
A Study of Database Models for Social Network Analysis

Mariana D. A. Salgueiro1, Sérgio Lifschitz1, Edward Hermann Haeusler1,
Verônica dos Santos1, Alexandre A. P. Heine1

1Departamento de Informática – (PUC-Rio) - Rio de Janeiro - RJ

{msalgueiro, sergio, hermann, vdsantos, aheine}@inf.puc-rio.br

Abstract. This paper discusses conceptual and logical data models for social
media datasets and applications. On the one hand, we focus on the data repre-
sentation requirements from the available APIs of some social network systems.
On the other hand, we consider those application requirements for information
manipulation. We propose a conceptual meta-model and one possible instan-
tiation. We also give preliminary practical results considering relational and
graph database systems.

1. Introduction
There are currently many research works that deal with social network analysis (SNA),
extracting data and relationships from the connected information usually expressed by
social media applications (e.g. Facebook). Most (if not all) works focus on the available
data from the social media APIs, querying and evaluating CSV, TSV or JSON files or
structures. In the presence of very large datasets, we expect to work with actual database
management systems (DBMS), which are suitable for dealing with large volumes of data.

In this paper, we propose a conceptual meta-model to represent and manage Multi-
media Social Networks (MSN). We first instantiate this meta-model for Twitter and obtain
its Logical Model in a Top-Down process. Next, we analyze the Twitter dataset to identify
data requirements gaps between the logical model and its data source. Then we derive the
physical model and load the dataset using both a relational and graph DBMS. Finally, we
show some experiments with SQL queries and SNA using SPARQL extensions.

Our contributions in this work are: (1) a conceptual meta model that describes at
a high level any MSN, (2) a bi-directional data modeling process that deals with both the
instantiation of the application model of a specific MSN and the mapping of the discrep-
ancies between this model and the dataset provided by the platform, and (3) the charac-
terization of an SNA task implemented in DBMSs with different data models.

2. Context, Motivation and Related Works
SNA applications extract social datasets using MSN interface. For example, eTC (ePOCS
Twitter Crawler) is an application that collects data using Twitter API [Heine et al. 2021].
Users can specify extraction criteria, and the system schedules the request. However,
handling large files of collected data on personal computers presents low performance.

In [Stieglitz et al. 2018], the authors attest that it can be argued that social network
data share many characteristics of Big Data. When data takes up so much physical space
that it does not fit in memory, we have a volume problem. Since some datasets collected
by users can be significant in volume and complexity, a DBMS could store it after data

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

397



collection as suggested in [Angles et al. 2013], which allows to generate basic statistics
and analyze the data through queries, without storing all the data on memory at the same
time. Considering this issue, the first step we took to build a data collection and analysis
pipeline for any MSN was the database modeling.

An application data model specifies how entities and their relationships are repre-
sented and operated [Davoudian et al. 2018]. Such models can be created using different
abstraction levels (Conceptual, Logical, and Physical) through two approaches: forward
(Top-Down) and reverse (Bottom-Up). In this work we navigated in both directions to
deal with data requirements from users and data available from MSN platforms.

In order to incorporate SNA functionalities target to any MSN using large data
volumes, we searched for MSNs data models that can accomplish both user requirements
and data available through their APIs. We found [Reinhardt et al. 2010] as a general net-
work model for social networks, but it does not cover conceptual layer and current entities
attributes. In [Bouraga et al. 2016] the authors proposed an unified Conceptual Model to
allow user profile portability between MSNs. We analyzed their model and the separation
between implicit and explicit informations doesn’t attend our users requirement for SNA
tasks. A conceptual model is essential to achieve an effective communication with our
users, from different knowledge areas, so we decided to model our own.

After that, with the purpose of analyzing tweets’ datasets using a graph represen-
tation of our model, we identified an ontology for MSNs called SIOC1 (Semantically-
Interlinked Online Communities) Core Ontology, which represents posts, user accounts,
and other entities used on MSNs; and a public corpus of tweets using RDF, called Tweet-
sKB [Fafalios et al. 2018], which makes possible integration with other public knowledge
bases. Our approach on graphs was to explore relationships between tweets by using
database predicates which extends SPARQL to facilitate the use of SNA, while SIOC
focus on the ontology RDF/S schema and TweetsKB uses SNA without traversing the
predicates which relate tweets by reference.

3. Database Modeling

In [Carr and Hayes 2015], the authors define Social Media as persistent channels of
masspersonal communication facilitating perceptions of interactions among users, deriv-
ing value primarily from user-generated content. From that perspective, we can highlight
two main basic concepts: users and user-generated content. Our meta-model is, there-
fore, composed of these two central concepts represented by the entities User and Post,
as shown in Figure 1. Posts are content shared by users and can be texts, images, videos,
etc. Other users can usually like, comment or reshare the post. The relation Reacts to
represents likes, whereas the References represents comments or reshare actions. This
meta-model contains constructs that can be mapped in elements of a specific MSN plat-
form to generate its application data models.

Twitter is a micro-blogging service that allows its users to post the so-called tweets
that can have a maximum of 280 characters and can contain images, videos, gifs, hash-
tags, etc. The basic actions on Twitter are: following a user, tweeting, liking a tweet,
replying to a tweet, quoting a tweet and retweeting a tweet. Instantiating this MSN

1https://www.w3.org/Submission/sioc-spec/

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

398



Figure 1. MSN Meta-Model

corresponds to the representation of these actions as relationships: following a user =
User-Follows-User, tweeting = User-Share-Post, liking a tweet = User-Reacts to-Post,
replying/quoting/retweeting a tweet = Post-References-Post.

Following the conventional rules in mapping conceptual models to relational log-
ical models, we generated three tables User, Post and Type. We want to understand what
questions we can answer with this model and what are the ones we cannot. Within the
ones we cannot, we aim to divide them into two categories: (i) when data is not available
from the APIs, even though we were able to model it, so there is no way for us to answer
them and (ii) there are queries in the relational model that are too complex, so maybe we
can answer them, but it is not the best way in doing it.

As an example of a gap between the Logical model and Twitter’s data source, we
created the terminology direct retweet and indirect retweet. A direct retweet is when a
user directly retweets a tweet that shows on their timeline. An indirect retweet is when
a user retweets a retweet; so the user retweets a tweet because someone else retweeted it
and that’s why that tweet is showing on their timeline. On Twitter’s API response, indirect
retweets count as direct retweets. So if we have user 1, user 2 and user 3: user 1 tweeted
a tweet, user 2 retweeted user 1’s tweet and user 3 retweeted the retweet made by user 2
(see Figure 2), the response shows that user 3 directly retweeted user 1 (see Table 1).

Figure 2. Retweets notifications from Twitter UI

From the Logical model, it was implemented the Physical model on PostgreSQL.
To take advantage from the idea of tweets self-referencing each other, a RDF/S schema

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

399



Table 1. Retweets extracted from Twitter API

Users 1 2 3
text test RT @TwitterDev: test RT @referenced: test
tweet id 1541580 154824577 15318912
referenced tweets type null retweeted retweeted
referenced tweets id null 1541580 1541580
author id 12744554 3150497 1270577
author name Twitter Dev mari maxteralex

Figure 3. Twitter RDF/S Schema Proposal

was created based on the conceptual schema use case for Twitter and the SIOC Core
Ontology as shown in Figure 3. The RDF/S schema represents each attribute in a triple
format (subject, predicate, object) and the tweet’s reference to another tweet as the predi-
cate sioc:reply of. From this schema, it was decided to use AllegroGraph, a graph DBMS,
since it implements SNA predicates to use with SPARQL.

4. Preliminary Results of an SNA Task

To implement both the relational and graph representations, an example dataset was col-
lected using the eTC historic search tool, which collects tweets from a specific date range
according to a search theme specified by the user, and was preprocessed using Python,
removing some columns and non-compatible characters using Pandas2.

On relational DBMSs, it is possible to create queries to identify some major con-
cepts of SNA centrality of groups and its main actors. The concept of centrality measures
allows researchers to infer how information flows on a social network by calculating how
connected a certain group or actor is to the network in comparison to the total number of
connections [Borgatti 2005]. In Frame 1 a SNA query that calculates centrality measure
using SQL is presented. In this query, it is calculated the actor centrality for a specific
analysis, based on the total number of retweets of this person’s tweets and the total amount
of retweets of the whole analysis.

For the graph implementation, the example dataset was converted into RDF triples
on RDF+XML file format, using Rdflib3 package and loaded to the DBMS using Alle-
groGraph API. On AllegroGraph, SNA, geolocation and temporal predicates are called

2https://pandas.pydata.org/
3https://rdflib.readthedocs.io/en/stable/

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

400



WITH main actors as SELECT DISTINCT ?actor ?centrality {
(SELECT username, { SELECT ?group

SUM(retweets) as sum retweets {?tweet rdf:type sioc:Post .
FROM tweet, user ?group sna:egoGroup
WHERE user.id = tweet.fk user id (ex:treeTweets ?tweet 10) .
AND analysis id = X ?group sna:size ?size . }
GROUP BY username ORDER BY DESC(?size)
ORDER BY sum retweets), LIMIT 10 }

total retweets (total) as (?actor ?centrality)
(SELECT SUM(retweets) sna:actorDegreeCentrality
FROM tweet (ex:treeTweets ?group) . }
WHERE analysis id = X) ORDER BY DESC(?centrality)

SELECT username,
sum retweets/total as actor centrality

FROM main actors, total retweets

Frame 1. SNA Relational Query (to the left) and SNA Graph Query (to the right)

SPARQL Magic Properties4. To prepare queries with the purpose of analyzing the rela-
tionship between posts of a theme or discussion on a social network, first, it is necessary
to implement a generator. That is, a predicate or a SPARQL query that describes which
predicates are traversed from an input to find direct neighbors, subjects or predicates, as
an output. Therefore, these generators allow to answer questions related to SNA on a
specified dataset, for example, to find the structure of a network, its most sizeable groups,
and their most influential actors on a certain information flow.

From the example tweet dataset transformed according to the RDF/S schema, it
was created a generator which uses the “sioc:reply of” predicate to find tweets which refer
to the input tweet. Then, in order to identify the 10 most sizeable groups in this dataset’s
network and who are their most influential actors, it was used the SPARQL (graph) query
in Frame 15 with the predicates: “sna:egoGroup” to group the tweets, “sna:size” to find
the size of these groups, and “sna:actorDegreeCentrality” to know the centrality of each
actor related to how many other tweets referenced another one, and then discover who are
the main actors according to the result.

Finally, as displayed in Figure 4, the result of this query was exhibited on Gruff,
an AllegroGraph extension which generates graphical representations for a query and its
result. As it is possible to observe, in a group, there are tweets at the center of a discussion,
the most influential actor (in yellow), and some tweets which reference this influential
tweet and are referenced by others, the intermediate actors (in red). In this representation
we use tweets as nodes and the relation between tweets as edges to represent a group of
127 tweets using an hierarchical tree. Conversely, it is possible to use the tweet’s creator
names to identify who leads a discussion and who takes the information forward.

4https://franz.com/agraph/support/documentation/current/
magic-properties.html

5Prefixes declaration were omitted due to space limitations

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

401



Figure 4. SNA Graph Result on Gruff

5. Conclusions
We have proposed in this paper a conceptual meta-model for describing MSNs. A
straightforward instantiation for Twitter also enabled both a relational and graph logi-
cal data schemas, used to study SNA queries using SQL and SPARQL. As future works,
we plan to generate instantiations for other MSNs such as Facebook and Tiktok to test the
potential of the proposed conceptual meta-model and evaluate multi-model or polyglot
modeling to further understand SNA querying on top of actual database systems.

References
Angles, R., Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J. L. (2013). Bench-

marking database systems for social network applications. In First International Work-
shop on Graph Data Management Experiences and Systems, page 15.

Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1):55–71.

Bouraga, S., Jureta, I., and Faulkner, S. (2016). Towards data portability between on-
line social networks, a conceptual model of the portable user profile. Int. J. Virtual
Communities Soc. Netw., 8(3):37–54.

Carr, C. T. and Hayes, R. A. (2015). Social media: Defining, developing, and divining.
Atlantic Journal of Communication, 23(1):46–65.

Davoudian, A., Chen, L., and Liu, M. (2018). A survey on nosql stores. ACM Computing
Surveys (CSUR), 51(2):1–43.

Fafalios, P., Iosifidis, V., Ntoutsi, E., and Dietze, S. (2018). Tweetskb: A public and large-
scale rdf corpus of annotated tweets. In European Semantic Web Conference, pages
177–190. Springer.

Reinhardt, W., Varlemann, T., Moi, M., and Wilke, A. (2010). Modeling, obtaining and
storing data from social media tools with artefact-actor-networks. In LWA 2010 - Ler-
nen, Wissen & Adaptivität, Workshop Proceedings, pages 323–330.

Stieglitz, S., Mirbabaie, M., Ross, B., and Neuberger, C. (2018). Social media analytics
– challenges in topic discovery, data collection, and data preparation. International
Journal of Information Management, 39:156–168.

Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

402


