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Abstract. Recently, several research works have been conducted on processing
of preference queries over data streams. Preference queries are useful for many
application domains where users aim to find out the closest data items to their
wishes. This paper presents a new operator for the StreamPref language that
can be employed to obtain the top-k data stream sequences according to tempo-
ral conditional preferences. Temporal conditional preferences can allow a user
to express how past instants of a data stream may influence his preferences at
a present instant. In order to evaluate this new operator, two new algorithm
strategies are also presented. The extensive set of experiments performed show
that the incremental strategy presents a superior performance in all experimen-
tal settings. Moreover, the results achieved show that the proposed operator has
a superior performance when compared to the equivalent operation in CQL.

1. Introduction
Preference queries aim to select the closest data items to the user wishes

[Ribeiro et al. 2016]. Considering posing this type of query in data stream scenarios,

preference queries must be processed efficiently to meet the high-speed data transfer re-

quirement. There are several related research works concerned with skyline queries where

the user preferences are represented as wishes for maximum or minimum attribute val-

ues [Börzsönyi et al. 2001, Lin et al. 2005, Tao and Papadias 2006]. However, there are

application domains that require the users to express conditional preferences. This kind

of preference allows the user to say how some attribute value influences their preferences

over another attribute. In order to illustrate, let us consider a soccer coach who wants to

hire a player based on his nationality. He can express his desire considering a conditional

preference as follows: “if the player is Brazilian then I prefer the attack position than the

midfield position”.

The data tuples in data stream scenarios have an implicit temporal information. If

we consider this rich information, it is possible to use conditional temporal preferences

to express how a user wishes at a given moment are impacted by past attribute values. As

an example, consider a coach who wants to monitor a data stream of a soccer match. The

coach may use preferences such as “if the player was in offensive intermediary then I pre-

fer that he stays in the same place instead of going to midfield”. We have been exploring
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this research topic in some preliminary works. We proposed a new formalism for reason-

ing with temporal conditional preferences [Ribeiro et al. 2017a] and used this formalism

to define the first version of the StreamPref query language which allows querying data

streams with temporal conditional preferences [Ribeiro et al. 2017b].

The current version of the StreamPref query language is able to select dominant

sequences. A sequence s is dominant if there is no other sequence better than s. However,

if a query returns few dominant sequences, this result could not be enough for the user.

The user may want to rank the sequences according to their preferences to get the best

k sequences in this rank (i.e., the top-k sequences). For instance, the same soccer coach

mentioned previously can be also interested in answering the following query: “Give me

the best four sequences of positioning according to my preferences”. Others interesting

practical applications for queries with temporal preferences are stock market, telecommu-

nications, web applications, sensor networks, among others. This paper presents a new

operator that incorporates the ability to select the top-k sequences according to temporal

conditional preferences in the StreamPref query language.

The main contributions of this paper can be summarized as follows: (1) We pro-

pose an extension of the StreamPref query language with a new operator that allows to

find top-k sequences according to temporal conditional preferences; (2) We present the

demonstration of the equivalence for the proposed operator and the existing operators;

(3) We propose an efficient algorithm to evaluate the new operator; (4) We describe the

results of an extensive set of experiments comparing two strategies used by our algorithm.

The remainder of this paper is organized as follows. Section 2 introduces the log-

ical formalism and the existing operators of the StreamPref language. Section 3 presents

our new proposed operator to extend the StreamPref language. Section 4 describes the

algorithm used to evaluate the proposed operator. Section 5 presents the experiments and

discusses the results. Section 6 discusses the main related research works. Finally, the

conclusion and the future work directions are presented in Section 7.

2. The StreamPref Language

This section presents the fundamental concepts regarding the preference model and the

operators of the StreamPref query language [Ribeiro et al. 2017a, Ribeiro et al. 2017b].

Section 2.1 describes the preference model and Section 2.2 presents the existing operators.

2.1. Temporal Conditional Preferences

Let R(A1, ..., Al) be a relational schema. A sequence s = 〈t1, ..., tn〉 over R is an ordered

set of tuples, such that ti ∈ Tup(R) for all i ∈ {1, ..., n} where Tup(R) = Dom(A1)×
... × Dom(Al) is the set of all tuples over R. The length of a sequence s is denoted by

|s|. A tuple in the position i of a sequence s is denoted by s[i] while the notation s[i].A
represents the attribute A in the position i of s. The set of all possible sequences over R
is denoted by Seq(R). The StreamPref formulas are based on propositions (Aθa), where

a ∈ Dom(A) and θ ∈ {<,≤,=, �=,≥, >} (see Definition 1). LetQ(A) be a proposition,
SQ(A) = {a ∈ Dom(A) | a |= Q(A)} denotes the set of values satisfying Q(A).

Definition 1 (StreamPref Formulas) The StreamPref formulas are defined as follows:
(1) true and false are StreamPref formulas; (2) If F is a proposition then F is a Stream-
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Pref formula; (3) If F and G are StreamPref formulas then (F∧G), (F∨G), (F sinceG),
¬F and ¬G are StreamPref formulas.

A StreamPref formula F is satisfied by a sequence s = 〈t1, ..., tn〉 at a position

i ∈ {1, ..., n}, denoted by (s, i) |= F , according to the following conditions: (1) (s, i) |=
Q(A) if and only if s[i].A |= Q(A); (2) (s, i) |= F ∧ G if and only if (s, i) |= F and

(s, i) |= G; (3) (s, i) |= F ∨ G if and only if (s, i) |= F or (s, i) |= G; (4) (s, i) |= ¬F
if and only if (s, i) �|= F ; (5) (s, i) |= (F since G) if and only if there exists j where

1 ≤ j < i and (s, j) |= G and (s, k) |= F for all k ∈ {j + 1, ..., i}. The true formula

is always satisfied and the false formula is never satisfied. The StreamPref also has the

following derived formulas:

Prev Q(A): Equivalent to (false since Q(A)), (s, i) |= Prev Q(A) if and only if

i > 1 and (s, i− 1) |= Q(A);

SomePrev Q(A): Equivalent to (true since Q(A)), (s, i) |= SomePrev Q(A) if

and only if there exists j such that 1 ≤ j < i and (s, j) |= Q(A);

AllPrev Q(A): Equivalent to ¬(SomePrev¬Q(A)), (s, i) |= AllPrev Q(A) if and

only if (s, j) |= Q(A) for all j ∈ {1, ..., i− 1};
First: Equivalent to ¬(Prev(true)), (s, i) |= First if and only if i = 1.

Definition 2 formalizes the temporal conditions used by Definition 3 (tcp-rules
and tcp-theories). Example 1 shows a practical application using these definitions.

Definition 2 (Temporal Conditions) A temporal condition is a formula F = F1∧...∧Fn,
where F1, ..., Fn are propositions or derived formulas. The temporal components of F ,
denoted by F←, are the conjunction of all derived formulas in F . The non-temporal
components of F , denoted by F •, is the conjunction of all propositions in F and not
present in F←. The notation Att(F ) represents the attributes appearing in F .

Definition 3 (TCP-Rules and TCP-Theories) Let R be a relational schema. A temporal
conditional preference rule, or tcp-rule, is an expression in the format ϕ : Cϕ → Q+

ϕ 

Q−ϕ [Wϕ], where: (1) The propositions Q+

ϕ and Q−ϕ , over the preference attribute Aϕ,
represent the preferred values and non-preferred values, respectively, such that SQ+

ϕ
∩

SQ−ϕ = {}; (2) Wϕ ⊂ R is the set of indifferent attributes such that Aϕ /∈ Wϕ; (3) Cϕ

is a temporal condition such that Att(C•ϕ) ∩ {Aϕ} ∩Wϕ = {}. A temporal conditional
preference theory, or tcp-theory, is a finite set of tcp-rules.

at
ta
ck

d
ir
ec

ti
o
n

defensive area

defensive intermediary

midfield

offensive intermediary

offensive area

Figure 1. Soccer field places

Example 1 Suppose a soccer coach who has access to an information system that
provides real-time data concerning field positioning of the players. The data is in
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the stream positioning(pid, place, ball, direction) composed of the
attributes pid (player identifier), place (field place), ball (ball possession) and
direction (moving direction). The field places are depicted in Figure 1. The at-
tribute ball has the value 1 when the team has the ball possession and 0 for oth-
erwise. For the attribute direction, the possible values are forward (fw), lateral
(la) and rewind (rw). The coach has the following preferences: [P1] Lateral moves
are better than forward moves, independent of ball possession; [P2] Forward moves
are better than rewind moves, independent of ball possession; [P3] If, in a given mo-
ment, the team does not have the ball possession and, immediately before this mo-
ment, the player was at offensive intermediary and, always before this moment, the team
had the ball, then I prefer midfield place than offensive intermediary place; [P4] If,
in a given moment, the team has the ball possession and, immediately before this mo-
ment, the player was at midfield then I prefer offensive intermediary place than mid-
field place; These preferences can be expressed using the tcp-theory Φ composed of the
following tcp-rules: ϕ1 : → (direction = la) 
 (direction = fw)[ball];
ϕ2 : → (direction = fw) 
 (direction = rw)[ball]; ϕ3 : (ball =
0)∧Prev(place = oi)∧AllPrev(ball = 1) → (place = mf) 
 (place = oi);
ϕ4 : (ball = 1) ∧Prev(place = mf) → (place = oi) 
 (place = mf).

A sequence s is preferred to a sequence s′ (or s dominates s′) according to a ϕ,
denoted by s 
ϕ s′, if and only if there exists a position i such that: (1) All positions

before i must be identical in both sequences, s[j] = s′[j] for all j ∈ {1, ..., i− 1}; (2) The
position i of s and s′ must satisfy the rule condition Cϕ, (s, i) |= Cϕ and (s′, i) |= Cϕ;

(3) The position i of s has a preferred value and the position i of s′ has a non-preferred

value, s[i].Aϕ |= Q+
ϕ and s′[i].Aϕ |= Q−ϕ ; (4) Excluding the preference attribute Aϕ and

the indifferent attributes of Wϕ, all attributes of position i must have identical values in

both sequences (ceteris paribus semantic), s[i].A′ = s′[i].A′ for all A′ /∈ ({Aϕ} ∪ Wϕ).
Example 2 presents a possible comparison of sequences.

Example 2 Considering the sequences s = 〈(oi, 1, la), (oi, 1, fw), (oi, 0, fw)〉 and
s′ = 〈(oi, 1, la), (oi, 1, fw), (mf, 0, fw)〉 and the tcp-theory Φ of Example 1. It is
possible to say that s 
ϕ3 s′ since: (1) s[1] = s′[1] and s[2] = s′[2]; (2) (s, 2) |=
(ball = 0) ∧ Prev(place = oi) ∧ AllPrev(ball = 1) and (s′, 2) |= (ball =
0) ∧ Prev(place = oi) ∧ AllPrev(ball = 1); (3) s[3].place = mf (preferred
value), s′[3].place = oi (non preferred value); (4) s[3].ball = s′[3].ball and
s[3].direction = s′[3].direction (ceteris paribus semantic).

The notation 
Φ represents the transitive closure of
⋃

ϕ∈Φ 
ϕ. Let Φ be a

tcp-theory over a relational schema Seq(R). A sequence s ∈ Seq(R) is preferred

to s′ ∈ Seq(R) according to Φ, denoted by s 
Φ s′, if there exists the sequences

s1, ..., sm+1 ∈ Seq(R) and the tcp-rules ϕ1, ..., ϕm ∈ Φ such that s1 
ϕ1 ... 
ϕm sm+1,

where s = s1 and s′ = sm+1. When two sequences cannot be compared, they are called

incomparable. For instance, consider the sequences s and s′ of Example 2 and the se-

quence s′′ = 〈(oi, 1, la), (oi, 1, fw), (mf, 1, la)〉. We have the comparisons s 
ϕ3 s′ and
s′ 
ϕ1 s′′. So, by transitivity, s 
Φ s′′. We must also consider consistency issues when

dealing with order induced by rules to avoid inferences such as “a sequence is preferred

to itself”. Please, see [Ribeiro et al. 2017a] for more details about consistency issues.
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2.2. StreamPref Operators

The first step in the evaluation of a continuous tcp-query is the extraction of sequences us-

ing SEQ operator. This task is performed by the operation SEQX,n,d(S), where X is the

set of identifier attributes, n is the temporal range, d is the slide interval and S is the input

data stream. The parameters n and d are used to delimit a portion of the data stream anal-

ogously to the selection performed by the sliding window operators [Arasu et al. 2016].

The parameter X is a key used to group the tuples with the same identifier in a sequence.

Example 3 demonstrates the use of the SEQ operator.

Example 3 Consider the stream positioning (pid, place, ball,
direction) of Figure 2(a) and the preferences of Example 1. Now, suppose that a
coach submits the following query to the information system: “[Q1] At every instant, give
me the sequences of positioning that best fit my preferences over the last 3 seconds”. The
extraction of sequences is performed by the operation SEQ{pid},3,1(positioning).
Figure 2(b) shows, instant by instant, the result of this operation. As the user wants to
consider just the last three seconds, from instant 3, the old tuples are removed from the
sequences.

Instant pid place ball direction

0 1 mf 1 la

0 2 oi 1 la

0 3 mf 1 fw

0 4 oi 1 la

0 5 oi 1 la

1 1 oi 0 la

1 2 oi 0 la

1 3 mf 0 la

1 4 mf 0 la

1 5 oi 0 fw

2 1 oi 1 la

2 2 oi 1 rw

2 3 di 1 la

2 4 di 1 rw

2 5 oi 1 rw

3 1 oi 0 rw

3 2 oi 0 rw

3 3 mf 0 la

3 4 oi 0 rw

3 5 mf 0 rw

(a)

Instant 0

s1 = 〈(mf, 1, la)〉
s2 = 〈(oi, 1, la)〉
s3 = 〈(mf, 1, fw)〉
s4 = 〈(oi, 1, la)〉
s5 = 〈(oi, 1, la)〉
Instant 1

s1 = 〈(mf, 1, la), (oi, 0, la)〉
s2 = 〈(oi, 1, la), (oi, 0, la)〉
s3 = 〈(mf, 1, fw), (mf, 0, la)〉
s4 = 〈(oi, 1, la), (mf, 0, la)〉
s5 = 〈(oi, 1, la), (oi, 0, fw)〉
Instant 2

s1 = 〈(mf, 1, la), (oi, 0, la), (oi, 1, la)〉
s2 = 〈(oi, 1, la), (oi, 0, la), (oi, 1, rw)〉
s3 = 〈(mf, 1, fw), (mf, 0, la), (di, 1, la)〉
s4 = 〈(oi, 1, la), (mf, 0, la), (di, 1, rw)〉
s5 = 〈(oi, 1, la), (oi, 0, fw), (oi, 1, rw)〉
Instant 3

s1 = 〈��������(mf, 1, la), (oi, 0, la), (oi, 1, la), (oi, 0, rw)〉
s2 = 〈��������(oi, 1, la), (oi, 0, la), (oi, 1, rw), (oi, 0, rw)〉
s3 = 〈����������(mf, 1, fw), (mf, 0, la), (di, 1, la), (mf, 0, la)〉
s4 = 〈��������(oi, 1, la), (mf, 0, la), (di, 1, rw), (oi, 0, rw)〉
s5 = 〈��������(oi, 1, la), (oi, 0, fw), (oi, 1, rw), (mf, 0, rw)〉

(b)

Figure 2. (a) Stream positioning (b) Sequences extracted by SEQ operator.

Let Z be a set of sequences and Φ be a tcp-theory. The operation

BESTSEQΦ(Z) returns the dominant sequences in Z according to Φ. A sequence

s ∈ Z is dominant according to Φ, if �s′ ∈ Z such that s′ 
Φ s. Example 4 shows

how the BESTSEQ operator can be used to evaluate a query.

Example 4 Let Z be the extracted sequences from Example 3 at instant 3. We can se-
lect the best sequences according to the tcp-theory in Example 1 by using the opera-
tion BESTSEQΦ(SEQ{pid},3,1(positioning)). At instant 3, s1 
Φ s2, s1 
Φ s5,
s2 
Φ s5 and s3 
Φ s4. Thus, the result of query Q1 at instant 3 is {s1, s3}.
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3. The New Operator TOPKSEQ

It is possible to use the BESTSEQ operator to obtain the top-k sequences. However,

as we will see at the end of this section, the BESTSEQ operator is not suitable for this

task. Thus, in this paper, we propose the TOPKSEQ operator in order to select the

top-k sequences. The TOPKSEQ operator returns the top-k sequences of an input set

of sequences Z according to a tcp-theory Φ. The top-k sequences are the sequences of Z
with the lowest preference level (Definition 4)

Definition 4 (Preference level) Let Φ be a tcp-theory. Let Z be a set of sequences. The
preference level of a sequences s, denoted by level(s), is: (1) If �s′ ∈ Z such that s′ 
Φ s,
then level(s) = 0; (2) Otherwise, level(s) = max{level(s′) | s′ ∈ Z and s′ 
Φ s}+ 1.

Notice that the sequences with level zero are exactly those returned by the

BESTSEQ operator. The TOPKSEQ operator is especially useful when the result

of the BESTSEQ operator has few sequences. In this case, the TOPKSEQ operator

can complement the answer using sequences with greater levels (see Example 5).

Example 5 Consider again the Example 4. The query result has just two sequences. Now,
suppose that the coach has the following query: “[Q2] At every instant, give me the best
four sequences of positioning according to my preferences over the last 3 seconds”. This
query is evaluated by the operation TOPKSEQΦ,4(SEQ{pid},3,1(positioning)). At
instant 3, s1 
Φ s2, s1 
Φ s5, s2 
Φ s5 and s3 
Φ s4. So, the preference levels
are level(s1) = 0, level(s3) = 0, level(s2) = max{level(s1)} + 1 = 1, level(s4) =
max{level(s3)} + 1 = 1 and level(s5) = max{level(s1), level(s2)} + 1 = 2. Thus the
result of query Q2 at instant 3 is {s1, s3, s2, s4}.

The StreamPref language is an extension of the Continuous Query Language

(CQL). The StreamPref operators do not increase the expression power of the CQL

[Ribeiro et al. 2017b]. However, the equivalences are not trivial since the StremPref op-

erators is equivalent to complex operations using several CQL operators and intermediary

relations. So, these equivalences are not simple to be written by the user. Moreover, the

new operator has algorithms that are specially tailored to process queries more efficiently

than their CQL counterparts. The CQL equivalences for the SEQ and BESTSEQ oper-

ators were already demonstrated in our previous work [Ribeiro et al. 2017b]. Equations

(1a)-(1d) show how we can use the BESTSEQ operator to evaluate the TOPKSEQ
operator. As the BESTSEQ operator has a CQL equivalence, we can conclude that the

TOPKSEQ operator has also a CQL counterpart.

L0 ←BESTSEQΦ(Z) (1a)

L1 ←BESTSEQΦ(Z − L0) (1b)

L2 ←BESTSEQΦ(Z − L1 − L0) (1c)

...

Lm ←BESTSEQΦ(Z − Lm−1 − ...− L0) (1d)

The term m of Equation (1d) represents the maximum preference level imposed

by Φ. This number is equal to the number of tcp-rules of Φ in the worst case. Each set Li

contains the sequences with preference level i. The top-k sequences can be obtained by
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taking the sequences of these sets (following the preference level order) until k sequences

are reached. Despite the TOPKSEQ operator can be evaluated using the BESTSEQ oper-

ator, it is necessary to process all sequences at every instant to reach all preference levels

and sort the sequences by level. On the other hand, Section 4 presents algorithms which

stop the processing after the top-k sequences are obtained.

4. The Algorithm
As discussed in the previous section, the TOPKSEQ operator can be processed by

using the BESTSEQ operator a certain number of times. The algorithm GetTopkSeq
(see Algorithm 1) employs this idea to evaluates the TOPKSEQ operator. First, the

algorithm creates a list to keep the sequences ordered by their preference level. The first

iteration of the loop uses the GetBestSeq routine to select the sequences with level zero.

This routine basically removes the dominant sequences from Z. Every iteration of the

loop selects the sequences of the next level. This process stops when the list has at least

k sequences or Z is empty.

Algorithm 1: GetTopkSeq(Φ, k, Z)
1 L ← NewList();
2 while (|L| < k) and Z �= {} do
3 Z ′ ← GetBestSeq(Φ, Z);
4 L.append(Z ′);

5 return L.getFirst(k);

Algorithm 2: NaiveBestSeq(Φ, Z)
1 Z ′ ← Z;

2 foreach s, s′ ∈ Z ′ do
3 if s 
Φ s′ then Z ′ ← Z ′ − {s′} ;

4 else if s′ 
Φ s then Z ′ ← Z ′ − {s} ;

5 return Z ′;

The GetBestSeq routine is basically an algorithm to evaluate the BESTSEQ op-

erator. This algorithm can use a naive approach [Ribeiro et al. 2017a] or an incremental

approach [Ribeiro et al. 2017b]. The naive approach must compare all sequences at ev-

ery instant as addressed by the algorithm NaiveBestSeq (see Algorithm 2). On the other

hand, the incremental approach keeps an index structure updated using just the sequence

changes. This index structure is a sequence tree created using the sequences tuples.

(oi, 0, la)

(oi, 1, la)

(oi, 0, rw)

[s1]

(oi, 1, rw)

(oi, 0, rw)

[s2]

(oi, 0, fw)

(oi, 1, rw)

(mf, 0, rw)

[s5]

(mf, 0, la)

(di, 1, la)

(mf, 0, la)

[s3]

(di, 1, rw)

(oi, 0, rw)

[s4]

Figure 3. Sequence tree

Figure 3 shows the sequence tree built with the sequences shown in Example 3 at

instant 3. Only the changed sequences are reallocated in the tree. The tree structure is

useful to find the position where two sequences must be compared (the fork nodes). In

addition, a node keeps a preference hierarchy representing the children comparison. So,

for each tree node, we can obtain the dominant nodes (and, by consequence, the dominant

sequences) by using this preference hierarchy. Please see [Ribeiro et al. 2017b] for more

details about the index structure. The algorithm IncBestSeq (see Algorithm 3) obtains the

dominant sequences by using the sequence tree. The algorithm starts at the tree root and

uses recursive calls over the dominant children to reach all dominant sequences.
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Algorithm 3: IncBestSeq(nd)
1 Z ← nd.Z;

2 foreach dominant child of nd do
3 Z ← Z ∪ IncBestSeq(child);

4 return Z;

The naive algorithm must find the position to be compared. In the incremental

version, the sequence tree already points to the position to be compared. In addition,

the tree nodes use preference hierarchies to store many comparisons of previous instants.

Only changed sequences cause updates in the tree and preference hierarchy.

The complexity analysis of the algorithms takes into account the number of input

sequences (z), the length of the largest sequence (n) and the number of tcp-rules in Φ (m).

We assume a constant factor for the number of attributes. The algorithm NaiveBestSeq
must compare every pair of sequences. The comparison start by looking for the first

different position in the sequences. In the worst case, this position is the last one (n).
Next, for the dominance test, the algorithm uses a deep first search strategy to find a

chain of sequences and rules. The search tree of this strategy has height and node degree

equal to m in the worst case. Thus, the complexity of the algorithm NaiveBestSeq is

O(z2 × (n+mm)) where the factor mm is the cost of the dominance test.

The incremental strategy to obtain the dominant sequences must update the se-

quence tree. In the worst case scenario, the degree of nodes is O(z) and the tree depth is

O(n). We also have to consider the cost to deal with the preference hierarchy. Our pref-

erence hierarchy uses the partition strategy described in [Ribeiro et al. 2016]. The update

cost of this hierarchy is m4. Thus, the complexity of IncBestSeq is O(zn × m4) since

every sequence can cause the update of n nodes.

The cost of the algorithm GetTopkSeq is related to the complexity and number of

calls to the routine GetBestSeq. This routine is calledO(m) times in the worst case. Thus,

the complexity of the algorithm GetTopkSeq is the cost of this routine multiplied bym. In

data stream scenarios, the incremental algorithms usually are faster than naive algorithms.

The experimental results of the next section show this tendency in the algorithms when

processing the TOPKSEQ operator.

5. Experimental Results
We conducted an extensive set of experiments to analyze the performance (runtime) and

the memory usage of the algorithms used to evaluate the TOPKSEQ operator. All

experiments were carried out on a machine with a 3.2 GHz twelve-core processor and 32

GB of main memory, running Linux. The algorithms were implemented in a Data Stream

Management System (DSMS) prototype using Python language1.

The same tool used in [Ribeiro et al. 2017b] was employed to generate the syn-

thetic datasets for our experiments2. This tool generates streams composed of integer

attributes. In addition, it allows evaluating several parameter settings. For each experi-

1http://streampref.github.io/
2http://streampref.github.io/streamprefgen/
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ment, we varied one parameter and fixed a default value for the others. We do not include

the CQL equivalence in our experiments because this equivalence was already discussed

in [Ribeiro et al. 2017b]. The experimental results described in [Ribeiro et al. 2017b]

showed higher runtime and greater memory usage for the CQL equivalence due to its

various intermediary operation and temporary relations.

Table 1. The parameters of the experiments: (a) Data generation; (b) Sequence
extraction; (c) Preferences.

(a)

Param. Variation

ATT 8, 10, 12, 14, 16
NSQ 8, 16, 24, 32, 40

(b)

Param. Variation

RAN 20, 40, 60, 80, 100
SLI 10, 20, 30, 40, 50

(c)

Param. Variation

RUL 8, 16, 24, 32, 40
LEV 1, 2, 3, 4, 5

Table 1 shows the variation of the parameters (with default values in bold). The

number of attributes (ATT) allows for the evaluation of the algorithm behavior accord-

ing to different data dimensionality. The number of sequences (NSQ) controls how the

number of tuples per instant (equal to NSQ× 0.75) affects the algorithms. The temporal

range (RAN) delimits the maximum length of the sequences and the slide interval (SLI)

is related to the number of deletions when the sliding window moves.

The number of rules (RUL) and the maximum preference level (LEV) are em-

ployed in the generation of the preferences. These parameters allow us to evaluate how

different preferences affect the algorithms. We used rules in the form ϕi : First ∧
Q(A3) → Q+(A2) 
 Q−(A2)[A4, A5] and ϕi+1 : PrevQ(A3) ∧ SomePrevQ(A4) ∧
AllPrevQ(A5) ∧ Q(A3) → Q+(A2) 
 Q−(A2)[A4, A5] having variations on proposi-

tions Q+(A2), Q
−(A2), Q(A3), Q(A4), Q(A5). The number of iterations is RAN plus

the maximum slide interval and the sequence identifier is the attribute A1. Moreover, we

executed experiments varying the number of top-k sequences (TOP). For this parameter,

we used the values 4, 8, 12, 16 and 20 (8 is the default value). Greater values for TOP

parameter causes more iterations in the loop of the GetTopkSeq algorithm.
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Figure 4. Experimental results for the parameters ATT, NSQ, RAN and SLI

Figure 4 shows the results obtained for the experiments with the parameters ATT,

NSQ, RAN and SLI. Analyzing these results we observe that the incremental algorithm

presented a better performance and a greater memory usage. This behavior is due to the

maintenance of the index structure which speeds up the processing but consumes more

memory. Considering the results of the experiments with the parameters NSQ and RAN,
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it is possible to see that for a greater number of sequences, the algorithm has to perform

more comparisons consuming more process time. Moreover, the memory usage of the in-

cremental algorithm increases to keep an index for more sequences. It is also important to

notice that the executions with bigger temporal range imply in longer sequences resulting

in higher runtime and memory usage.

Figure 5 presents the results of the experiments with the parameters RUL, LEV

and TOP. The results obtained are similar to the ones obtained for the other parameters.

Analyzing these results it is possible to see that the incremental algorithm showed a better

performance and a higher memory usage. Among these results, it is important to highlight

the results obtained with the variation in the number of rules (RUL). The naive algorithm

presented a poor efficiency when dealing with more rules as more comparisons are re-

quired. The incremental algorithm, however, is few affected due to its index structure as

addressed in Section 4.
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Figure 5. Experimental results for the parameters RUL, LEV and TOP

6. Related Work

The pioneering work on preference queries was the proposal of the skyline queries

[Börzsönyi et al. 2001]. This research work provided support for many related studies.

In [Chan et al. 2006], the authors introduced the concept of k-dominance. A tuple t k-

dominates a tuple t′ if t is better than t′ in at least k attributes. The research work described

in [Yiu and Mamoulis 2007] specified how to rank tuples using a dominance degree. The
dominance degree of tuple t is the number of tuples dominated by t. The CPrefSQL query

language proposed a new preference operator to compare tuples according to conditional

preferences [de Amo and Ribeiro 2009].

The first research works about continuous preference queries were proposed by

[Lin et al. 2005] and [Tao and Papadias 2006]. In [Lin et al. 2005] the authors explored

the n-of-N problem for skyline queries, where a query is evaluated over the n most recent

tuples, with n ≤ N . The work of [Tao and Papadias 2006] designed algorithms to incre-

mentally compute the preferred tuples over a sliding window with the most recent tuples.

The work of [Kontaki et al. 2012] proposed algorithms for the evaluation of continuous

preference queries over the most recent data, where each tuple has a timestamp and a va-

lidity interval. The evaluation of continuous preference queries using a graph-based index

was introduced by [Santoso and Chiu 2014]. This work also designed an algorithm that

outperforms the algorithms proposed in [Kontaki et al. 2012].
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The first research work concerning the evaluation of continuous queries with con-

ditional preferences (continuous cp-queries) were proposed by [de Amo and Bueno 2011,

Petit et al. 2012]. In [de Amo and Bueno 2011], the authors presented an incremental al-

gorithm based on ancestor lists for evaluating continuous cp-queries. The study described

in [Petit et al. 2012] uses a graph structure to perform the same task.

In the work of [de Amo and Giacometti 2007], the authors proposed the TPref

formalism to express temporal conditional preferences. The StreamPref formalism, pro-

posed in [Ribeiro et al. 2017a], is a refinement of the TPref formalism. The StreamPref is

more suitable for reasoning over data streams. In [Ribeiro et al. 2017b], the StreamPref

formalism was used to define the query language StreamPref. The StreamPref language

was originally composed of the operators SEQ and BESTSEQ. The queries using the

BESTSEQ operator are similar to skyline queries since both return the dominant ele-

ments according to the preferences. On the other hand, the queries with TOPKSEQ
operator are a kind of top-k dominant query. In this case, the sequences are ranked us-

ing the preference level. We also should mention the importance of the CQL language

[Arasu et al. 2006]. The CQL was not designed to work with preference queries, but it is

a solid and expressive SQL-based declarative language for general purpose queries over

data streams. In addition, the StreamPref query language is an extension of the CQL.

7. Conclusion

This paper presented the new operator TOPKSEQ for the StreamPref query language.

The TOPKSEQ uses the preference level imposed by temporal conditional prefer-

ences to find the top-k sequences. First, we revisited the existing operators SEQ and

BESTSEQ of the StreamPref. The SEQ operator extracts sequences from a data stream

and the BESTSEQ is used to select the dominant sequences according to temporal con-

ditional preferences. Considering that the BESTSEQ operator is not enough to obtain a

good result to the user in all situations, the TOPKSEQ can be used to complement the

results obtained using sequences with higher preference level.

We demonstrated the equivalence between the operators TOPKSEQ and

BESTSEQ. Moreover, we proposed an algorithm to evaluate the TOPKSEQ oper-

ator. This algorithm can use both the naive and the incremental strategies already pro-

posed for the BESTSEQ operator. The extensive set of experiments performed showed

a slightly greater memory usage for the incremental strategy recompensed by its superior

performance.

Our future research directions include the possibility to use new approaches to

rank the sequences beyond the preference level. We are also interested in exploring a

new preference formalism to compare sequences considering not only the first different

position but using a kind of distance based on preferences. Another future work is the

development of algorithms for preference mining. The discovered preferences can be

used in queries to monitor data streams.
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