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Abstract. Governments, corporations, startups, open data initiatives and other
organizations are increasingly considering RDF and SPARQL in a broad range
of information management scenarios. To reduce SPARQL querying times has
been the main issue for virtually all the recent RDF triplestores, yet SPARQL
caching techniques have not been broadly considered. In this paper we present
Rendezvous, a middleware that addresses workload-adaptive management of
large RDF graphs with a caching strategy for SPARQL query results. Our mid-
dleware provides a novel RDF data partitioning approach based on a fragmen-
tation strategy that maps RDF data into multiple NoSQL databases. The focus
of this paper is also on Rendezvous caching, which can reduce average response
time by up to an order of magnitude. Our experimental evaluation shows that the
approach is promising, outperforming a recent key/value-based caching base-
line.

1. Introduction
RDF is a standardized data model that - along with other technologies like OWL, RDFS,
and SPARQL - grounds the vision of Semantic Web as an initiative to foment interlinked
machine-processable information [Berners-Lee et al. 2001]. In the last decade, RDF has
been increasingly used in a wide range of data management scenarios (e.g., data in-
tegration, search-engine optimization, data representation, information extraction) as a
resource for better understanding of complex real-world entities and their relationship.
However, the current scale of data intensive applications (e.g., Smart Cities, Sensor Net-
works, eHealth, IoT) - all of them very attractive for the Semantic Web vision -, prevents
the efficient usage of existing RDF storage systems operating on a single node. In fact,
such a kind of system is becoming quite a performance bottleneck giving the actual gen-
eration of massive RDF data which goes beyond its processing capacities. It raises the
need for innovations in the frontier of Big Data and Semantic Web research fields.

This paper presents Rendezvous, a middleware that includes a novel RDF data par-
titioning approach with a fragmentation strategy that maps pieces of an RDF graph into
NoSQL databases with different data models. We consider a workload-aware partition-
ing approach and into account the ideas from Estocada [Bugiotti et al. 2015] to develop a
multiformat RDF storage based on its query workload to decide which NoSQL data model
is the best fit for each incoming RDF fragment. The main contributions of this work are:
(i) a mapping of RDF data to the columnar, document NoSQL and key/value data mod-
els [Sadalage and Fowler 2012]; (ii) a complex caching mechanism to store query results
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both in each server and remotely in a key/value database; (iii) a workload-aware parti-
tioner based on the current graph structure and, mainly, in the typical application work-
load; and, (iv) an experimental evaluation that compares our approach against a baseline
(ScalaRDF [Hu et al. 2016]) by considering Apache Cassandra, MongoDB and Redis.
Our high point is to process queries over large RDF graphs stored on multiple NoSQL
servers with zero or a subtle amount data joining cost. An experimental evaluation shows
that our middleware scales well, being able to process huge RDF datasets efficiently.

The rest of the paper is organized as follows. We give a brief background overview
and discuss related works in Section 2. In Section 3 we detail the Rendezvous approach.
We report our experimental evaluation in Section 4 and conclude the paper in Section 5.

2. Background and Related Work
The most important pillar of this work is the Semantic Web, as envisioned by Tim Berners-
Lee in 2001 [Berners-Lee et al. 2001]. The Semantic Web offers, as practical value, the
development of applications that can handle complex human queries based not only on
simple matches of raw data but also on its meaning. When Semantic Web was presented,
the exponential increase of information quantity could not be foreseen by most of the
specialists, but the need for data integration was already argued as one of its fundamental
purposes. Thus, in the recent years, the effort of developing the Semantic Web was har-
vested mainly in the form of well-established standards for expressing shared meaning,
defined by WWW Consortium (W3C), like Resource Description Framework (RDF) and
the Simple Protocol and RDF Query Language (SPARQL).

RDF is expressed by triples that define a relationship between two resources. RDF
triples can be modeled as graphs, where the resources, called subject and object, are
vertexes, and the relationship, called predicate, is a directed edge from the subject to the
object. For instance, we can define a predicate :owns between two resources: :person
(subject) and :car (object). SPARQL is a query language for searching and retrieving
RDF information. A query statement in SPARQL consists of triple patterns, conjunctions,
disjunctions, and optional patterns. The triple pattern defines the RDF subject, predicate
and object to be searched, conjunctions and disjunctions express the intended relations
between the searched resources, and the optional patterns combine two graph models.
Moreover, sets of triple patterns define Basic Graph Patterns (BGP), being each BGP a
function that transforms the RDF dataset into mapping sets. Finally, these mapping sets
are the answer to an SPARQL query in the form of RDF triples.

Traditionally, the SPARQL queries can be categorized into star, chain and com-
plex queries [Gallego et al. 2011]. These shapes depend on the location of variables in
triple patterns which can influence the query performance. The diameter of an SPARQL
BGP is defined as the largest connected sequence of triple patterns, disregarding the edge
direction. The star pattern has a diameter of one and is characterized by subject-subject
joins within triple patterns as the join variable is located on the subject. Chain patterns are
very common in graph querying (e.g., friend-of-a-friend), being formed by object-subject
joins, i.e., the join variable is in the subject location in one pattern and on object location
in the other one. Complex patterns are combinations of several star patterns connected by
typically a single pattern. Other query structures are compositions of these major patterns.

The use of RDF to describe semantic data has seen a dramatic increase over the
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last years, making RDF data almost ubiquitous (see LODStats1). As a consequence, re-
cent surveys have highlighted the joint usage of RDF and NoSQL by Big Data applica-
tions [Ma et al. 2016]. NoSQL databases, as defined, in a consensual way, by Sadalage
and Fowler [Sadalage and Fowler 2012], means database systems that use more than one
storage mechanism, including new types not compatible with the traditional relational
databases . NoSQL databases are usually organized into the following categories w.r.t.
their data models in key-value, document, columnar and graph.

In this paper, we focus on the document, columnar, key/value NoSQL data mod-
els. The document data model is suitable to store semistructured data in one of the for-
mats considered by current computational systems (e.g., XML and JSON). MongoDB is
the most popular NoSQL document database, being already tested for storing RDF as
JSON documents [Mulay and Kumar 2012]. The columnar data model aims at storing
data that do not respect a rigid schema but belong to the same domain of data, i.e., data
instances that usually hold a standard set of properties (columns), but may have a different
number of columns. Apache Cassandra is the most popular NoSQL columnar database,
and it is also used for RDF storage in the CumulusRDF approach [Ma et al. 2016]. Fi-
nally, the Key/value databases are also helping the RDF solutions to scale, for instance,
ScalaRDF [Hu et al. 2016] is a triple store that stands out for persisting data on the key/-
value database Redis as a distributed memory storage to speed up query performance.

There are many works proposed on polyglot NoSQL databases and scalable RDF
data management [Ma et al. 2016], denoting that these are very hot topics. Among poly-
glot NoSQL databases the Estocada [Bugiotti et al. 2015], stands out as an architecture
for handling highly heterogeneous datasets that provide a middleware capable of hosting
multiple data sets as a set of potentially overlapping fragments, distributing the various
fragments of each dataset across different stores, including SQL and NoSQL databases.
Rendezvous goes beyond Estocada by focusing the dataset type in the RDF format and
the storage exclusively in NoSQL storages. We also propose both a fragment expansion
and a partition scheme for avoiding joins between data coming from different NoSQL
nodes that can reduce the response time, especially in queries touching a large amount
of data. ScalaRDF [Hu et al. 2016] is a important representative of scalable RDF data
management, by presenting a distributed in-memory RDF triple store that uses Redis in
a fault-tolerant store and query mechanism. Rendezvous polyglot capabilities for data
storage - we use document, columnar and key/value databases -, along with the n-hop
fragmentation scheme and the workload-awareness and complex caching solution, makes
our approach more suitable to dynamic query workload and offers interactive querying
response time over large RDF graphs.

3. Rendezvous

Rendezvous is a middleware for partitioning and storing RDF data in multiple NoSQL
database nodes. Although its focus is on storing RDF triples, its inspiration comes from
Estocada (see Section 2), which argues that a mixed-model layer, relying on a set of
diverse and heterogeneous data stores, can provide performance advantages for the ap-
plications using this layer. Figure 1 presents an overview of Rendezvous architecture. A
RDF-based application issues storing or querying requests to Rendezvous, that is nor-

1http://stats.lod2.eu/
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Figure 1. Rendezvous Architecture

mally deployed into multiple dedicated physical node. Thus, one could integrate several
applications on top of Rendezvous using RDF as a common data model. Another idea
that we borrowed from Estocada is the development of a fragment-based storage which
is entirely transparent to the client applications. The data flow in Rendezvous is most of
the time in the format of fragments. As defined in the following, a fragment is essentially
a part of the RDF graph to be stored and retrieved into/from NoSQL databases. A RDF
Fragment is a set FRDFi = {tRDF} of triples whose content may overlap with other frag-
ment FRDFj , where tRDF is a RDF triple tRDF = (s, p, o) where tRDF .s is the subject,
tRDF .p is the predicate and tRDF .o is the object.

When an RDF-based Application issues a store request for a triple to the Frag-
menter/Mapper component, Rendezvous expands this triple to a fragment FRDFi and
maps FRDFi to the target NoSQL database(s). This process (see Section 3.1) is per-
formed by the Dataset Characterizer, the main component of our middleware. During a
triple storage, it decides on translating FRDFi to a columnar or document data (or both)
according to the usual query workload, and indexes it in the Indexer. Once FRDFi is cre-
ated, the Partitioner register this fragment into the Dictionary repository - designed as a
in-memory hashmap - and stores it in the NoSQL databases (see Section 3.1). When an
RDF-based Application issues a query request, the Query Evaluator component decom-
poses this query into star-shaped and chain-shaped subqueries and reports to the Dataset
Characterizer about these queries (see Section 3.2). In the following, the Query Evalua-
tor verifies, with the aid of the Dictionary, the partitions in which the triples for the query
are potentially located. Based on this information, the Query Processor translates the
SPARQL query to columnar and/or document database queries. Finally, again with the
aid of the Dictionary, the component Query Evaluator translates back the query results to
RDF triples and returns to the RDF-based Application.

The primary purpose of Rendezvous is to store large RDF graphs. In such scenario,
the number of RDF triples can easily surpass the performance capacity (e.g., disk, mem-
ory, CPU) of a single server. When it occurs, Rendezvous distributes the RDF fragments
among potentially many NoSQL nodes. Notice that a fragment is our smallest grain of
distribution, i.e., during the partitioning process we deal with fragments instead of triples.
In Rendezvous, as defined in the following, an RDF partition is a set of fragments stored
in the same physical NoSQL node, and a fragment can be replicated in multiple partitions.
A RDF Partition Pm of an RDF graph G, such that G ⊆ P1 ∪ P2 ∪ ...Pn, is a set of RDF
fragments Pm = {FRDFi}, being not required that Pm ∩ Pt = ∅, for m �= t. Nevertheless,
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Figure 2. Fragmentation process

a query can eventually access data in multiple partitions, forcing Rendezvous to join the
data from different NoSQL nodes. Since a join operation is very costly, we try to avoid
join processes by replicating fragments that are potentially part of a join. As defined in
the following, if the typical workload for a fragment spans more than one partition, our
partition scheme replicates the boundary fragments of the partition. Given SP = { P1, P2,
..., Pn} the set of RDF partitions, the Partition Boundary BPi

of a partition Pi ⊂ SP
is the set of RDF fragments BPi

= FbP1 ∪ FbP2 ... ∪ FbPn , where FbPk
⊂ Pk for any k.

Each FbPi
∈ BPi

has one or more RDF triples tiFPi
= (si, pi, oi) where oi = sj been sj

subject of any other triple tjFPj
of partition Pj where tjFPj

= (sj, pj, oj).

On RDF indexing, a traditional approach is to build indexes for the full set of
permutations of each triple component (subject, predicate, object). Although this method
has been designed to accelerate joins by some orders of magnitude, the overhead with
the large index space limits its scalability and makes it heavyweight. Hence, we decided
to develop a hashmap index with subject and object keys following the patterns S-PO
and O-PS [Weiss et al. 2008]. In Rendezvous, the component Indexer is responsible to
manage these indexes, being accessed in two situations: (i) during the fragment creation,
explained in the Section 3.1 and (ii) to process queries that inform only the object or the
subject, but not the predicate.

3.1. Storing: Fragmentation, Mapping and Partition
The data mapping is the most prominent Rendezvous task during a storing process. As
stated before, our proposal is based on RDF fragmentation, so we first define our fragmen-
tation strategy and the supported types of fragments. An RDF fragment is created when
a new RDF triple to be stored (called core triple) is expanded with all of its neighbors
according to a n-hop replication horizon. The parameter n is the number of predicates
from the core triple that our fragment expansion process considers. This parameter is
controlled by the Dataset Characterizer component, being defined as the 75th percentile
of the total number of joins of the typical workload over the core triple elements. Figure
2 (i) shows an RDF graph, Figure 2 (ii) represents two core triples and Figure 2 (iii and
iv) is the 1-hop fragment for both core triples.

The main reasoning for our fragmentation strategy in several RDF fragments is
to maximize the NoSQL query capability and to minimize the cost of joining data in
the Rendezvous node. As presented in Figure 2, if two core triples (F p10 C and C
p3 D) have to be stored in the RDF graph of Figure 2 (i), we invoke the component
Dataset Characterizer, responsible for keeping track of the typical query workload. It
manages two in-memory hashmaps: one for the star-shaped queries, where the key is a
subject or a object (for subject-subject and object-object joins, respectively - see Section
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2), and another for the chain-shaped queries, where the key is the predicate. The Dataset
Characterizer also decides the size of the fragment (n-hop) for the star-shaped case (n
is the longest chain among the queries in the hashmap), and for the chain-shaped case
(n is the size of the biggest query in the hashmap). In the Figure 2, the n-hop for star-
shaped fragments with F as the subject is 2, and for the predicates, p1, p2, and p3 is
also 2. If the subject of the new triple is defined in the star-shaped hashmap, the triple
is converted into a document fragment, or an existing document fragment is updated in
the NoSQL document database (Figure 2 (iii)). Otherwise, if the predicate of the new
triple is defined in the chain-shaped hashmap, we create and store a columnar fragment in
the columnar NoSQL database, or we update the subject and/or object of this triple in an
existing column family (Figure 2 (iv)).

The same fragment can be mapped to both document and columnar fragments if
the subject or object of the core triple of this fragment is in the star-shaped hashmap and
its predicate is in the chain-shaped at the same time. If an RDF fragment is translated
to a document fragment we have a mapping to a JSON document2, which is the standard
format for NoSQL document databases. If an RDF fragment is translated to a columnar
fragment, we have a mapping to a column family which is the typical logical structuring
for NoSQL column databases. The definition of these two types of a fragment, as well as
the mapping of RDF fragments to them, are given in the following.

Document Fragment is a tuple fdoc = (kd, A) where fdoc.kd is the JSON docu-
ment key and fdoc.A is a set of attributes (key-value pairs) fdoc.A = {(kα : v)}, being kα
the attribute key and v a value whose domain can be atomic, a list, a set, or a tuple. The
RDF-to-Document Fragment Mapping of FRDFi to fdoc proceeds as follows: (i) given
the core triple tcore ∈ FRDFi: fdoc.kd ← tcore.s; (ii) for each tcore.p ∈ FRDFi (tcore.p is a
tcore outgoing edge ∧ FRDFi IS a 1-hop fragment): aj.kα ← tcore.p and aj.v ← tcore.o,
being aj ∈ fdoc.A and tcore.o reached from tcore.p; (iii) for each tcore.p ∈ FRDFi (tcore.p is
a tcore outgoing edge ∧ FRDFi IS NOT a 1-hop fragment): aj.kα ← tcore.p and aj.v is an
inner document generated from the mapping of tj to a document fragment recursively, be-
ing tj an RDF triple where tj.s is the object reached from tcore.p. In short, the core triple
tcore in the RDF fragment FRDFi is mapped to document whose key is tcore.s, and each
outgoing predicate from the subject becomes a document attribute with a key tcore.p. If
FRDFi is 1-hop, the attribute value of each outgoing predicate is the object tcore.o reached
from it. Otherwise, the predicate value is an inner document that maintains the target
object as the inner document key, and its outgoing predicates as attributes. If any of these
outgoing predicates is, in turn, an n-hop, n>1, the generation of other inner documents
proceeds recursively. One example is shown in Figure 2 (iii).

Columnar Fragment is a tuple fcf = (kcf, C) where fcf .kcf is the name (key)
of the column family and fcf .C is a set of columns (key-value pairs) fcf .C = {(nc :
v)}, being nc the column name (or column key) and v an atomic value. The RDF-to-
Columnar Fragment Mapping of FRDFi to columnar fragments proceeds as follows:
for each predicate tk.p of a triple tk ∈ FRDFi: generate a columnar fragment fcfi =
(kcfi, {c1, c2}) such that fcf .kcfi ← tk.p, fcf .C.c1 ← tk.s and fcf .C.c2 ← tk.o. A
columnar fragment maintains a triple predicate of an RDF fragment. For each predicate
we define a column family - named with the predicate label - and two columns to hold

2https://www.w3.org/TR/json-ld/
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Figure 3. Fragment partitioning

the triple subject and triple object names. One example is shown in Figure 2 (iv). The
decision for such a mapping strategy allows that, given a predicate, we query the columnar
database using the subject and/or object as a filter, which is usually the scenario for chain-
shaped queries.

If the number of RDF triples exceeds the performance capacity (e.g., disk, mem-
ory, CPU) of a single server, Rendezvous distributes the RDF fragments among potentially
many NoSQL nodes. In general, an RDF graph can be partitioned vertically, horizon-
tally, and hash-based [Ma et al. 2016]. In a hash-based partitioning, a triple is placed into
a partition based on the result of a hashing algorithm. The benefit of this approach is
to distribute data evenly among the nodes, but several cross partition joins can be nec-
essary to respond to a query request. To obtain better performance, the Rendezvous
fragmentation process leads to horizontal partitioning [Mulay and Kumar 2012] for stor-
age in a document database to deal with star-shaped queries, and vertical partitioning
[Abadi et al. 2009] for a columnar database to tackle chain-shaped queries.

In Rendezvous the most basic element of partition is an RDF fragment. Given the
RDF graph of Figure 2 (iii) the fragments (iv) were stored respectively in the document
partition P2 and the columnar partition P3, and each fragment location is stored in the
Dictionary repository, as presented in Figure 3. This repository maintains a hashmap
with a key based on the core triple and its size and the partitions where this fragment
is stored as the value. We also use three hash sets for each partition to keep track of the
RDF elements (subjects, predicates, and objects) stored in this partition, so during a query
request, we can avoid accessing unnecessarily partitions that cannot answer this query. If
a Rendezvous node manages more than one partition of a NoSQL type, in face of a core
triple, we have to decide which is the best partition to store its fragments. For doing so, the
information provided by the Dataset Characterizer is used to find the typical workload for
the triples present in the fragment generated by the core triple. With this information, we
can query the partition sets in the Dictionary to verify in which partition this fragment can
be more useful, in the sense that the joins outside the fragment can be answered within a
single partition. For instance, for a fragment with core triple L p12 H the best fit would be
P2, since all the typical workload queries ({Fp6G, Fp9L, Fp8H, Lp11?}) can be answered
in this single partition.

Another point to highlight is that our workload-awareness is limited since the
queries issued against Rendezvous are dynamic. Thus, in order to increase the fraction
of queries that can be processed by accessing only one partition, we have two options:
(i) to increase the n-hop replication horizon, which would ultimately result in a high
amount of replicated data, or (ii) to choose a reasonable replication extent, e.g., n = 2, and
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add systematic replication fragments in the boundary of each partition. We advocate the
second option since, as we show in Section 4, it generates a small storage overhead. In
Figure 3, the boundary replication (with size n=2) is presented between partitions the P1,
P2, and P3. For instance, the fragment with core triple F p10 C and size 2 is in partitions
P1 and P2, and the elements F, p10, and C are placed in more than one partition.

3.2. Querying Decomposition and Caching

Another important task accomplished by Rendezvous is the query decomposition. The
input SPARQL queries are analyzed by the Query Evaluator. It, in turn, classifies a query
into simple, star-shaped, chain-shaped or complex. A query is called simple if it does
not involves a join in any triple component. If the query is classified as complex, it can
be decomposed into star-shaped and/or chain-shaped subqueries. The Query Evaluator
then reports to Dataset Characterizer in order to keep the workload metrics up-to-date,
and accesses the Dictionary to get the partitions storing the triples for these queries.

The star-shaped queries (object-object or subject-subject joins) are converted to
queries over NoSQL document databases. For instance, the object-object star-shaped
query Q1 in the following is converted to the access method D1 (MongoDB NoSQL
database syntax), and the subject-subject star-shaped Q2 is converted to the access method
D2. The $exists function of MongoDB filters the JSON documents that have all the
predicates of each query, moreover in D2 we also filter by the subject M.
Q1: SELECT ?x WHERE {x? p5 y? . y? p2 z? .}
Q2: SELECT ?x WHERE {x? p9 y? . M p10 y? .}
D1: db.partition1.find({p5:{$exists:true}, p2:{$exists:true}}})
D2: db.partition1.find({p9:{$exists:true}, subject:M}})

The chain-shaped queries are converted to queries over NoSQL columnar databases.
For example, given the query Q3 in the following, with object-subject and subject-object
joins, Rendezvous translates it to the set of queries C1 according to the Cassandra NoSQL
columnar database query language syntax.
Q3: SELECT ?x WHERE {x? p1 y?. y? p2 z?. z? p3 w?.}
C1: SELECT S1,O1 FROM p1

SELECT S2,O2 FROM p2 WHERE O=S1
SELECT S3,O3 FROM p3 WHERE O=S2 AND S=D (C1)

The processing of joins occurs when a query as a whole cannot be executed on
a single partition, and it needs to be decomposed into a set of subqueries, being each
subquery evaluated separately and joined at the Rendezvous node. For instance, if we
consider the graph of Figure 3, the query Q4 in the following is not able to be com-
pleted only querying the partitions P1 or P2 alone. In this case, the Query Decomposer
divides it into subqueries SQ5 and SQ6, issues it to the partitions P1 and P2, respectively,
and joins the result sets by matching the predicate p5 (the connection between P1 and P2).
Q4: SELECT ?x WHERE {x? p2 y?.y? p3 z?.x? p5 w?.w? p9 k?.L
p11 k?.}
SQ5: SELECT ?x WHERE {x? p2 y?. y? p3 z?. x? p5 w?.}
SQ6: SELECT ?x WHERE {x? p5 w?. w? p9 k?. L p11 k?.}

As explained before, a complex query is a combination of the star-shaped and
chain-shaped patterns, potentially connected by simple queries. The query Q5 in the fol-
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lowing presents an example, where x? p1 y? . y? p2 z? . z? p3 w? is a chain-shaped
pattern, z? p5 ?k is a simple query, and k? p6 G . k? p7 I . k? p8 H is a star-shaped. In
this case, our decomposition process works as follows: (i) it first normalizes the query by
sorting the patterns by subject and object; (i) if we can identify a subset with two or more
patterns with the same subject or object, we consider this a star-shaped subquery, like
the P1 query below. Then we identify chains in the remaining of the query patterns, i.e.;
(iii) for each pattern, we navigate from object to subject creating chains. Then we pick
the longest chain and consider this a chain-shaped sub-query, like query P2 below. We
repeat the step (iii) until there are no more chains, or there are only simple patterns, like
the query P3 below. Each star-shaped subquery and chain-shaped subquery is processed
separately, and the join of the results - along with the simple patterns - is performed at
the Rendezvous node. In case of ambiguity, i.e., a pattern that is present in more than one
query type, we consider the following priority: (1) subject-based star-shapes; (2) object-
based star-shapes; (3) the longest chain shapes; and (4) simple patterns.
Q5: SELECT ?x WHERE { x? p1 y? . y? p2 z? . z? p3 w? .
z? p5 ?k . k? p6 G . k? p7 I . k? p8 H }
P1: {k? p6 G . k? p7 I . k? p8 H }
P2: {x? p1 y? . y? p2 z? . z? p3 w?}
P3: { z? p5 ?k}

Rendezvous also provides caching management during the query decomposition.
Basically, the Cache component verifies, during a query processing, if a fragment (or
even a query result) is maintained in the Rendezvous cache. The cache is organized as
key/value fragments, as defined in the following. Key/Value Fragment is a tuple fkv =
(kkv, V ) where fkv.kkv is the name of the key with the form tcore.s : tcore.p : tcore.o (the
concatenation of the tcore components), and the value fkv.V is a set fkv.V = {(t1−hop)},
being each t1−hop ∈ fkv.V a triple with a 1-hop distance of tcore. Rendezvous holds
two types of cache: the Near Cache, designed as an in-memory TreeMap3 located on
each Rendezvous server, and a Remote Cache maintained as a remote key-value NoSQL
database (see Figure 1). When a query is issued against a Rendezvous server, it firstly
checks its near cache to get all the fragments that are already available in the server. Then,
the server accesses the remote cache to get all the missing fragments, and finally queries
the document and columnar databases. The TreeMap used in the near cache provides an
efficient way of storing key/value pairs in sorted order, which is specially interesting to
the chain-shaped queries. On using a key-value NoSQL database in the remote cache, it
is possible to search for keys with wild-cards and patterns (e.g., Redis). If the database
does not provide this feature, we create all the permutations of indexes for an RDF triple.

Figure 4. Types of Rendezvous Caching

3https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
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Figure 4 represents the state of the caches when the query Q is issued to a Ren-
dezvous server containing the graph of Figure 2 (i). First of all, the server decomposes Q
into P1, P2, P3, and P4. Then, it checks, for the simple and chain-shaped subqueries in
the near cache (in this case, P3 and P2, respectively), if any of the triple predicates is the
root of a tree containing this chain (in Figure 4, it is represented by the Java commands
headMap(p1) and headMap(p5)). Concurrently, it gets the star-shaped fragments of sub-
query P1 from the remote cache (e.g., get(*:p6:*)). In Figure 4, P1 returns the necessary
triples, but no triples are found in the caches for P4. Thus, the server queries the NoSQL
databases, as explained in Section 3.2. The triples returned from the queries are stored in
both the near and remote caches. In Figure 3, it is represented by the triples Fp8H, Fp9J,
Fp6G retrieved from subquery P4.

When the cache is almost full, Rendezvous automatically evicts some keys. Ren-
dezvous currently implements a cache eviction policy for Most Recently Used (MRU) as
well as Most Frequently Used (MFU). Moreover, the near cache is designed to not have
false positives, i.e., we prefer to double check with the remote cache instead of returning
inconsistencies to the client. Due to it, we had developed a communication channel be-
tween the Rendezvous servers that is able to communicate each other about any update in
an existing triple. In Figure 4, if the triple t=(A, p1, B) is updated to t’=(A, p1, B’) in one
of the servers Si, Rendezvous removes triple t from Si remote cache and send a signal to
all the other servers to remove all the fragments that contains t from their near caches.

4. Experimental Evaluation

This section presents an evaluation of the proposed approach through an experimen-
tal evaluation. The considered dataset comes from the Lehigh University Benchmark
(LUBM) [Guo et al. 2005]. LUBM features an ontology for the University domain, syn-
thetic RDF data scalable to any size, and 14 extensional queries representing a variety of
properties. In our experiments, we generate a dataset with 4000 universities. The dataset
size is around 100 GB and contains around 500 million triples. Regarding query complex-
ity, we have twelve queries with joins, all of them have at least one subject-subject join,
and six of them also have at least one subject-object join. We ran experiments for data
loading and querying to test the performance and scalability of Rendezvous. Rendezvous
was developed using Apache Jena version 3.2.0 with Java 1.8, and we use Redis 3.2,
MongoDB 3.4.3, and Apache Cassandra 3.10 as the key/value, document and columnar
NoSQL databases, respectively, on considering their maturity as representatives of these
three families of NoSQL storages. All the nodes are Amazon m3.xlarge spot instances4

with 7.5 GB of memory and 1 x 32 SSD capacity. For all the experiments, the nodes rep-
resent the number of MongoDB + Cassandra servers, always with half of each database.
Moreover, we created a cluster of Redis in 3 nodes with the same configuration. We also
created one partition for each server, and the Rendezvous servers were installed alone in
each node. All the queries were issued from a server in the same network, so the latency
between the client and Rendezvous was inexpressive.

The total dataset size, the loading time, and the average querying time are shown
in Figure 5 (a) to (c), respectively. In Figure 5 (a) and Figure 5 (b), we notice that the
dataset and the loading time grow exponentially with the number of nodes and the n-

4https://aws.amazon.com/ec2/instance-types/
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Figure 5. Summary of the Experimental Evaluation

hop, ramping up from around 102 GB, loaded around 20 minutes in the 2 nodes with
2-hop configuration, to more than 500 GB loaded in more than 60 minutes in the 10
nodes with 10-hop configuration. These results can make Rendezvous very costly in cloud
environments that charge per storage usage. We are investigating compression techniques
to mitigate this problem. In Figure 5 (c), we studied both the not cached configuration
and cached configuration. In the not cached configuration, the best response time was
achieved with 10 nodes and a 10-hop. In such a configuration, we did not register any
join outside of the fragment - with this significant fragment size all the queries could be
solved within a unique NoSQL access - and each server CPU and Memory load were
very small. The cached configuration presents the same response time (around 40 ms in
average) regardless the hop size. The results show that the fragmentation and partition
solution of Rendezvous is scalable and if the tradeoff for the dataset size is acceptable,
the average response time can be subtle, and that cache is a good solution for scalability.
In Figure 5 (d) and (e) we compared different settings of Rendezvous. In Figure 5 (e),
we show that the systematic replication of fragments in the boundary of each partition
(”b” parameter) increases the speed on the query response, without a big impact in the
total size of the dataset and the data load time. This is because the size of the boundaries’
triples is not very significant in such big dataset. This result is motivating new studies
on the optimal boundary replication size to accelerate the query response. In Figure 5
(d) we compared our partitioning solution to the NoSQL database partition solutions.
We analyzed here Rendezvous accessing each NoSQL database server separately (as a
partition), as well as accessing the servers as a cluster (delegating the data partition to the
NoSQL database). The results show that, especially for Cassandra, the graph awareness
of the proposed schema plus the replication boundary lead to better performance. For
MongoDB, we can conclude that the most important factor is the size of the fragment (n-
hop) since a bigger fragment will typically lead to a smaller number of database accesses.
Finally,in Figure 5 (f) we compared the performance of Rendezvous 5-hop - cached and
not cached - with the recent related work ScalaRDF5. Our cached solution is 30 percent
faster on average. This results is mainly due our Near Cache component - which is not
present in ScalaRDF - and avoid network latency between the Rendezvous server and
Redis. The downsides of this comparison are the loading time - is almost twice slower -
and the dataset size - almost five times bigger.

5The code for ScalaRDF was found in https://github.com/xinghuayu007/ScalaRDF/
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5. Conclusion
This paper presents Rendezvous, a novel workload-aware RDF partitioning approach for
the persistence of RDF data into NoSQL Databases. We based it on a middleware that can,
according to the typical shape of the main SPARQL queries, define RDF fragments and
store them into the document, columnar and key/value NoSQL databases. The partition
is used when the dataset is bigger than each server capabilities. In this case, we consid-
ered a replication boundary to avoid cross-server joins and speed up the query response
time. Our experiments reveal that a bigger replication boundary can accelerate the queries
without a negative impact regarding storage space and load time. Besides, Rendezvous
outperformed a recent disk-based baseline, denoting that our proposal is promising. In
general, Rendezvous is a contribution to the problem of efficient mapping of the RDF data
model to NoSQL data models. Even so, we have some future works in mind. First of
all, we are considering implementing algorithm for triples compression. The lack of this
feature makes Rendezvous uses exponentially more storage space as the n-hop horizon
grows. We also intend to consider update and deletion operations, other NoSQL types in
the Rendezvous architecture as well as cluster capabilities in the Rendezvous server. With
these improvements, we aim at comparing it again with the related work.
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