
SmartLTM: Smart Larger-Than-Memory Storage for Hybrid
Database Systems

Paulo R. P. Amora1, Elvis M. Teixeira1,
Francisco D. B. S. Praciano1, Javam C. Machado1

1Laboratório de Sistemas e Bancos de Dados (LSBD)

Computer Science Dept – UFC – CEP 60440-900 – Fortaleza – CE – Brazil

{paulo.amora,elvis.teixeira,daniel.praciano,javam.machado}@lsbd.ufc.br

Abstract. Main-memory DBMS can offer hybrid and evolving storage architec-
tures, instead of the traditional row or column storage layouts. Even if RAM
is affordable nowadays, it is still a limited resource concerning available stor-
age space in comparison to conventional storage devices. Due to this space
restriction, techniques that leverage a trade-off between storage and query per-
formance were developed and should be applied to data that is not frequently
accessed or updated. This work proposes SmartLTM, a data eviction mecha-
nism that considers the decisions previously taken by the DBMS in optimizing
data storage according to query workload. We discuss how to migrate data,
access it and the main differences between our approach and a row-based one.
We also analyze the behavior of our solution in different storage media. Exper-
iments show that cold data access with SmartLTM incurs an acceptable 17% of
throughput loss, against 26% of the row-based one, while retrieving only half of
the data to answer queries.

1. Introduction
One of the great challenges in database management is how data should be available.

As time passes by, newer data usually has more importance than older data, with a few

exceptions, data becomes stale after a period of time. Current database systems setups

usually work by having this new, more used data available in an OLTP database and the

old, more stale data in an OLAP data warehouse, through the process of data migration

and the Extract, Transform, Load mechanism. This setup brings several drawbacks, such

as not having actual access to a real-time data analytics, because not all data is present in

both places, and the maintenance cost of keeping two separate infrastructures may hinder

some applications.

As technology improves, data processing requires more speed because organiza-

tions such as businesses or research labs acquire and accumulate data at a very rapid

pace and this data must be processed into information promptly, which may be too

fast for current database storage engines. This scenario creates a new kind of work-

load, called HTAP (Hybrid Transactional Analytic Processing), characterized by having

both transactional and analytic features [Grund et al. 2010] [Kemper and Neumann 2011]

[Alagiannis et al. 2014] [Appuswamy et al. 2017].

Traditional relational DBMS architectures do not handle well this kind of work-

load, because they adopt a fixed form of storing data contained in tables. Be it the row-

based for OLTP databases, where tuples are stored contiguously, and is optimized by

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

13

design for workloads that access only a small range of tuples, but many attributes of each

tuple; or column-based, where the attributes of several tuples are stored contiguously, and

responds well to range and aggregation queries on single attributes. A proposed Flexible

Storage Model (FSM)[Arulraj et al. 2016] aims to handle both workloads more optimally,

having a mixture of both. The motivation for this FSM is to allow the retrieval of more

relevant data, avoiding wasting cache space with data that won’t be used in query process-

ing. This model can be generated incrementally, using the query workload and accessed

attributes as a clue on how to optimally organize and present data, making better use of

upper layers of memory, such as CPU caches.

This data transformation is a costly task to perform on a slow, larger storage de-

vice, which is why the databases that execute this kind of transformation, be it a fixed one

or an adaptive one, are usually main-memory databases. RAM is still a limited resource,

and databases must be mindful not to overuse it, as data is also stored alongside structures

like indexes and other auxiliary mechanisms.

Not all data are relevant to database users, in fact, usually, the most recent data is

queried and modified, and as time passes by, those tuples become stale, except for a few

attributes and only on aggregate queries. Note that this is not true for all entities in the

system, for example, in a sales business setting, this behavior can be observed on orders,

but not on stock warehouses, which may frequently be updated or items, that are mostly

immutable, but often point queried for reads.

This skewed access pattern allows optimization concerning storage space. Data

that is not being accessed, nor will be accessed, named cold data, can be moved out to

larger, slower storage media, while preserving the working set, also called hot data, not

to hinder transactional throughput performance. Data locality should also be transparent

to the DBMS upper layers, to avoid specialized code and unnecessary overheads. Project

Siberia[Eldawy et al. 2014] divides this problem into 4 categories, cold data classifica-

tion, cold data storage, cold data access reduction and cold data access and migration.

This work focus on 3 of the 4 categories. It proposes a novel way to store cold

data, applies techniques to avoid unnecessary cold data access and discuss how to access

cold records. In summary, the main contributions of this work are:

• A cold data storage that considers the hybrid organization

• An application of techniques to avoid cold data access

• A performance study of the impact of storage media on our approach

We prototyped SmartLTM within PelotonDB[Pavlo et al. 2017], a main-memory

hybrid database system and performed our evaluation using benchmarks from

OLTPBench[Difallah et al. 2013]. With a reasonable amount of cold data access (50%),

we find that the performance decrease is around 17% in a high-performance SSD. More

experiments and results are presented further in the paper.

This paper is organized, as follows: Section 2 details SmartLTM and discuss de-

sign decisions. Section 3 explains how our approach is integrated within the DBMS.

Section 4 presents the experimental evaluation. Section 5 briefly discusses related works,

and we conclude in Section 6.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

14

2. SmartLTM

2.1. Background

Instead of the traditional main-memory storage, we introduce a cold storage component

inside the database architecture. The cold storage is separate from the main memory stor-

age. Data is moved to the cold storage through a process called eviction, which can be

defined as the inverse of caching. While caching keeps data frequently used in a faster

medium, eviction moves data infrequently used to a slower medium. However, differ-

ently from other works that employ eviction, like Anti-caching[DeBrabant et al. 2013]

and Siberia[Eldawy et al. 2014], the storage architecture is hybrid instead of row-based.

One example of a hybrid storage DBMS is Peloton. In Peloton, data is organized ac-

cording to the tile architecture[Arulraj et al. 2016], a specific in-memory organization to

make data more available to the execution engine, and it has a few important definitions

and terms that will be used throughout the article.

A table is composed of a list of tile groups, which can be seen as horizontal par-

titions within the table. A tile group has a fixed limit of tuples, the same schema as the

table but it is composed of a disjoint set of tiles.

A tile is akin to a vertical and horizontal partition of a table, which contains a

subset of the attributes as its schema, as well as only the subset of tuples of the table

enclosed by the tile group. Different tile groups may have different tile layouts.

2.2. Data Eviction mechanism

Rather than doing data eviction one tuple at a time like Anti-caching, the mechanism uses

a coarser granularity, evicting whole tile groups. For a tile group to be a candidate for

eviction, it must not have been directly accessed, for read or write queries. Once the tile

group is full, it will be accessed only for reads, however, if data that is being frequently

accessed is evicted, the DBMS performance will decrease drastically.

The eviction process runs in a background thread and while the data is being

written out, read transactions can still access it in memory if needed. Once data is written

out, it is removed from main memory as soon as the older transactions cease to use it. It

starts when a given threshold is reached.

Data is evicted in a format inspired by works like PAX[Ailamaki et al. 2002] and

NoDB[Alagiannis et al. 2012]. It is written to the secondary storage in separate files, fol-

lowing the tile layout generated according to the workload. This approach respects the

work previously done by the DBMS in organizing data in an optimal arrangement, al-

lows for parallel retrieval of data in supporting devices, like SSDs, and preserves together

data that is accessed together, reducing wasteful I/Os. To be able to skip unnecessary

data, we also need to write out the column map, which maps the schema columns to the

corresponding tile and offset.

Algorithm 1 details the execution of the eviction process.

2.3. Cold Storage

The cold storage is persistent storage where evicted data resides. It is decoupled from

the database storage and non-transactional because it is a file. Tuples present within

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

15

Algorithm 1: Eviction Algorithm

Data: Tile groups in the table

Result: Tile groups evicted from the table and auxiliary structures

1 for tile group in table do
2 if tile group is marked for eviction then
3 write column map to external storage;

4 create SMA for tile group;

5 for tiles in tile group do
6 add data to cuckoofilter;

7 write tile to external storage;

8 end
9 delete tile group from table;

10 end
11 end

expelled tile groups are read-only and not modifiable, although they can be invalidated

in-memory, in case of deletion. Section 3 describes the behavior of operations with the

new architecture.

2.4. Access Filters

Once data is moved to cold storage, it should be accessed only when needed, given that

secondary storage operations are expensive in comparison to main memory. Some struc-

tures help to avoid unnecessary access to cold storage. Bloom Filters[Bloom 1970] is a

non-deterministic structure that can tell if an element is absent or if it may be present,

but here we employ Cuckoo Filters[Fan et al. 2014], an evolution of Bloom filters that is

more space-efficient and supports delete operations.

Cuckoo Filters are hash-based. Therefore they only support equality comparisons.

Another structure called Small Materialized Aggregates (SMA)[Moerkotte 1998], also

known as Zone Maps, aids when checking for the presence of data in ranges, to avoid

bringing to main memory all the data in the cold storage. It consists of precomputed

aggregates (max, min) for tile groups (horizontal partitions), which can tell if a given

key or range is present in that partition. There is an implementation of SMAs present in

Peloton, for memory resident tile groups.

The CuckooFilters and SMAs are stored in main memory, alongside hot data. The

storage space they occupy is negligible in comparison to the space saved.

2.5. Data Retrieval Mechanism

When a query is posed against the DBMS, it must try to answer the query with the memory

resident data. For example, if the query asks for an exact match in a unique column. If the

answer is not sufficient or not found, the cold storage must be probed, to check if there is

a possibility that data present in the cold storage might answer the query. From the probe,

two scenarios are possible.

If it’s deemed that the cold storage cannot answer the query, then, the DBMS

returns an answer to the client, saving an expensive cold access. On the other hand, the

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

16

probe returns the candidate tile groups in cold storage that may contain the data. Those

candidate tile groups are then retrieved from the cold storage, but not entirely. Only the

tiles containing the queried attributes are returned, as the column map links the queried

columns and the correct tiles and offsets. After the retrieval, the data is validated against

the Cuckoo Filter for deletes, and they are reassembled in a temporary in-memory table,

that is disposed of when the transaction is completed. Algorithm 2 clarifies the data

retrieval mechanism.

Algorithm 2: Data retrieval algorithm

Data: Columns accessed, candidate tile groups

Result: Temporary structure containing requested data

1 for tile group in candidate tile groups do
2 retrieve column map;

3 tiles = column map[columns accessed];

4 end
5 for tile in tiles do
6 retrieve columns accessed;

7 create temp table;

8 add retrieved tuples to temp table;

9 end

While data is being retrieved from the cold storage, the current transaction waits

for the data. This retrieval does not bring many concurrency issues because of multi-

version concurrency control.

2.6. Discussion
By dividing possibly large files into smaller ones, the I/Os become less costly and devices

that allow efficient random access benefit from this. By keeping together data that is

accessed together, the I/Os are not wasteful, avoiding the useless retrieval and load of

data that is not necessary to the current query. The data retrieval mechanism ensures that

cold access is done only when necessary. The synchronous retrieval is preferred according

to [Ma et al. 2016].

3. Integration with the DBMS
Inserts. New tuples are always inserted in main memory. It is assumed that

because they are new data, they will frequently be accessed and it is not for the benefit of

performance to add new tuples directly in the cold storage.

Deletes. Deletes in main memory data happen as usual. When deletes happen in

cold storage data, the respective entry is removed from the filter, but no access is made

to the cold storage. This removal effectively makes the record inaccessible in cold data

while avoiding access.

Updates. Updates with relation to cold data are nothing more than a delete op-

eration followed by an insert. Meaning that the updated record will always be in main

memory. This new version may be evicted later to cold data. Updated data is considered

hot because new data is always considered hot.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

17

Reads. Reads can be seen as two types of queries: point queries, which are reads

done through an equality predicate and range queries, which use a more flexible predicate,

like less than or greater than. A broader view of reads has already been presented in

section 2.5. Reads are also benefited from new data being only placed in main memory.

When a transaction with a read validates, it checks for changed or new data, which is

already present in main memory, avoiding cold storage accesses.

Point queries. Point queries are first posed against the hot data. If the predicate is a

primary key or unique, the query may be answered only by looking at data present in main

memory. If it is not completely answered, the predicate is evaluated by the CuckooFilter,

which can tell if the data is not present in the cold storage. In the end, if the probe

determines that data may be present in the cold storage, we move to data retrieval.

Range queries. Range queries are first posed against the hot data. If it is not completely

answered, data may be present in the cold storage, which is probed using the SMAs, since

they are suitable for ranges, we move to data retrieval.

4. Experimental evaluation
To evaluate our strategy, we prototyped it in Peloton, a hybrid, main-memory, multi-

versioned DBMS. Besides adding the new components, a few changes were made in the

engine to integrate the new components with the query processing engine. The logging

and garbage collection components were disabled to avoid interference with other sec-

ondary storage media and ensure tile group immutability.

4.1. Setup
The experiments were executed in an Intel Core I7 7800X with 6 physical cores and

hyperthreading, with 64GB of RAM and 8MB of L3 cache with Ubuntu 16.04 LTS as the

OS. Two different storage devices were selected as cold storage, a commodity WD Blue

SATA 3 7200rpm HDD and an Intel DC P3600 SSD. The HDD has a reported IOPS of

500 and the SSD 230000 for random read operations. To ensure maximum parallelism and

avoid interference from context switch, the number of threads executing queries against

the database is purposely low.

4.2. Benchmarks
The benchmark selected is YCSB[Cooper et al. 2010], due to the easiness of keeping

track of operations. We used OLTPBench to execute the benchmark but modified some

operations. While we kept the semantics of the key uniqueness, the primary key constraint

was disabled, and no indexes whatsoever were created. The queries were also modified to

diversify attribute access. Five queries selecting some columns were placed and randomly

selected alongside the values, to allow a better data layout organization and effectively

test the different organizations. They are shown below, with the layout organization after

execution:

• Q1: SELECT f0 WHERE KEY = X;
• Q1: [KEY][f0][f1, f2, f3, f4, f5, f6, f7, f8, f9]
• Q2: SELECT f2, f4 WHERE KEY = X;
• Q2: [KEY][f0, f1][f2, f3, f4][f5, f6, f7, f8, f9]
• Q3: SELECT f1, f2, f3 WHERE KEY = X;
• Q3: [KEY][f0][f1, f2, f3][f4, f5, f6, f7, f8, f9]

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

18

• Q4: SELECT f1, f2, f6, f7 WHERE KEY = X;
• Q4: [KEY][f0][f1, f2][f3, f4, f5][f6, f7][f8, f9]
• Q5: SELECT f0, f1, f5, f8, f9 WHERE KEY = X;
• Q5: [KEY][f0, f1][f2, f3, f4][f5][f6, f7][f8, f9]

To have more control of cold and hot data accesses, we also added a uniform dis-

tribution to select key values, alongside the standard Zipfian. With a uniform distribution,

cold storage access can be correctly estimated and is directly proportional to the amount

of data evicted to the cold storage.

4.3. Workloads

We defined four workloads to be executed, a read-only, an insert-only, a delete-only and

an update-only. The scenario of data eviction to a secondary, slower storage medium

shifts the burden to read queries, given that all modifying operations, like delete, insert

and update, happen only in-memory, according to the mechanism proposed. Therefore,

mixed workloads would only alleviate the bottleneck imposed by cold storage reads. Due

to the nature of YCSB, all queried values are within the range of data loaded in the table,

so there are no missed queries, and every one of them returns an answer, except in the

delete workload.

4.4. Experiments and Results

SmartLTM and the baseline are implemented inside Peloton. The main difference be-

tween SmartLTM and the baseline is how data is organized and how it is evicted. The

baseline evicts the tile group completely, as a row-based layout, while our approach sep-

arates the tiles, as described above. Both implementations take advantage of the access

filters implemented to avoid cold storage access, to ensure fairness. An effort was also

made to ensure direct access to the storage media, trying to avoid buffered reads as much

as possible.

4.4.1. Read-only Queries

This experiment evaluates the impact of our approach with a read-only workload. Three

different scale factors in YCSB were used: 50, 250 and 500. The access pattern is uni-

form, to allow accuracy when estimating hot data accesses and cold data accesses.

0 10 20 30 40 50 60 70 80
0

1,000

2,000

3,000

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline

SmartLTM

(a) 50k Tuples

0 10 20 30 40 50 60 70 80

100

200

300

400

500

600

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline

SmartLTM

(b) 250k Tuples

0 10 20 30 40 50 60 70 80

100

150

200

250

300

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline

SmartLTM

(c) 500k Tuples

Figure 1. HDD results (higher is better)

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

19

The HDD results are shown in figure 1. It is observable that the performance

decrease is exponential, and that the baseline performs a little better than our proposed

approach. The exponential decrease in performance is due to the access speeds of the

media (HDD), which becomes the bottleneck in performance.

The baseline performs better due to the nature of an HDD device. When reading

a single file which was written in neighboring sectors, the arm only needs a single spin to

read all the data. In our proposed approach, the tiles are written separately, keeping the

data inside them contiguous, but having no control over how different tiles of the same

tile group are recorded. If different tiles are required to answer a query, the device would

have to do multiple scans, and it is known that random access in an HDD is costly.

0 10 20 30 40 50 60 70 80

2,000

2,200

2,400

2,600

2,800

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline

SmartLTM

(a) 50k Tuples

0 10 20 30 40 50 60 70 80

600

800

1,000

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline

SmartLTM

(b) 250k Tuples

0 10 20 30 40 50 60 70 80

300

400

500

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline

SmartLTM

(c) 500k Tuples

Figure 2. SSD results (higher is better)

The SSD results are shown in figure 2. The higher access speeds and random

access behavior of the device demonstrates how our proposed approach is an improvement

over the baseline, having a throughput loss of 17% vs. 26% of the baseline on figure 2a,

at the 50% evicted data mark. It is also noted that the throughput increases as more data is

evicted when there is a higher volume of data loaded into the database. From section 2.5,

the in-memory sequential scan has a O(n) complexity and always happen. As less data is

present in memory, the faster this scan happens. Given the SSD device’s high speeds and

that the cold storage read is also a targeted one, retrieving only the tiles where the queried

attributes reside, the most expensive task becomes traversing all the in-memory data to

search the value. Querying the cold storage is still an expensive operation, as observed

in the 50k graph, where the cold storage read is visibly hindering the performance. It

is also observable that the throughput increase follows an approximately linear pattern,

more clearly seen in the 500k graph.

The random access optimization of SSDs makes clear that our approach is better

than the baseline, especially where it most counts when the bottleneck becomes the cold

data access. It can be verified that the throughput with our proposed approach almost

doubles the one in the baseline, as more data is evicted, shown in figure 2a.

4.4.2. Insert, Update and Delete queries

This experiment evaluates the impact of SmartLTM with insert, update and delete work-

loads. Since those operations do not care about the cold storage, only probing it through

the access filters, only one scale factor in YCSB was used, 250. The access pattern is

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

20

uniform, to allow accuracy when estimating hot data accesses and cold data probes.

0 10 20 30 40 50 60 70 80
0

2,000

4,000

6,000

8,000

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

(a) Insert

0 10 20 30 40 50 60 70 80

1,000

2,000

3,000

4,000

% of data evicted
th

ro
u
g
h
p
u
t

(r
eq

/s
)

Baseline SSD

SmartLTM HDD

SmartLTM SSD

(b) Delete

0 10 20 30 40 50 60 70 80

500

1,000

1,500

2,000

% of data evicted

th
ro

u
g
h
p
u
t

(r
eq

/s
)

Baseline SSD

SmartLTM HDD

SmartLTM SSD

(c) Update

Figure 3. Insert, delete and update results

Figure 3 shows three separate results, one from an insert-only workload, that is

observed to be almost constant, independent of how much data was evicted from the

database. The proximity of insert results happens because inserts do not care about data

that is present or absent in main memory, it only allocates a tuple and inserts the val-

ues. The update-only workload shows a throughput increase as data is evicted, clearly

because, before updating, a sequential scan must happen to in-memory data. The probe

in cold storage is a cheap operation because only the access filters are queried, and all the

modifications are done in-memory. The delete-only workload behaves like the update-

only, however, deleting a record involves fewer operations than updating, which is why

the overall throughput is higher. It also can be observed that the baseline suffers on se-

quential scans. This behavior is an effect of the tile layout organization, which doesn’t

happen in the baseline.

4.4.3. Retrieved data from disk

This experiment evaluates the impact of SmartLTM for retrieved data from disk. The read-

only workload is executed with YCSB scale factor 250. The access pattern is uniform.

Figure 4 shows three separate results. Figures 4a and 4b are measurements taken

with 50% of data evicted, and show how much data is retrieved per executed query and

the evolution of how much data is retrieved during the benchmark execution. Figure

4c summarizes how much data was retrieved from disk in each eviction percentage and

compares it to the baseline. Baseline retrieves a fixed amount because the tile group is

evicted as a whole, while SmartLTM takes into account the previous organization, as

described before. This experiment shows clearly that our approach is effective regarding

data retrieval, by avoiding useless data to answer queries, based on the data organization.

5. Related Works
There are a few different solutions to in-memory space saving. Garbage collection

(GC) is a well-known approach, adopted in several multi-version DBMS. Wu et al.

[Wu et al. 2017] conduct a study of various techniques. GC by itself can save space by

reusing invalid tuple slots. However, this brings an unwanted side effect of mixing hot

and cold data. If a cold data partition receives one hot record, it may not be considered

completely cold anymore.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

21

0 200 400 600 800 1000

Executed query

0

100

200

300

400

500

600

R
e
c
o
v
e
re

d
 d

a
ta

 (
k
B

)

Baseline

SmartLTM

(a) Data retrieved per query

0 5000 10000 15000 20000

Executed queries

0

5000

10000

15000

20000

25000

A
c
c
u
m

u
la

te
d
 d

a
ta

 (
M

B
)

Baseline

SmartLTM

(b) Accumulated data

10 20 30 40 50 60 70 80
0

1

2

3

4

5

·104

% of data evicted

d
at

a
re

tr
ie

v
ed

(M
B

)

Baseline

SmartLTM

(c) Total data retrieved

Figure 4. Data Retrieval results (lower is better)

To keep away from this side effect, the GC may not recycle used tuple slots, but

be associated with another technique, called compaction, which can place data together

and close any empty spaces. The challenge imposed by compaction in a hybrid storage

DBMS environment is that data in different partitions may be organized in different ways,

and mixing them would implicate a decision that results in some layouts being suppressed

in favor of the many.

Aside from GC and compaction, compression is seen as the next step in space

saving. Compressed data occupies a fraction of the original storage space, and while

it introduces overhead to decompress data, everything is still present in main memory.

Works like HyPer [Kemper and Neumann 2011] present an HTAP database that makes

use of compression techniques to store unaccessed data better. An evolution of this storage

model, called Data Blocks[Lang et al. 2016] optimizes even further the access speed to

compressed data and the compression rates. Compression is the last stand when it comes

to main memory storage.

However, main memory storage is finite. When data does not physi-

cally fit in main memory, secondary storage media is needed. Works like Anti-

caching[DeBrabant et al. 2013] and Project Siberia[Eldawy et al. 2014] provide two dif-

ferent solutions.

Anti-caching tracks the tuple eviction candidates through an LRU chain, and when

eviction is needed, the last members of the chain are written in a block back to disk.

Evicted tuples are tracked through a specific table, containing the block id and tuple offset

to evicted tuples. To access evicted data, a special pointer called a tombstone is placed

when a given tuple is evicted. Transactions are processed making use of a pre-pass phase,

which checks if any tombstone is accessed. If anything evicted may be accessed, the

transaction aborts and a subroutine that brings the evicted tuples back to memory starts.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

22

Then, the transaction is restarted and executes as usual. Since H-Store executes only one

thread per execution node, this frees the thread to run other transactions while data is

being retrieved.

Siberia tracks the eviction candidates offline by logging record accesses and sam-

pling those logs to extract estimates of eviction candidates. Those are migrated to the cold

storage when a user-defined threshold is achieved. Data retrieval from the cold storage is

synchronous, and to access evicted data Bloom Filters are used.

LSM Trees [O’Neil et al. 1996] are also a data structure appropriate to larger-than-

memory scenarios, but is more applied in key-value DBMS, and may not perform well in

relational databases as the main storage mechanism.

Siberia and Anti-caching focus on an OLTP environment, and evict the data as

tuples, while SmartLTM focuses on an HTAP environment and preserve the optimization

that this kind of DBMS provides.

6. Conclusions and future work
In this work, we propose SmartLTM, a new, smarter way of executing data eviction con-

cerning HTAP databases. Current data eviction solutions are designed for row-based

DBMS and perform sub-optimally when adapted as-is to the new architecture, provided

good random access secondary storage. Our experiments show that SmartLTM does not

affect insert, delete and update response times, and achieve better response times while

retrieving fewer data from secondary storage.

As future work, a global cache can be implemented containing the most accessed

tile groups. Keeping the cold storage in modern, byte-addressable non-volatile memories

(NVRAM) can also drastically improve performance since the retrieval would not need

to bring useless data contained in the current storage, which is block-addressable.

Acknowledgements
This research was partially supported by FUNCAP/CE-Brazil (Grant BMD-0008-

01237.01.09/17) and LSBD/UFC. I’d also like to thank Prof. Andy Pavlo and the CMU

Database Group for his feedback and support during the early conceptual stages of this

work.

References
Ailamaki, A., DeWitt, D. J., and Hill, M. D. (2002). Data page layouts for relational

databases on deep memory hierarchies. VLDB J., 11(3):198–215.

Alagiannis, I., Borovica, R., Branco, M., Idreos, S., and Ailamaki, A. (2012). Nodb:

efficient query execution on raw data files - read. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ,
USA, May 20-24, 2012, pages 241–252.

Alagiannis, I., Idreos, S., and Ailamaki, A. (2014). H2O: a hands-free adaptive store -

read. In International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 1103–1114.

Appuswamy, R., Karpathiotakis, M., Porobic, D., and Ailamaki, A. (2017). The case for

heterogeneous HTAP. In CIDR. www.cidrdb.org.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

23

Arulraj, J., Pavlo, A., and Menon, P. (2016). Bridging the archipelago between row-stores

and column-stores for hybrid workloads. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 583–598.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Bench-

marking cloud serving systems with YCSB. In SoCC, pages 143–154. ACM.

DeBrabant, J., Pavlo, A., Tu, S., Stonebraker, M., and Zdonik, S. B. (2013). Anti-caching:

A new approach to database management system architecture. PVLDB, 6(14):1942–

1953.

Difallah, D. E., Pavlo, A., Curino, C., and Cudré-Mauroux, P. (2013). Oltp-bench: An

extensible testbed for benchmarking relational databases. PVLDB, 7(4):277–288.

Eldawy, A., Levandoski, J. J., and Larson, P. (2014). Trekking through siberia: Managing

cold data in a memory-optimized database. PVLDB, 7(11):931–942.

Fan, B., Andersen, D. G., Kaminsky, M., and Mitzenmacher, M. (2014). Cuckoo filter:

Practically better than bloom. In CoNEXT, pages 75–88. ACM.

Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudré-Mauroux, P., and Madden, S. (2010).

HYRISE - A main memory hybrid storage engine. PVLDB, 4(2):105–116.

Kemper, A. and Neumann, T. (2011). Hyper: A hybrid oltp&olap main memory database

system based on virtual memory snapshots. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany,

pages 195–206.

Lang, H., Mühlbauer, T., Funke, F., Boncz, P. A., Neumann, T., and Kemper, A. (2016).

Data blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization

and compilation. In SIGMOD Conference, pages 311–326. ACM.

Ma, L., Arulraj, J., Zhao, S., Pavlo, A., Dulloor, S. R., Giardino, M. J., Parkhurst, J., Gard-

ner, J. L., Doshi, K., and Zdonik, S. B. (2016). Larger-than-memory data management

on modern storage hardware for in-memory OLTP database systems. In DaMoN, pages

9:1–9:7. ACM.

Moerkotte, G. (1998). Small materialized aggregates: A light weight index structure for

data warehousing. In VLDB, pages 476–487. Morgan Kaufmann.

O’Neil, P. E., Cheng, E., Gawlick, D., and O’Neil, E. J. (1996). The log-structured merge-

tree (lsm-tree). Acta Inf., 33(4):351–385.

Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon, P., Mowry, T. C.,

Perron, M., Quah, I., Santurkar, S., Tomasic, A., Toor, S., Aken, D. V., Wang, Z., Wu,

Y., Xian, R., and Zhang, T. (2017). Self-driving database management systems. In

CIDR. www.cidrdb.org.

Wu, Y., Arulraj, J., Lin, J., Xian, R., and Pavlo, A. (2017). An empirical evaluation of

in-memory multi-version concurrency control. PVLDB, 10(7):781–792.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

24

