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Abstract. Whenever two (or more) access methods are alternatives for the ex-
ecution of a query, how to choose which one is the best for the task? Such a
decision is made by the DBMS optimizer module, which models the query costs
according to the distribution of the data space. Cost modeling of similarity
searches, however, requires the representation of distances’ rather than data
distribution. In this paper, we propose the Stockpile model for cost estimation of
similarity queries on metric trees by using pivot-based distance histograms that
represent the local densities around the query elements. By combining the lo-
cal densities to the probability of traversing the tree nodes, Stockpile provides a
fair estimation of both disk accesses (I/O costs) and distance calculations (CPU
costs). We compared Stockpile and two literature models regarding similarity
queries in real-world data sources and our model was up to 85% more precise
than the competitors.

1. Introduction

Similarity searching is a foundational paradigm for many computer applications,
such as content-based retrieval, classification, clustering, and data visualization
[Zezula et al. 2006]. In practice, two of the most requested similarity operations are the
range and £-NN searches. An example of range query is (Q1) “List the bottles in the
wine cellar whose combination of fixed and volatile acidities differs at most 4 mg/L to
this Italian wine”, while a k-NN query example is (Q2) “Find the 3 closest cabs to this
restaurant”. Range and k-NN queries can be modeled upon a metric space, where the ele-
ments (bottles and cabs, in the examples) are represented as points and the (dis)similarity
between each pair of points is evaluated by a distance function.

Formally, a metric space is a pair M = (S,¢), where S is the domain of the
points and § is a metric that complies with the properties of symmetry, non-negativity,
and triangular inequality. Accordingly, given a data source S C S, a query element
s, € S and a threshold ¢ € R, a range query Rq retrieves every element in S within the
closed ball centered at s, with radius £ such that Rq(S, s,,&) = {s; € S| (s4,5,) <&
On the other hand, a k-NN query returns a quantity k£ € N of elements whose distance to
the query element s, are the smallest. In an equivalent way, a k-NN query can be seen as
a variation of the range query, i.e., a range search with a set radius £ such that |Rq| = k
[Tasan and Ozsoyoglu 2004].

Several indexing schemes in the form of metric access methods have been pro-
posed to speed up similarity searching [Loko¢ 2010]. Particularly, tree-based methods
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stand out as the most suitable strategies for the indexing of very large data sources as they
organize the search space into a hierarchical and balanced fashion. Remarkable tree-based
structures include the M-Tree [Ciaccia et al. 1997] and its variations, such as Slim-Tree
[Traina Jr. et al. 2002] and PM-Tree [Skopal et al. 2004]. Although tree-based indexes
focus on minimizing both distance calculations (through the clustering of the elements)
and disk accesses (by using database paging principles), their performances differ de-
pending on the query. Therefore, given a similarity query over a data source indexed by
two or more access methods, a database query optimizer must decide which method will
be employed to execute the search. Such a query optimizer’ decision is made upon a cost
model for metric trees.

Thus far, most of the research effort has addressed the cost of similarity queries
regarding multidimensional spaces [Korn et al. 2001, Tao et al. 2004]. However, besides
inapplicable to non-dimensional metric spaces, many of these models are also unable to
handle cost estimation of £-NN queries. One of the challenging aspects of modeling £-NN
searches is no limiting radius is known beforehand. Accordingly, existing £-NN models
estimate a threshold as the query radius by using the pairwise distance distribution within
S. Such estimates follow a biased assumption: query elements are more likely posed
in high-density areas of the search space. For instance, the model for multidimensional
spaces in [Aly et al. 2015] assumes the k-NN radii follow a uniform distribution regarding
fixed intervals of k, while the models in [Ciaccia et al. 1998] and [Baioco et al. 2007]
assume k-NN radii follow a binomial and an exponential distribution, respectively. The
main drawback of such models is they disregard the ‘locality’ of each query, i.e. they rely
on a global and pairwise distance distribution without properly considering the density
around each query element.

In this study, we propose the Stockpile cost model for the estimation of similarity
searching costs in tree-based methods. Stockpile distinguishes itself from previous mod-
els as it estimates the cost of range queries according to their locality. The overall idea
of our approach is building a small set of pivot-based distance histograms in such a way
the densities around query elements are represented. Additionally, by using pivot-based
histograms to predict the £-NN radii, the local densities also are taken into account in
the cost estimation of k-NN searches. Stockpile histograms are built as splines on pivot-
based distance distributions according to a fixed number of buckets so that they easily
fit into main memory. Aiming at evaluating the accuracy of Stockpile, we compared our
approach to models in [Ciaccia et al. 1998] and [Baioco et al. 2007] regarding real-world
data sources and results showed Stockpile outperforms both competitors in terms of ac-
curacy. Accordingly, the main contributions of the paper are as follows:

e We introduce the Stockpile cost model, which estimates the cost of similarity
queries by using the locality of the query element,

e We experimented with our approach over real-world data sources and results in-
dicate Stockpile predictions are more accurate than those obtained by models in
[Ciaccia et al. 1998] and [Baioco et al. 2007].

The remainder of the paper is organized as follows. Section 2 summarizes related

work. Section 3 introduces Stockpile and its parameters. Sections 4, 5 and 6 show the
results of evaluations performed, while Section 7 concludes the paper.
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2. Background and Related Work
2.1. M-Tree and Slim-Tree

The M-Tree [Ciaccia et al. 1997] is a dynamic structure that hierarchically organizes the
elements within a metric space into closed balls, which are stored as nodes. Basically,
M-Tree uses two types of nodes (N), namely directory (N;) and leaf (N;) nodes. Di-
rectory nodes store a set of balls, while leaf nodes store the indexed elements them-
selves. Accordingly, a leaf node N; has the format N;(s;) = {(s;,d;;)}, where s; is a
data element such that s; € S C S, and d;; is the distance of s; to the rooting ele-
ment s; (parent) of the leaf node. A directory node N, has the format Ny(s;) = {(s;, &,
N(s;),d;j)}, where s; € S is the rooting element to the subtree N(s;), &; is the covering
radius of N(s;), and d;; is the distance of s; to rooting element s;. Precomputed distances
d;; are employed for the pruning of nodes/elements when a similarity query is executed
[Traina Jr. et al. 2002, Skopal et al. 2004]. The top directory node is the root node: it has
no parent and covers all indexed elements. Figure 1 shows two M-tree examples under
the L, distance.

Figure 1. Two M-Trees indexing the same elements. (a) M-Tree with a large over-
lap, and (b) M-Tree with a smaller overlap.

Distinct partitioning strategies can be applied for the construction of a valid M-
Tree such that the nodes may overlap, but all elements rooted by s; are within the cov-
ering radius of N(s;). Notice, however, the larger the “volume™' of the tree, the higher
the probability of occurring intersections among the nodes. For instance, although both
partitions of Figures 1(a) and (b) generate valid M-Trees, the tree in Figure 1(b) has a
smaller volume in comparison to the tree in Figure 1(a). The Slim-Tree method extends
the M-Tree by using improved partitioning algorithms that minimize the volume of the
tree through the evaluation of the overlaps in terms of a single measure, called fat-factor
[Traina Jr. et al. 2002]. Formally, the fat-factor of a given tree 7' regarding a data source
S is defined by Equation 1.

Ic —|S|-h 1

where /. denotes the sum of node accesses for the execution of point queries, i.e.
Rq(S, s;,0.0), for every s; € S, h is the height of the tree, and m is the total number

"'We quoted “volume” as there is no universal notion of volume in metric spaces. In practice, the number
of elements covered by the ball can be used as a suggestion for the volume.
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of nodes. The fat-factor expresses how “good” is the tree in a [0, 1] scale with regards
to the overlapping of elements at the same level. For instance, the fat-factor of the tree
in Figure 1(a) is 0.5, while the same measure for Figure 1(b) is ~ 0.04. In this sce-
nario, the tree in Figure 1(b) is more likely to avoid duplicate scans of the search space in
comparison to the tree in Figure 1(a) when executing a query.

2.2. Costs models for range and k-NV N queries

The relationship between elements is expressed by means of distances within metric trees.
Therefore, estimating a query cost involves the representation of the distance distribution
on S regarding a metric §. Basically, two types of distance distributions can be gath-
ered from a metric tree, namely the pairwise and the pivot-based distance distribution.
A pairwise distance distribution T is a single distribution that captures the frequency
of distances between every pair of elements in S. Therefore, a joint and normalized
pairwise distance distribution 7C can be seen as a probability function F(x) so that
F(x) = Prob{d(s;,s;) < x}, V s;,s; € S. The proposal in [Ciaccia et al. 1998] fol-
lows this rationale and assumes the cost of similarity queries can be estimated by a biased
query model, which implies that the distances between the query element and points in .S
are supposed to follow 7°. In this case, given a range query Rq(S, s,, &), the probability
of scanning a node rooted by s; with radius &; of a tree-based method 7" that indexes S is
expressed as Equation 2.

Prob{d(ss si) <E+ &~ F(E+E) 2)

The number of scanned tree nodes is estimated by the sum of the probability of accessing
each node as in Equation 3. Analogously, the number of comparisons between s, and the
element in 7' is the sum of the weighted probabilities of accessing each node, where the
weight is the number of entries in that node as in Equation 4.

nodes_scannedciaccia (1 8¢, € ZF &+ &) 3)

distances_calculatedcioecia(T, $q: &) ~ Z IN(s;)| - F(§+ &) 4)

The authors in [Ciaccia et al. 1998] also propose the use of F'(z) as part of a
binomial probability function so that an estimated radius £ for a £-NN query can be drawn
from F'(x). However, their approach has two major drawbacks, namely (i) the pairwise
distance distribution is expensive to obtain, and (ii) the cost of the estimations depends on
the number of nodes.

Aiming at avoiding such drawbacks, the study in [Baioco et al. 2007] proposes
a model that generalizes the use of the fractal dimension for the estimation of query
costs. The proposal extends the previous approach of [Korn et al. 2001] for metric
trees, where the joint pairwise distance distribution can be constructed following the
box-counting algorithm. The authors argue the fractal dimension is a good approx-
imation of the intrinsic dimension and can be calculated through the Distance-Plot
[Korn et al. 2001, Navarro et al. 2017]. Such a graphic plots 7¢ by using log x log axes
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and enables the approximation of the joint frequencies by a linear function. Thus, the
model assumes whenever 7 is a joint exponential distribution, then the slope of the fit-
ting line approximates the fractal dimension D of S. Under such conditions, the number
of scanned regions and distance calculations of a range query Rq(S, s,, &) are given by

Equations 5 and 6, respectively.
‘ : D
0 (D\/|S W +§> (5)

(”\/\S = +§>D ©6)

where R is the covering radius of the entire tree. The authors also claim the distance be-
tween the query element and its k™* neighbor can be calculated by using D, which enables
the transformation of k- NV into range queries. The model in [Baioco et al. 2007] con-
siders k-NN overestimated radii are preferable to underestimated ones, a subject deeply
discussed in [Vieira et al. 2007]. Therefore, the model adds a controlled overestimation
based on the characteristics of the tree, i.e. the fat-factor of the index, and scales Equa-
tions 5 and 6 by the constant (1 + fat(7T)).

h
1
nodes_scannedpgioco(T qug) ~ RD Z S
i

h
1
distances_calculatedpgioeo(T, Sq,ﬁ) ~ RD Z 1S

Other models also rely on a single and biased representation of the pairwise dis-
tance distribution. For instance, the study in [Tao et al. 2004] extends the binomial ap-
proach in [Ciaccia et al. 1998] for £-NN cost estimation in low dimensional spaces, while
the proposal in [Lu et al. 2014] estimates the query costs by combining S to other do-
mains. Recently, the study in [Aly et al. 2015] introduced the Staircase model for k-NN
queries in multidimensional spaces. The authors argue the cost of such queries is stable,
i.e., the cost of executing a £-NN query with larger &k can be the same of executing a query
with a smaller k as the same nodes of the index are accessed and provided the incremental
k-NN searching procedure is employed [Hjaltason and Samet 2003]. The model assumes
a uniform distribution for fixed intervals of k, which results in a compact representation of
the indexed data. However, distance distributions hardly follow the uniform assumption
[Korn et al. 2001], which harm the usability of the model in tree-based methods.

Notice the biases of the reviewed models are mainly related to the adop-
tion of a single representation of the pairwise distance distribution. The study in
[Tasan and Ozsoyoglu 2004] comes up with a suggestion to avoiding such a bias in the
task of predicting k-NN radii. Basically, the authors propose the gathering of distribution
T in the form of a histogram H(x), H(xz) ~ 7T so that no inference on the type of the
distance distribution itself is required. Therefore, the radius ¢’ of a k-NN query can be
straightforwardly estimated by Equation 7.

0£ H(z)d(z) =k (7)

Moreover, the authors show the unique representation of the pairwise distri-

bution can be replaced by pivot-based distance distributions. Such an observation is
similar to the “Homogeneity of Viewpoints” property in [Ciaccia et al. 1998], but in
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[Tasan and Ozsoyoglu 2004] the authors suggest keeping the pivot-based distributions in-
stead of replacing them by the pairwise distribution. Formally, a pivot-based distribution
7T, on S for a pivot p € P C S follows the Definition 2.1.

Definition 2.1 (Pivot-based distance distribution — 7,) Given a data source S, a met-
ric 9, and a pivot p € P, T, captures the distance from each s, € S to p. Dis-
tance value set V, contains the distinct and sorted values of (s;, p), i.e, V, =
{v,() + 1 < j < my, my, < |S|}, where v,(m,) is the largest distance be-
tween any s; to p. Frequency f,(j) is the number of elements of S whose distance
3(si, p) = vp(j). The pairs {{v,(7), f»(J)), Y vp(j) € V,} constitute T, i.e. T, =
Hop(1), fo(1)), - o, (vp(my), fo(my))}. T," is the extension of T, to the entire domain of
distances by setting 0 as the frequency for any v, € Ry \ V,.

Equally spaced Equi-Width histograms can be employed for the approxima-
tion of 7, such that H,(z) ~ 7T,. More sophisticated histograms enable the
bounding of the approximation error as in V-Optimal [loannidis 2003], Curve-Fitting
[Konig and Weikum 2002], or Compact-Distance Histograms [Bedo et al. 2015]. Partic-
ularly, a Compact-Distance Histogram (CDH) can be seen as a continuous piecewise lin-
ear function whose squared error to 7, is minimal so that optimal CDHs are obtained
by using the squared error as the optimization target in the Bellman-Ford algorithm
[loannidis 2003]. Therefore, given a k-NN query, a set of pivots P = S, and a set of
pivot-based distance histograms H,,(x), Equation 7 can be rewritten as Equation 8.

¢
k =Prob(p) - H,(x)dx (8)
0
where Prob (p) is a binary probability of p having the same distance distribution of
the query element of the k-/V/V search. Although theoretically removing many of the
biases from previous models, the estimations in [Tasan and Ozsoyoglu 2004] still have
two practical setbacks. First, both pairwise distance distribution and the set of pivot-
based distributions are needed, which entails an expensive construction cost. Last but not
least, it is not always possible to set P = S due to memory constraints.

In this paper, we follow the indications of both [Ciacciaetal. 1998] and
[Tasan and Ozsoyoglu 2004] for the creation of a cost model that takes into account the
locality of query elements and that comply with memory constraints.

3. The Stockpile cost model

In this section, we propose a cost model for predicting the number of disk accesses and
distance calculations for any range or k-NN query to be executed by a metric tree. The
model itself relies on two previously computed data structures, namely (i) a set of his-
tograms and (ii) meta-statistics, e.g. the fat-factor, about the metric tree. Such structures
are typically kept in main memory as a pile of resources (and hence the name Stockpile for
the model) to be evaluated on-the-fly according to user-posed queries, which requires the
model structures to be parameterized in terms of space constraints. Histograms are espe-
cially suitable for this scenario, as they enable the use of the constraint maximum number
of buckets (B) for the representation of the distributions. Stockpile employs Compact-
Distance Histograms (CDHs) for the approximation of pivot-based distance distribution
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as splines. Accordingly, we denote a CDH by f,(z) such that f,(x) ~ 7,. Figure 2(a)
shows an example of a 7,, while Figure 2(b) presents three possible CDHs by using
B = 4,5 and 6 buckets, respectively.

A x A
X X X ’
) X X X X X X > ,/l
U X 9] e
= X X = s
) X X [9)
- x =
= X £ || “ 04 buckets
- B | IR 05 buckets
-=== 06 buckets
Distance to the pivot p g Distance to the pivot p g
(a) (b)

Figure 2. Summarization of a distance distribution 7, regarding a piecewise linear
function f,(z). (a) Original pivot-based distance distribution, and (b) Compact-
Distance Histogram for a maximum of 4,5 and 6 buckets.

Notice the number of pivots must be limited according to available memory so that
constraints |P| and B are balanced somehow. Although an exhaustive search of trade-offs
can be used for finding such a balance, we argue that a representative number of pivots is
given by the intrinsic dimension, which is the rationale employed in several pivot-based
problems [Bustos et al. 2003]. Thus, our model uses |P| = D and obtains the value of
the constraint 13 according to the remaining memory space.

The major strength of Stockpile is it takes into account the “locality” of the query
element by assuming pivots closer to query points are more likely to resemble the distance
distributions of the query elements. The premise is especially fair whenever the density
of distances around the pivot is uniformly distributed according to f,(z). Therefore, we
assume the probability of the query element having the same distribution of a given pivot
is linear with regards to the distance between them. Formally, let s, be a query element
and P be a set of pivots, the probability Prob(p) of s, resembling the distribution f,(z)
is proportional to d(s,, p) so that Prob(p) = d(s,, p)/Ca, where d(s,, p) = C1 — (s, p).
Both €} and () are local constants that depend on the query element s,. Such constants
are calculated as Cy = Y 5, 0(s4,p) and Co = > 1 d(sq, p). The joint probability of
the query element resembling the pivots in P is given by Equation 9.

_ d(sqvpl) d(stpp?) L d(8q7p|P|) _ Cl<|7)’ - 1) _
ZProb(p) G + G +-F A CEDE I )

Accordingly, Stockpile models the probability of traversing a node as the linear
combination of the local information and the densities given by the CDHs.

3.1. Costs estimation of range queries

Suppose a range query Rq(S, s4, ) to be executed by a metric tree 7. All leaf nodes in T’
that intercept the query ball defined by (s,, &) must be evaluated because their elements
are potentially inside the query ball. Root nodes to these leaf nodes must be evaluated as
well. Therefore, the local probability of accessing a node N(s;) regarding a given pivot
p is modeled upon the covering radius of the node (¢;) and the range query radius (§) as
expressed by Equation 10.
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Prob(node is accessed) = Prob{d(s,,p) < & + &}
&i+E
Up(mp)
/ fp(x)dx
0

Naturally, the local probability is 1 whenever &; + £ > v,(m,,). The overall prob-
ability of accessing a node of 7" is given by each pivot p € P and the joining of Equations
9 and 10 into Equation 11. Similarly, Stockpile combines Equations 9 and 11 into Equa-
tion 12 for the estimation of distance calculations in range queries.

~Fy(§+¢) =

nodes_scanned(T), s,, & ZZProb F(£+¢&)) (11)

j peP

distances_calculated(T, s, &) ~ Z IN(s;)| <Z Prob(p §+5g))

peEP
12)
The intuition in Equation 12 is the number of distance calculations is proportional to the
probability of accessing each node, where |N(s;)| is either the number of entries (in the
case of directory nodes) or the number of elements (in the case of leaf nodes).

3.2. Cost estimation of k-NN queries

The cost estimation of k-NN queries requires an additional step in comparison to range
queries. Such an extra step is the “reduction” of the k-NN query to a range query by set-
ting the query threshold ¢ as the distance between the query element and its k* neighbor.
However, such a distance is unknown until the effective execution of the £-NN query and,
consequently, Stockpile must estimate the query radius before calculating the query costs.
Formally, given ak-NN (S, s,, k) query and a CDH related to pivot p, Stockpile estimates
the distance between s, and its k" neighbor as the threshold ¢, according to Equation 13.

5] &
fO’Up(mp) fp(l')dfﬂ 0

where the term (|S])/(/, vp (o) fp(x)dx) is the uniform distribution of the histogram ap-
proximation error among its buckets. Notice the solving of Equation 13 can be carried
out by a numeric method, such as Newton-Raphson, as the primitive function for f,(z) is
continuous and monotonically crescent. Accordingly, Stockpile combines the probability
of selecting the pivot in Equation 9 to Equation 13 so that k-NN (S, s,, k) is reduced to
a range query whose radius depends on P. The number of 7" scanned nodes regarding
a k-NN query is given by Equation 14, whereas the number of distance calculations is

estimated as in Equation 15.
EptE;
/ fp(x)dx
k 3

nodes_scanned(7, sq, k ZZProb —| + i) ) (14)
j peEP / fp(x)dx
0
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EptEs
; . // fp(x)dz
dist_calc(T, s k) ~ Z IN(s;)| - ZProb(p) : E + 55,,(mp)
j peEP / fp<$)dl‘
0

(15)

3.3. Optimistic vs. pessimistic estimates from Stockpile

The proposed estimates are particularly accurate for optimal metric trees, i.e. trees with
such a partitioning that generate nodes with no overlap. Accordingly, we call opti-
mistic estimates the Stockpile predictions of Equations 11, 12, 14 and 15. However,
indexing of real data sources typically results in a non-negligible number of overlaps be-
tween the tree nodes. Therefore, a slight overestimation in the number of disk accesses
and distance calculations may provide a better approximation for the query real costs
[Vieira et al. 2007]. In this scenario, Stockpile uses the fat-factor of 1" for the calculation
of the cost overestimation, which results in the scaling of Equations 11, 12, 14 and 15
by the (1 + fat(T)) constant. We call these Stockpile scaled predictions pessimistic esti-
mates. Optimistic/pessimistic estimates can be easily set for each metric tree 7" in a query
optimization environment of a database search engine.

4. Experiments

This section reports on a set of experiments performed over four real-world data sources
with low to medium dimensionality, as detailed in Table 1. Data sources CITIES?,
WINE?, LETTER®, and CANVAS* were queried by using well-known metrics of the
Minkowski family (L,) and indexed by Slim-Trees. Stockpile model was set to use [D|
pivots selected by the K-MEDOIDS strategy [Kaufman and Rousseeuw 1987], CDH’s
constrained by 128 buckets, and to provide pessimistic estimations for both range and
k-NN queries. By using a fixed budget of memory, we evaluate our model against two
baseline competitors, as follows:

1. The model in [Ciaccia et al. 1998], which was set to use a single Equi-Width his-
togram constrained by 256 buckets as the representation of the pairwise distance
distribution, and

2. The model in [Baioco et al. 2007], which was set to use the fractal dimension
drawn from the Distance-Plot graphs.

The compared methods were implemented under the same framework by using
the Arboretum library’, the g++ 4.9.2 compiler and the Ubuntu 14.04 OS running on an
Intel Core 17 2.67 GHz, 6 GB of RAM and HDD SATA III 7200 RPM. Additionally, the
accuracy of the evaluated models was normalized in terms of the absolute error to the real
cost of the searches in all experiments. The range and £-NN costs were collected follow-
ing the range search procedure in [Ciaccia et al. 1997] and the k£-NN search algorithm in
[Hjaltason and Samet 2003], respectively.

2 Available at: www . ibge.gov.br

3Available at: www.archive.ics.uci.edu/ml

4 Available at: www . commons .wikimedia.org/wiki/Category:Paintings
5 Available at: www .bitbucket.org/gbdi/arboretum
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Table 1. Data sources and parameters employed in the experiments.

| Source | Dim.

o | [D] | Card. | Description |

CITIES 2 Loy 2 5,507 | Geographical coordinates of 5507
Brazilian cities.

WINE 11 Ly 6 6,497 | UCI labeled data source of wine’s de-
scription.

LETTER | 16 | Lo | 9 | 20,000 | Statistical moments and edge counts
from all letters of the A—Z alphabet.

CANVAS | 16 Lo 6 3,879 | MPEG-7 Color Layout features from
Wikimedia paintings.

5. Comparison of range queries cost estimates

We employed the 10-folds cross validation approach (90% of data for indexing, 10% of
data for querying, cycling) for the evaluation of Stockpile and range queries. For each
data source, we took the maximum distance between a pair of elements (max) and de-
fine 6 thresholds (&) for the range queries. Basically, we set £ as a percentage of max
from 5% to 30% in steps of 5%. Figure 3 shows the comparison between evaluated mod-
els. Each point in Figure 3(a) represents the absolute difference between the predicted
and real number of scanned nodes when executing a range query. Stockpile achieved
up to 36%, 31%, 41% and 54% more accurate disk accesses’ predictions in comparison
to model in [Ciaccia et al. 1998] regarding data sources CITIES, WINE, LETTER and
CANVAS, respectively. Moreover, our approach reached up to 85%, 78%, 62% and 81%
better predictions than model in [Baioco et al. 2007] for the same data sources. Despite
the behaviors vary for increasing values of £, Stockpile was particularly dominant for
smaller ¢ values, which are the most meaningful ones for the majority of applications.
Similar results were obtained regarding the predicted number of distance calculations, as
shown in Figure 3(b). Again, Stockpile was up to 51%, 49%, 11% and 23% more accu-
rate than model in [Ciaccia et al. 1998] for data sources CITIES, WINE, LETTER and
CANVAS, respectively. Our model also was 64%, 73%, 25% and 69% better than model
in [Baioco et al. 2007] in the same scenario.

wo () CITIES (D) WINE_ . (c) LETTER . (d) CANVAS
IS 3 3 S
< < < <
3 5 S250 <
z z 2 2
% 10 15 20 25 30 *5 10 1520 25 30 °% 0 15 20 25 30
800 % of max 1.8 % of max 1.9 % of max _
v -
8 R S =) 7 S
3 3 3 _ 3
g S S, b $
5 S SO S
o 3 2 p iz
z a A a )
20003515 20 25 30 % 10 15 20 25 30'% 10 15 20 25 30 5 10 15 20 25 30
% of max % of max % of max % of max

’ Stockpile —%—  Ciaccia etal. 1998 --G-  Baioco et al. 2007 —o- ‘

Figure 3. Comparison of models for range queries from 5% to 30% of max.
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Figure 4. Comparison of models for k-NN queries from k£ = 5 to 30 in steps of 5.

6. Comparison of k-NN queries cost estimates

We also employed the 10-folds cross validation procedure for the evaluation of Stock-
pile accuracy in the task of predicting the cost of £-NN queries. In the experiment, we
vary the parameter k£ from 5 to 50 in steps of 5 and evaluated our approach on terms of
disk accesses and distance calculations. Figure 4(a) shows the Stockpile was up 46%,
43%, 19% and 54% more precise than model in [Ciaccia et al. 1998] for the estimation of
disk accesses of k-NN queries on data sources CITIES, WINE, LETTER and CANVAS,
respectively. Our model also was up to 73%, 69%, 85% and 83% better than model in
[Baioco et al. 2007] in the same evaluation. Moreover, Figure 4(b) shows Stockpile was
up to 13%, 30%, 13% and 12% more precise than the approach in [Ciaccia et al. 1998] in
the estimation of distance calculations of k-NN queries on data sources CITIES, WINE,
LETTER and CANVAS. Additionally, our approach was up to 20%, 80%, 26% and 45%
better than model in [Baioco et al. 2007] in the same scenario. We highlight Stockpile
was the most accurate in both range and k-NN queries. For instance, Stockpile not only
outperformed its competitors for smaller radii (k-NN for £ < 30), but it was also the best
choice for larger values of radii (range for & > 5% of max). Accordingly, we point out
the predictions drawn from pivot-based histograms are versatile enough to reach a good
precision in comparison to estimates drawn from single pairwise distance distributions.

7. Conclusions

Cost modeling of similarity searches requires the proper handling of distance distribu-
tions. In this study, we proposed the Stockpile cost model that estimates the cost of
similarity queries according to their locality by using pivot-based distance histograms.
We compared Stockpile to strategies in [Ciaccia et al. 1998] and [Baioco et al. 2007] in
the evaluation of similarity queries and the results showed our model was up to 54%
and 85% more accurate than these two competitors, respectively. Future works include
the evaluation of our model on other data sources and metric trees to verify the effects
of the Stockpile parameters (e.g. number of pivots and optimistic/pessimistic estimates)
regarding distinct ball-partitioning strategies.
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