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Abstract. This paper presents a probabilistic spatial join on positional uncer-
tain data designed to be a) generalist; b) accurate and c) efficient. A proposed
progressive Monte Carlo algorithm is used in the refinement step and the Cheby-
shev inequality is applied in the filtering one in order to provide efficiency, ef-
ficacy and generality. The experiments show that the current propose is Pareto
efficient concerning these requirements, i.e., it is not outperformed by any com-
peting method. Also, the solution’s parameters relating accuracy and efficiency
may be adjusted to maximize the gain in one while relaxing the other according
to user’s demand.

1. Introduction

Spatial applications frequently need to combine two data sets based on some spatial
relationship between objects in these two data sets [Patel and DeWitt 2000]. That is
the case when a spatial join is required. While very useful, in general, the evalua-
tion of spatial join predicates has high computing costs and demand sophisticated so-
lutions in order to achieve satisfactory performance for large datasets as one can see in
[Patel and DeWitt 2000].

The computational cost becomes even higher when we need to deal with objects
which the position is not precise. This can happen due to several reasons, e.g., due to
the imprecision of the georreferecing technique employed to acquire the data. In this
context, the join predicate may not be accurately evaluated, having severe impact on the
results presented by the applications. Thus, robust solutions based on some probabilistic
approach are natural candidates for improving the spatial join. We indroduce a new algo-
rithm based to perform a probabilistic spatial join based, which we call Progressive Monte
Carlo Spatial Join (PMCSJ). Furthermore, PMCSJ is designed to address the following
requirements: accuracy, efficiency and generality. Section 2 comments the related works,
Section 3 shows the solution, Section 4 presents the results and Section 5 concludes the
work.

2. Related Work

There exists several methods for performing a deterministic spatial join,
using or not indexed datasets [Mishra and Eich 1992,  Arge et al. 1998,
Jacox and Samet 2003, Luo et al. 2002, Patel and DeWitt 1996, Elmasri 2008,
Lo and Ravishankar 1994, Brinkhoff et al. 1993, Huang et al. 1997]. These meth-
ods assume absolute precision in spatial objects’ coordinates. Also, several works
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[Wolfson et al. 1999, Pfoser and Jensen 1999, Yu and Mehrotra 2003, Zhang et al. 2012]
have been proposed to deal with spatial joins on moving objects, which is not the case
of the present work since we are interested in modeling the error coming from imprecise
georreferencing and not by moving objects. Spatial join on existentially uncertain were
explored by [Dai et al. 2005] and [Ljosa and Singh 2008] presented an approach able to
deal with both existencial and positional uncertainty by using a score function in which
the two kinds of uncertainty are considered.

The work [Openshaw 1989] proposed the use of the Monte Carlo Method (MMC)
to compute the intersection probabilities of positional uncertain geometries, which we
will call here Random Spatial Join (RSJ). A limitation faced by RSJ is the computational
cost of the MCM. However, RSJ is generic method concerning the PDF error assumption
and we will compare it with PMCSJ in Section 4.

In the probabilistic spatial join proposed by [Ni et al. 2003], the error is modeled
using a Circular Normal distribution. However, as it does not handle errors from others
distributions, it will not be tested.

3. Probabilistic Spatial Join

Like the main proposals in deterministic spatial join, PMCS]J is devided in the classical
two steps: filtering and refinement. The filtering step is performed on a novel probabilistic
version of the MBR - the confidence rectangles (CR). The refinement is done by the novel
Progressive Monte Carlo Method (PMCM).

3.1. Filtering Step

The index is built using an R-tree with CRs replacing MBRs. In order to do that, the MBR
for a given geometry is expanded in vertical and horizontal directions by a shift value d.
A formal definition for CR is presented below.

Definition 1. Given a geometry g and a threshold probability p, a confidence rectangle
(CR) with threshold probability p for g is the one which contains the MBR of g and the
probability of g lies inside it is at least equal to \/1 — p.

Theorem 1. Let G and H be CRs for the geometries g and h respectively. If G and H do
not intersect then the intersection probability between g and h are less than p.

Proof. Since G and H are CRs for g and h then, follows from the definiton that Pr(g C
G) > /1 —pand Pr(h C H) > /1 — p. Then, assuming independence in the error
direction in the ¢g and h coordinates,

Pr(9gCc G,hC H)=Pr(gCc G).Pr(hCc H) > (/1 —-p)(y/1—-p)=1—p.

Thus, Pr(g Z GUh ¢ H) < p.

If G and H do not intersect then g or h must not be contained in its CR, whose
probability is less than p by the above equation. Thus, Pr(g N h) < p. [l
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To build a CR, we use of the Chebyshev inequality, which declares: If X is a
integrable random variable with finite mean ¢ = FE(.X) and standard deviation o, then for
any k > 0, Pr(|X — E(X)| > ko) < 1/k*. For X positive,

k*—1

Pr(X — BE(X) > ko) < 1/k* = Pr(X < E(X) + ko) > ®

In our case, X is the positional error. Thus, the probability for the error be at most
d = E(X)+kois at least 71, As a given geometry must lie in the CR with a probability

k
of at least v/1 — p, then

p=ft L
P=p Vi viep

The CR is given by the coordinates P, = (Tmin,Ymin) and Prae =

(mmazy ymam), with Lmin = TMBR_-min — d’ Ymin = YMBR.-min — d’ Tmazr = TMBR.maz T d
and Ymaz = YMBR.maz T d.

3.2. Refinement

The refinement step is given by the Algorithm 1 which perform the novel PMCM proce-
dure. The performance gain comes from avoiding more simulations than the sufficient to
guarantee the predicate evaluation with a condifence level «y for each candidate geometry
pair.

Algorithm 1: Progressive Monte Carlo Method.

Data: a and b: two geometries;

p: threshold probability;

m.: size of each simulation batch;

Nmae- Maximum number of simulations allowed

Result: Return TRUE if the success proportion is at least equal to p, FALSE
otherwise.

Initialize with zero the counter n (number of Monte Carlo realizations up to now).
Shift the a and b coordinates m times.

Update n by m units (n <— n + m).

Compute the proportion ¢ of success in the n simulations.

Compute the Confidence Interval (CI) for g, 1.e.,

Cl(g,7) = [(2 —tey/ _4(1n— D g+ tey/ —Cj(ln_ Cj)]

where ¢ is the (1 + 7)/2 quantile of the t-Student distribution with n — 1 degrees
of freedom.

6 If pe IC(q,v) and n < Nypqq, 2O tO steps 2-5.

7 If ¢ > p return TRUE else return FALSE.
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4. Results
4.1. Test setup

The datasets used in test were: 1) vegetation, 2) deforestation and 3) wildfire areas, both
from the Brazilian province called Goids and procuced by the LAPIG-UFG laboratory.
The join executed was vegetation against the union of deforestation with wildfire areas.
The competing approach are Random Spatial Join (RSJ) with m = 150 simulations and
PMCSJ with a maximum number of simulations n.max of 150 and 1000. The positional
error Y follows a Half Normal distribution, defined by Y = | X |, with X ~ N(200, 100?).
The mean and standard deviation (required as parameters for CR computation) of the

Half Normal distribution are: E(X) = 0\/2 and sd(X) = oy/1 — 2. The threshold

probabilities tested are: 0.10, 0.20, ..., 0.80 and 0.90. The accuracy parameter for PMCSJ
is v = 0.99, the size of each simulation batch set to 50.

A ground truth database was used to compare the methods, which contains the
reference intersection probabilities for each geometry pair (a;, b;), with a; € A, b; € B,
with A and B being the two joined data sets. The ground truth was built with a larger
number N of Monte Carlo simulations, in our work, N = 500. The number N = 500
provides a margin or error &/ = 0.045.

The metrics used for comparison are: i) proportion of neighborhood false posi-
tives; i1) proportion of neighboorhod false negatives; and iii) processing time. The RSJ
and PMCS]J will be compared with relation to the metrics: proportion of false and posi-
tives negatives in a “safe” R-neighboorhod of the threshold probability p. An error margin
interval of size € is taken from the test to avoid a judgment error caused just by the im-

precision of the ground truth. The metrics are defined as Spy = #ﬁi_e?f })S”;’wfh and
P gTru

Srp = 7 (fﬁpé?;)—"éi};i —. The execution was performed by a Intel Core 15-4200U, 1.6GHz

CPU (4 threads).

4.2. Results and Discussion

Table 1 presents the metric type, Spp or Sgy, the threshold probability p in the paren-
thesis, the metric value for RSJ and PMCSJ for a maximum number of 150 and 1000
simulations and a signal: positive if PMCSJ was more accurate than RSJ, negative if the
winner was RSJ and neutral in case of a tie.

métrica JEA-150 [ JEPMCP-150 JEPMCP-1000 sinal T sinal 2
Srn (0,10 0,200 0,000 0,000 + +
Srn (0,20 0,000 0,056 0,000 -

Srn (0,50 0,000 0,333 0,167

Srn (0,70 0,000 0,111 0,000 -

Srn (0,80 0,133 0,200 0,000 - +
Srp(0,20 0,000 0,045 0,000 -
Srp(0,30 0,000 0,077 0,000

Srp(0,40 0,100 0,100 0,000 +
Srp (0,70 0,200 0,000 0,000 + +
Srp(0,90 0,100 0,000 0,000 + +

Table 1. Comparing JEA and JEPMCP accuracies (just non tied scenarios).

The non parametric signal test was used to evaluate if the differences observed
were statistically significant. The test evaluated the two set of hypothesis: “Set 1: (H)
PMCSIJ is so accurate as RSJ” against “(H;) PMCS]J is less accurate than RSJ” when
comparing RSJ-150 with PMCSJ-150 and “Set 2: (Hy) PMCSJ is so accurate as RSJ”
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against “(H;) PMCSJ is less accurate than RSJ” when comparing RSJ-150 with PMCSJ-
1000. The test statistic t is given by the number of “+” considering just the non tied cases.
For set 1, the p-value was 0,254 which does not raise statistically significant evidence
in favor of a relevant superiotity of RSJ-150 when comparing with PMCSJ-150. For
set 2, the p-value was 0,11 which is a more strong evidence in favor of a PMCSJ-1000
superiotity against RSJ-150.

RSJ took an average 257 seconds to perform the deforestation X (vegetation U
wildfire) join against 64 of PMCSJ-150 and 73 of PMCSJ-1000. Thus, PMCSJ was able
to be more efficient while keeping at least the same accuracy as RSJ, being a preferable
method to perform a probabilistic spatil join.

5. Conclusion

The present work built and applied a variant of the Monte Carlo method and a conse-
quence of the Chebyshev inequality to create a geneneralist probabilistic spatial join so-
lution (PSJ) - which we call PMCSJ. The experiments showed that PMCSJ are: a) gen-
eralist concerning the positional error distribution; b) accurate; and c) efficient. Previous
correlated works either were not a generalist solution for PSJ or presented a poorer per-
formance. PMCSJ is shown to be a better generalist method for PSJ concerning the these
three requirements.

The high Monte Carlo simulations cost are mitigated both by the progressive ap-
proach which applies just the required number of Monte Carlo simulations and the proba-
bilistic filtering step which avoid several unecessary Monte Carlo simulations by applying
a probabilistic and geneneralist version of the minimum bounding rectangles, which we
call confidence rectangles. Both are contributions of our work.

Future works may try to build more powerful filtering steps, for example by find-
ing a more tight shift value for confidence rectangles which still guarantees that the non
intersection of two of them imply that the geometry inside them also do not intersect with
a probability of at least p. Another possibility is trying to adapt the two spatial join steps
to specifities of a family distribution - such as the Exponential Family, for example. That
would keep the generalist requirement while advancing in performance and accuracy.
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