
Workload-aware Parameter Selection and Performance
Prediction for In-memory Databases

Maria I. V. Lima1, Victor A. E. de Farias1,
Francisco D. B. S. Praciano1, Javam C. Machado1

1Laboratório de Sistemas e Bancos de Dados (LSBD)

Computer Science Dept – UFC – CEP 60440-900 – Fortaleza – CE – Brazil

{isabel.lima,victor.farias,daniel.praciano,javam.machado}@lsbd.ufc.br

Abstract. In-memory databases, just as hard drive ones, may offer hundreds
of customizable settings, making the task of system tuning overwhelming for a
database administrator. Even worse, the number of parameters continues to
grow over the years and they can affect performance in a not intuitive manner.
Models that capture their behavior can assist automatic tuning mechanisms to
obtain optimal performance. In this work, we propose a learning-based ap-
proach to select the most meaningful parameters and generate a performance
model based on both the workload and the database configurations. Experimen-
tal results confirm that our approach can create accurate performance models
using only a reduced set of selected parameters.

1. Introduction

For a long time, conventional disk resident databases were the dominant storage tech-

nology in the market. Over the years, however, the prices of physical memory have sig-

nificantly decreased as shown in figure 1, while its storage capacity has increased, thus

making it affordable to have whole databases fit in main memory. This is, in fact, the pre-

cise definition of an in-memory database: one where data resides permanently in memory

[Garcia-Molina and Salem 1992].

The growth of in-memory databases has made it possible to achieve great perfor-

mance gain, as they can reportedly be up to 50,000 times faster than disk-based systems

[Lake and Crowther 2013]. This is greatly due to the fact that, comparatively, there is

much less disk input/output (I/O) latency (which is known to be the biggest bottleneck

in databases) being introduced in these systems. At the same time, the design of an in-

memory system is very different as it has to be optimized to take advantage of memory

use. Such differences may include, for instance, the absence of buffer management, use

of alternative indexing structures such as T-Trees and Bw-Trees [Levandoski et al. 2013],

and use of latches instead of locks. This leads to the questions of whether and how these

architectural changes may reflect in the evaluation of system performance. What different

aspects may become a bottleneck for such systems?

One insightful aspect to be explored regarding performance is configuration. To-

day’s software systems are extensively customizable, often with hundreds of configura-

tion parameters. This is true for different kinds of systems and database systems are no

exception. Not only there are too many settings, but also they are constantly being re-

named, excluded and added, making it difficult for a database administrator (DBA) to

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

169

Figure 1. Cost of main memory with
time [McCallum 2017]

v5.0 v5.1 v5.5 v5.7 v5.8 v6.0 v6.5

60

80

100

120

140

160

Figure 2. Number of configuration
parameters in different versions of
MemSQL

keep track of them all. Figure 2 shows some of these statistics for the MemSQL database

system [Shamgunov 2014], where we can see how the number of configuration param-

eters grows over the released versions. On top of this, there are plenty of settings that

have dependencies between each other, or that do not affect performance in a linear or

intuitive way, or even that do not necessarily require management, i.e., they present little

or no direct impact to the applications. In short, the amount of configuration parameters

in modern databases makes tuning them a complex and time-consuming task.

This paper presents the results of an investigation of the impact of parameter con-

figuration in in-memory database systems. Its contributions are:

• Identifying the minimum set of most impacting parameters, thus reducing the

complexity of managing these systems;

• Analyzing the selected parameters individually and further discussing the under-

lying reasons for their level of importance in the context of in-memory databases;

• Providing a machine learning model for performance prediction based on the sub-

set of selected parameters that captures the non-linear behaviour of the configura-

tion parameters.

We model the performance of an in-memory database using two meta-parameters:

workload configuration and database configuration. Workload configuration comprises a

set of parameters that define a template for a workload, composed of a mix of transactions,

while database configuration is defined by a collection of internal database settings, often

referred to as “knobs”, provided by a manufacturer. The combination of these two meta-

parameters, as it will be shown in experiments, is sufficient to provide a solid indicator of

performance, whichever metric is being used to evaluate it.

2. Related Work
Several works have addressed the question of how to analyze the influence of workload

and configuration parameters on the overall database performance. One way to do this

is to employ statistical models so that it is possible to understand the impact of both

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

170

the configuration and the workload, thus enabling a more sophisticated analysis that can

predict performance.

Ganapathi et al. (2009) proposed an approach to build a model that is capable of

predicting the performance metrics accurately. To do so, the authors employ a variety

of statistical machine learning techniques. In especial, they develop a model using a

modified version of Kernel Canonical Correlation Analysis (KCCA). The evaluation of

this model claims that it is able to predict the performance metrics in an accurate way,

but it suffers from a few limitations. The main one is that the model aims to predict the

performance metrics of specific queries only.

On the opposite and complementary way to the work mentioned above, Mozafari

et al. (2013) explored two kinds of models, denominated black-box and white-box, that

are able to predict the performance metrics. The black-box models make minimal as-

sumptions about the context where they will be applied, whereas the white-box models

make several assumptions. For the the black-box models, the authors present several ma-

chine learning regression techniques that can be used, such as KCCA and Decision Trees.

In the context of white-box models, they analyze MySQL features (e.g., 2-phase locking

algorithm, buffer replacement policies, etc.) to build an accurate cost-based model for

the database. The results demonstrated that both of these models are able to predict the

maximum throughput with relative errors within 0 − 25% for a OLTP workload. It is

worthy to note that none of the proposed models take into account the current settings

of the database, i.e., they are solely based on SQL query logs and OS statistics that was

previously collected.

Another approach is to combine different machine learning models in order to

perform a feature selection before the performance analysis, because it is often hard to

deal with the very large number of configuration parameters available to be adjusted

in modern databases. Furthermore, evidence suggests that not all of the available set-

tings, often in the order of hundreds, necessarily need to be tuned for a good performance

[Xu et al. 2015]. A number of recent works have used this approach to develop tools and

frameworks for automatically optimizing database parameters.

In order to develop a tuning tool known as iTuned, Duan et al. (2009) has pro-

posed an approach that uses an intermediate step that is responsible for making a feature

selection in order to find the highest-impact parameters. To do that, the authors employ

the Statistical Approach for Ranking Database Parameters (SARD) [Debnath et al. 2008]

combined with another technique denominated Adaptive Sampling. This approach is able

to select the most important parameters, but one of its limitations is that it does not con-

sider the database parameters during the feature selection process.

Likewise to the above paper, OtterTune [Aken et al. 2017] is another tool that

applies feature selection as a part of a process that aims to suggests optimal configurations

based on previously seen workloads and collected metrics using clusterization techniques.

To do so, the authors used Factor Analysis (FA) and k-means in order to select and cluster

the most important metrics. Moreover, the Lasso regression method [Tibshirani 1996] is

employed to rank the knobs. Using this method, OtterTune effectively selects the proper

knobs, but its focus is on the recommendation of configurations rather than on prediction.

Objectively comparing our work with all of those cited above, we observe that

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

171

none of them involve using the values of internal database parameters in the construction

of the model to predict the performance indicators. Hence, the main differences from

them are that i) we focus on in-memory databases, employing one in our experiments and

discussing the results in light of its particularities and ii) this work aims to provide a model

in which the performance is based on both the database parameters and the workload.

A comparison between the main aspects of the different works discussed in this

section is shown in table 1.

Work Database
Type Model Input Prediction Feature

Selection

[Ganapathi et al. 2009] Disk-based Workload Yes No

[Mozafari et al. 2013] Disk-based Workload Yes No

[Duan et al. 2009] Disk-based Workload No Yes

[Aken et al. 2017] Disk-based Workload No Yes

This work In-memory Settings and workload Yes Yes

Table 1. Summary of related works

3. Our Approach

Our approach strives to select the minimum set of most impacting configuration parame-

ters of an in-memory database while creating performance models for estimating perfor-

mance metrics. We propose a data-driven machine learning-enabled strategy that employs

a wrapper feature selection technique, i.e., it uses supervised learning methods for assess-

ing the quality of subsets of configuration parameters and thus selecting the best subset.

Supervised learning is able to approximate functions by generalizing the behavior

of examples. It requires a dataset composed by samples of the independent input vari-

ables (database and workload configurations) and their corresponding dependent output

variable value (performance metric). Therefore, experiments are executed to generate a

performance dataset to feed the learning algorithm.

In order to facilitate the understanding of the proposed solution, we divide this

section in i) Dataset generation; ii) Feature selection and iii) Performance prediction.

Figure 3. Approach outline

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

172

3.1. Dataset generation

Performance is dependent on both workload and database configurations (as shown in

equation 1). Thus we generate a representative dataset that covers i) the domain of each

configuration parameter to learn their individual influence on the performance and ii) the

several combinations of variables values to expose dependencies between variables.

Performance = f(ConfigDatabase, ConfigWorkload) (1)

To create the performance dataset, we carry out experiments on a test environment

which is a copy of the production environment. In these experiments, we vary the database

and the workload configurations. The workload configuration (ConfigWorkload) is repre-

sented by the frequencies < f1, f2, . . . , ft > where t is the number of workload templates

and fi is the frequency of the i-th workload template. For instance, in the TPC-C bench-

mark [The Transaction Processing Council 2007] there are five workload templates, and

their combination generates different workload configurations.

The database configuration (ConfigDatabase) comprises a group of parameters

available to be adjusted by the database manufacturer. Some of these can only be set

during the database creation, while others can be modified with every connection. Such

details are particular to each manufacturer, with different database systems offering dif-

ferent sets of configuration parameters, but most of them share a great number of common

parameters, even if they are not labeled the same. It is represented by < p1, p2, ..., pk >,

where k is the number of configuration parameters and pi is the value of the i-th configu-

ration parameter. Note that these values can be either continuous, discrete or categorical.

Thus, we execute 3,000 experiments, where each one of them corresponds to one

entry in the dataset. In each experiment, random values are generated for each workload

template and each database configuration parameter within their own domains, in order

to produce different combinations of settings. Each experiment runs for two minutes

where the first 20 seconds of warm-up and the last 20 seconds of cool-down are removed.

A set of predefined performance metrics, such as latency and throughput, are collected

during this process. This is represented by < m1,m2, . . . ,mj >, where j is the number

of metrics collected and mi is the value of the i-th performance metric. In the end, the

generated dataset has the following structure:

Workload templates Configuration parameters Performance metrics

1 < f1, f2, . . . , ft > < p1, p2, . . . , pk > < m1,m2, . . . ,mj >
...

n < f1, f2, . . . , ft > < p1, p2, . . . , pk > < m1,m2, . . . ,mj >

3.2. Feature selection

In this phase, we aim to eliminate the less meaningful database configuration parameters,

the ones that produce little or no impact in the performance. We rely on a feature selection

method that captures the most important variables based on a certain performance metric.

We employ Recursive Feature Elimination (RFE) [Guyon et al. 2002], which iter-

atively reduces the set of database parameters by wrapping a supervised learning method

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

173

to assess the quality of a subset of parameters. This supervised learning algorithm plays

two roles in this process: i) evaluate the quality of a set of parameters by assessing their

ability to predict the performance metric, as described in subsection 3.3, and ii) rank the

importance of the variables, using methods like linear regression, that assigns weights to

variables, or decision tree, that computes Gini coefficients for each variable.

This algorithm first considers the set of all features (parameters). In each round,

it assesses the quality of this set of parameters by training a supervised model and com-

puting its accuracy metric. Then, the trained model ranks the variables according to the

weights assigned to them. As greater weights have more influence on the model, the last

ranked parameter is removed and the model is re-trained using the remaining features in

the next round. This process continues repeatedly until it has no remaining parameters

left to test, as they have all been eliminated. The selected parameters are the ones in the

round that yielded the best value for the accuracy metric.

Next, we demonstrate how the dataset referenced in section 3.1 is used in this

phase. First, a performance metric mi is chosen from the dataset as the target value,

depending on the application requirements or the DBA’s preference. Then, the examples

(i.e. each line of the dataset) are used in the RFE algorithm to train a model using a

regressor as an estimator. The attributes of the examples are the workload templates and

the database configuration parameters, and the target value is the chosen metric. Each

round of RFE iteratively eliminates one of these attributes.

3.3. Performance prediction
The performance prediction phase constructs models that can estimate performance

metrics based on the values of the database and workload parameters. Note that

the performance metrics may have a non-linear relationship with database parameters

[Aken et al. 2017] and to its workload parameters [Mozafari et al. 2013]. Additionally,

two parameters can show dependency [Aken et al. 2017] to each other. Predictive models

should capture this behavior in order to deliver accurate estimates. This fact lead us to

choose non-linear methods instead of linear models.

Non-linear models also measure the quality of a subset of features. By training

a model with a given subset of variables, we can compare the prediction power of this

subset to the whole set of variables. If using subset is as accurate as the whole subset,

it means that the remaining variables do not account for the target value. Furthermore,

in our experiments, we show that models trained with a subset of variables can be more

accurate than using the whole set of variables.

As performance metrics, we use throughput and latency. Predicting these metrics

is a supervised learning problem and, specifically, it is a regression task since their values

are discrete and unbounded. In this work, we test several regression methods in order to

evaluate which of them is more accurate for our problem.

We evaluate the quality of a model in terms of accuracy metrics. We employ the

k-fold technique [Stone 1974] along with the mean absolute error (MAE) metric. k-fold

computes the accuracy while being robust to both under and overfitting. k-fold divides the

whole dataset equally in k folds. For each fold, it uses this fold as test dataset to compute

MAE and uses the remaining k − 1 folds as train dataset. At the end, we take the mean

value of MAE for each fold. This value is used to compare the accuracy between methods

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

174

and for evaluating subsets of parameters in the RFE algorithm. Additionally, choosing

the right parameters to address can help regression methods to improve accuracy.

The generated model is able to receive a certain database and workload configura-

tion as input and predict its performance, based on the previously seen data used to train

it. Using it will save time from directly executing a workload under a given configuration

to discover how long it takes to execute, for example.

4. Experimental Evaluation

In this section, we aim to evaluate our proposed approach through a series of experiments.

In particular, it is our intention to show that our strategy:

• chooses the best subset of features that directly impact on performance by employ-

ing RFE, where the accuracy of predictive models is used to assess the quality of

parameter subsets. The accuracy is measured using k-fold along with MAE;

• predicts performance metrics based solely on the workload and database configu-

rations;

• provides insights for understanding the underlying mechanisms of how the con-

figuration parameters changes the in-memory system behavior. We also provide

an analysis of the main aspects behind the parameters outputted by the feature

selection phase.

4.1. Experimental Setup

We relied on a commercial in-memory database that will be referred to as database A. All

tests were executed in a machine with 32GB of RAM and 4 cores running on Ubuntu

14.04.5 LTS. For generating workloads and collecting performance metrics, we used

TPC-C benchmark implemented in OLTP-Bench [Difallah et al. 2013]. While running

TPC-C, a scale factor of 120 (equivalent to a database of roughly 18GB) and a time

window of two minutes of benchmark execution were used. All implementations were

written in Python with intense use of the scikit − learn library [Pedregosa et al. 2011]

for machine learning algorithms.

4.2. Result Analysis

We tested the RFE algorithm using three different machine learning techniques: Gradient

Boosting Machine (GBM) [Friedman 2001], Random Forest (RF) [Breiman 2001] and

Decision Tree (DT) [Breiman et al. 1984]. In figure 4, the evolution of the applied RFE

algorithm along with the number of iterations, as features are eliminated, is shown for

each of the three different methods. This graphic shows that all methods eliminated the

right features at the beginning of the run since MAE raises only with less than about 12
features. The difference between them is the minimum MAE and the number of features

with minimum MAE.

Thus table 2 displays the minimum MAE, which is equivalent to the optimal point,

obtained in each method, along with the respective number of selected features. We note

that the Gradient Boosting Machine method outperformed Random Forest and Decision

Tree on both MAE and the number of selected features. It selected the smaller number of

features with the smaller MAE.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

175

Figure 4. RFE iterations: MAE vs. Number of Features

In addition, this information is complemented by tables 3 to 5. They show, for

each of the three methods, the name of the selected parameters (and their respective score)

for the RFE round that yielded the best MAE. Random Forest, for example, generated a

minimum MAE of 1919.7 and selected 11 parameters, which are listed in table 4 sorted

by decreasing order of importance. These scores are the weights assigned to each fea-

ture by training the estimator method (GBM, RF or DT). Many parameters, like Commit

Durability, Transaction Log File Size and Transaction Log Buffer Size, were selected by

all methods, showing consistency between them.

Gradient Boosting Random Forest Decision Tree
Min. MAE 1796.56 1919.7 2217.59

Number of Features 6 11 12

Table 2. Comparison of minimum MAE and number of selected features using
different algorithms

Parameter Score
Checkpoint Log Volume 0.164911

Transaction Log Buffer Size 0.147690

Transaction Log File Size 0.135332

Max. Commit Buffer Size 0.130672

Checkpoint Rate 0.128974

Commit Durability 0.119779

Table 3. Parameters selected by RFE using Gradient Boosting Machine

Next, we choose some of the selected configuration parameters shown in tables 3

to 5 to discuss about. The focus of this discussion is to better understand the importance

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

176

Parameter Score
Commit Durability 0.212208

Lock Level 0.149018

PL/SQL Memory Size 0.062042

SQL Query Timeout 0.053479

Transaction Log Buffer Size 0.053343

Lock Wait Time 0.052239

PL/SQL Conn. Mem. Limit 0.049722

Checkpoint Log Volume 0.048706

Transaction Log File Size 0.047432

Max. Commit Buffer Size 0.046462

Checkpoint Frequency 0.042661

Table 4. Parameters selected by
RFE using Random Forest

Parameter Score
Commit Durability 0.230500

Lock Level 0.156808

SQL Query Timeout 0.058409

PL/SQL Conn. Mem. Limit 0.053595

Checkpoint Rate 0.053550

Log Buffer Parallelism 0.048701

Transaction Log File Size 0.045762

Checkpoint Log Volume 0.041598

Checkpoint Frequency 0.035915

Transaction Log Buffer Size 0.034257

Log Purge 0.029058

Max. Commit Buffer Size 0.023990

Table 5. Parameters selected by
RFE using Decision Tree

of these aspects in the context of in-memory databases, bringing an insight to the reasons

behind their selection.

• Commit Durability: Whenever a transaction is committed, its log record may

or may not be immediately written to disk. Writing the transaction log to disk

right after a commit means that no committed transactions will be lost in case of

failure. However, this benefit comes at the expense of a lengthier execution due to

the added disk access time.

• Checkpoint Log Volume: Checkpoints occur with a certain frequency and, be-

tween two consecutive ones, the amount of data that can be stored in the log file

may be limited. If the log file is full before the next checkpoint happens, new data

will not be written to the log, resulting in its loss. Thus it is important to make

sure that the parameter that controls this aspect is reasonably set.

• Transaction Log File Size: Specifying a maximum file size for the transaction log

is likely to be a bottleneck-inducing concern when tuning a database. This aspect

may present an issue in the case of unknowingly having the log file being set

too small, causing constant checkpoint operations (which are costly and heavily

I/O-bound) every time the log file reaches its maximum size.

• Transaction Log Buffer size: Before being written to disk, data is generally

stored in buffers in main memory. For example, it is common to have transaction

commit and log buffers in database systems. Setting a buffer size too small may

cause the buffer to get full very quickly, thus forcing it to recurrently flush its

data to disk. Therefore, making sure that the buffers are large enough to avoid the

overhead of constant disk access is an important precaution.

• Max. Commit Buffer Size: Similar to what happens to Transaction Log Buffer

Size, limiting the size of the transaction commit buffer may cause constant disk

flushing. It is good practice to make sure that the commit buffer size is large

enough to avoid this happening too often.

• Checkpoint Rate: As checkpoint is an operation that makes use of disk access,

setting the rate at which they are written to disk too low may cause the checkpoint

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

177

process to take a lot longer than expected. This may as well affect other operations,

causing delays in backup and recovery times.

• Lock Level: This is a potentially critical parameter, as setting the lock to a not

suitable level may undermine the database performance. Setting a database-level

lock may significantly slow down the access of transactions. Generally speak-

ing, row-level locking or even table-level locking tend to be better solutions to

maximize concurrency control, but this is not always the case.

• Lock Wait Time: Deciding a suitable lock wait time acts as a double-edged

sword. On the one hand, having this parameter set too high may cause transac-

tions to wait an unnecessarily long time until they are able to obtain the lock. On

the other, setting it too low will cause a great number of transactions to be aborted

early, making it important to keep an eye for a balance regarding this parameter.

Ultimately, even though in-memory databases are much faster than hard disk ones

due to them relying on main memory access, disk access still counts as a considerable

part of the mechanics of these systems. It is possible to infer from the experiments that

concurrency control also plays an important role in their performance.

The use of inadequate levels and other locking-related issues should, for sure, be

carefully watched. But, in the end, disk I/O continues to be the utmost concern when

looking to speed up execution times, because even in-memory databases still need some

sort of persistence due to main memory’s volatility. Writing and reading log files and

making periodic system checkpoints are common database maintenance operations that

heavily depend on I/O and inevitably introduce undesirable latency.

We note that, depending on the database used for the experiments and the con-

figuration parameters provided, or on the generated dataset used to perform the feature

selection, the results could differ accordingly. However, this approach is generic and can

be applied to databases of any kind (both in-memory and disk-based). Also, it is relatively

cheap to build the performance model. Once the dataset is generated (which is the most

time-consuming phase), training the model can be done rather quickly.

Lastly, we assess the reduction power of feature selection. Considering that the

number of original parameters in the experiments was 29, our approach achieved a reduc-

tion of 58.62% for DT, 62.06% for RF and 79.3% for GBM in the number of parameters.

5. Conclusion and Future Work
In this work, we have addressed the problem of building a performance model that takes

into account both workload and database configurations. We show that it is possible

to, under a given workload, reduce a potentially large set of database parameters to a

smaller subset that impacts the most a chosen performance indicator. This allows database

administrators to save time during the process of system tuning.

In specific, our experiments show that the use of RFE with Gradient Boosting

Machine yielded the best results for the feature selection. It presented the smallest error

between the three tested methods, resulting in a subset of only 6 parameters, which is a

reduction of dozens of parameters.

We also analyze some of the most performance-impacting aspects regarding in-

memory databases pointed out by our experiments. Upon the presented results, we con-

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

178

clude on how disk access still plays a great part in the performance of these systems,

accounting for multiple possible bottleneck situations. Therefore, we highlight the im-

portance of understanding configuration parameters and properly tuning them.

To add more supporting evidence to this work, a future extension is carry-

ing out similar experiments to those presented here, but using a variety of differ-

ent benchmarks (e.g. YCSB, TPC-H, etc.) and in-memory databases (e.g. VoltDB

[Stonebraker and Weisberg 2013] or Peloton [Pavlo et al. 2017]).

Another possible future contribution is using active learning to build a precise

database performance model more quickly. Instead of randomly choosing workload and

database configurations in an attempt to cover the extensive search space, active learning

would suggest which is the next best data point (configuration) to be labeled, thus saving

time from labeling less meaningful cases.

Lastly, we plan to extend our work to automatically tune the parameters to opti-

mize system’s performance. Black-box optimization methods may be suited for this case

since we do not possess the closed form of the performance function.

Acknowledgments
This research was partially funded by CAPES (grants #1697978 and #1782887) and

LSBD/UFC.

References
Aken, D. V., Pavlo, A., Gordon, G. J., and Zhang, B. (2017). Automatic Database Man-

agement System Tuning Through Large-scale Machine Learning. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 1009–1024.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth.

Debnath, B. K., Lilja, D. J., and Mokbel, M. F. (2008). SARD: A statistical approach for

ranking database tuning parameters. In Proceedings of the 24th International Confer-
ence on Data Engineering Workshops, ICDE 2008, April 7-12, 2008, Cancún, México,

pages 11–18.

Difallah, D. E., Pavlo, A., Curino, C., and Cudré-Mauroux, P. (2013). OLTP-Bench: An

Extensible Testbed for Benchmarking Relational Databases. PVLDB, 7(4):277–288.

Duan, S., Thummala, V., and Babu, S. (2009). Tuning Database Configuration Parameters

with iTuned. PVLDB, 2(1):1246–1257.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232.

Ganapathi, A., Kuno, H. A., Dayal, U., Wiener, J. L., Fox, A., Jordan, M. I., and Patter-

son, D. A. (2009). Predicting Multiple Metrics for Queries: Better Decisions Enabled

by Machine Learning. In Proceedings of the 25th International Conference on Data
Engineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, pages 592–

603.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

179

Garcia-Molina, H. and Salem, K. (1992). Main Memory Database Systems: An

Overview. IEEE Trans. Knowl. Data Eng., 4(6):509–516.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. Machine Learning, 46(1-3):389–422.

Lake, P. and Crowther, P. (2013). In-memory databases. In Concise Guide to Databases,

pages 183–197. Springer.

Levandoski, J. J., Lomet, D. B., and Sengupta, S. (2013). The Bw-Tree: A B-tree for new

hardware platforms. In 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 302–313.

McCallum, J. C. (2017). Memory prices (1957-2017). https://jcmit.net/
memoryprice.htm. Accessed: 2018-03-05.

Mozafari, B., Curino, C., Jindal, A., and Madden, S. (2013). Performance and resource

modeling in highly-concurrent OLTP workloads. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 301–312.

Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon, P., Mowry, T. C., Per-

ron, M., Quah, I., Santurkar, S., Tomasic, A., Toor, S., Aken, D. V., Wang, Z., Wu, Y.,

Xian, R., and Zhang, T. (2017). Self-Driving Database Management Systems. In CIDR
2017, 8th Biennial Conference on Innovative Data Systems Research, Chaminade, CA,
USA, January 8-11, 2017, Online Proceedings.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research, 12:2825–2830.

Shamgunov, N. (2014). The MemSQL In-Memory Database System. In Proceedings
of the 2nd International Workshop on In Memory Data Management and Analytics,
IMDM 2014, Hangzhou, China, September 1, 2014.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Jour-
nal of the royal statistical society. Series B (Methodological), pages 111–147.

Stonebraker, M. and Weisberg, A. (2013). The VoltDB Main Memory DBMS. IEEE Data
Eng. Bull., 36(2):21–27.

The Transaction Processing Council (2007). TPC-C Benchmark (Revision

5.11). http://www.tpc.org/TPC_Documents_Current_Versions/
pdf/tpc-c_v5.11.0.pdf.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288.

Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., and Talwadker, R. (2015). Hey, you have

given me too many knobs!: understanding and dealing with over-designed configura-

tion in system software. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015, pages 307–319.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

180

