knowledge, like the expected workload changes, into consideration when
choosing the tuning options.

3. Implementation and Experimental Results
Initial work makes use of hypothetical structures for simple, partial and compound in-
dexes, and materialized views to simulate their impact on a given workload. Other tuning
actions, like parameter changes, can be added through new heuristics.

Hypothetical indexes are available natively in SQLServer but can be simulated or in-
cluded in other RDBMSs through extensions. During this work, we focus on PostgreSQL
and the HypoPG extension. This decision was made due to existing research that shows
the benefit of using this extension [Kossmann et al. 2020, Schlosser and Halfpap 2020]
when analyzing possible gains of an index. The costs of an index are also taken into
consideration, both for creating and maintaining it.

Figure 2. Materialize view example

A query rewrite using a Common Table Expression (CTE) is applied for Hypo-
thetical Materialized Views. To exemplify how this is done, let us look at the example in
Figure 2, with a being the original query and b a materialized view proposed for it. Firstly
we identify which conditions exists in a but not in b, them being the lines 4, 6 and 7 of a.
Then, we create a CTE with b query and apply a SELECT in it with the aforementioned
extracted conditions, which gives us the following result:

Figure 3. Resulting CTE

Extracting Figure 3 query execution plan using EXPLAIN clause gives us the ex-
pected cost of creating a temporary table (CTE cost), which is the same as executing the
proposed materialized view query, and the expected cost of running a query on the mate-
rialized view (lines 10-14) if it was created. With a solution for creating the hypothetical

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

393



structures at hand, we can now evaluate their impact on a given workload. For this, a
recursive algorithm developed, which is able to find beneficial combinations for the given
tuning options. To optimize the search space, Branch and Bound is applied to restrict how
deep our combination tree should be, based on [Oliveira 2019]. This optimization helps
us reduce the search space by avoiding paths with incompatible fine-tuning options.

As a result of the proposed algorithm, we have a tree where each node represents
a tuning action (in our case, an index or materialized view creation) with statistics like its
creation and maintenance cost and impact on each workload query. With this information,
we can recommend the tuning path with the highest cost-benefit and show the DBA the
reasoning behind it while allowing the administrator to build his custom path and see its
expected impact. All this information is available to the DBA through an interface.

Figure 4. Available Tuning Actions

Figure 5. Queries Cost Distribution

Figures 4 and 5 show the TuningChef main interface. Figure 4 lists the available
tuning options, together with its possible gain, cost, and if it is a recommendation. Gain
and cost represent a % of the total collected workload cost. Figure 5 shows the original
cost of each query (orange bars) and the expected cost (blue bars) if the selected tuning
actions were applied. In the screenshots, the values are the same as none were selected.

Each of the tuning options can be selected to show its details (see Figure 6). The
DBA can see the action’s expected impact on each workload query. The blue bars are the
current cost of each query (they might be different from the original cost if any previous
actions were selected) and the expected new cost if the detailed action is applied. The raw
SQL command and some additional details are also provided.

If the recommended tuning actions are selected, we can see the final re-
sult in Figure 7. The DBA can see the expected impact of the recommended path
(idx resource group member and mv aggregated resources) on each of the workload
queries, and the total expected gain and cost as a percentage of the total workload cost.

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

394



Figure 6. Tuning Details

Figure 7. Recommended tunings selected

One tuning action is still on the list, but it was not recommended because its cost is higher
than its gain. When clicked, the administrator can see the non-recommended tuning de-
tails as shown in Figure 8. This tuning is a partial index that would only impact one query
by a small amount (the chart results are shown with log value). This happens because
a previously selected index was enough to improve the query performance. Because the
DBA might know some information that TuningChef does not know, like an expected
increase of query usage, he can still choose to apply the non-recommended action.

4. Conclusions

In this ongoing work a way to support the decision step of a fine-tunning process is pro-
posed. This is done though the use of hypothetical access structures and a algorithm able
to combine and analyze the impact and costs of each of them. As an extra contribution,
a new way of estimating materialized view impacts is proposed. For future work, Tun-
ingChef we expected to analyze other fine-tuning techniques, like data partitioning.

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

395



Figure 8. Not recommended tuning details

References
Aken, D. V., Pavlo, A., Gordon, G. J., and Zhang, B. (2017). Automatic database manage-

ment system tuning through large-scale machine learning. In Proceedings of the 2017
ACM International Conference on Management of Data, pages 1009–1024. ACM.

Ding, B., Das, S., Marcus, R., Wu, W., Chaudhuri, S., and Narasayya, V. R. (2019). AI
meets AI: Leveraging query executions to improve index recommendations. In Procs
Intl Conf on Management of Data, pages 1241–1258, Amsterdam Netherlands.

Kossmann, J., Halfpap, S., Jankrift, M., and Schlosser, R. (2020). Magic mirror in my
hand, which is the best in the land? an experimental evaluation of index selection
algorithms. Proc. VLDB Endow., 13(12):2382–2395.

Oliveira, R. (2015). Ontology-based fine tuning: the case of materialized views (in por-
tuguese). Master’s thesis, PUC-Rio.

Oliveira, R. (2019). Automatic Selection and Combination of Tuning Actions (in por-
tuguese). Phd, PUC-Rio.

Perciliano, L., dos V. Santos, Baião, F., Haeusler, E. H., Lifschitz, S., and Almeida, A. C.
(2021). Inferencing relational database tuning actions with ondbtuning ontology. In
Anais do XXXVI Simp. Bras. de Bancos de Dados (SBBD), pages 157–168.

Schlosser, R. and Halfpap, S. (2020). A decomposition approach for risk-averse index
selection. In 32nd Intl Conf Scientific and Statistical Database Management.

Souza, V. (2022). TuningChef: an approach for choosing best cost-benefit tuning actions
(in portuguese). Msc, PUC-Rio.

Trummer, I. (2022). DB-BERT: A database tuning tool that reads the manual. In Procs
Intl Conf on Management of Data, pages 190–203.

Zhang, J., Zhou, K., Li, G., Liu, Y., Xie, M., Cheng, B., and Xing, J. (2021). CDBTune+:
An efficient deep reinforcement learning-based automatic cloud database tuning sys-
tem. The VLDB Journal, 30(6):959–987.

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

396


