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Abstract. Set similarity join is a core operation for text data integration, clean-
ing, and mining. Previous research work on improving the performance of set
similarity joins mostly focused on sequential, CPU-based algorithms. Main op-
timizations of such algorithms exploit high threshold values and the underlying
data characteristics to derive efficient filters. In this paper, we investigate strate-
gies to accelerate set similarity join using Graphic Processing Units (GPUs).
Our approach exploits massive parallelism instead of filtering and, as a result,
exhibits much better robustness to variations of threshold values and data dis-
tributions. Experimental evaluation shows that we are able to obtain up to 57x
speedups over highly optimized CPU-based algorithms.

1. Introduction
The problem of efficiently answering set similarity join queries has attracted growing at-

tention over the years [Sarawagi and Kirpal , Chaudhuri et al. 2006, Bayardo et al. 2007,

Vernica et al. 2010, Xiao et al. 2011, Ribeiro and Härder 2011, Wang et al. 2012,

Cruz et al. 2015]. Set similarity join returns all pairs of similar sets from a dataset — two

sets are considered similar if the value returned by a set similarity function for them is not

less than a given threshold. This operation is of great interest and practical importance

both in itself, and as a basic operator for more advanced data processing tasks, including

integration, cleaning, and mining of data [Leskovec et al. 2014].

Set similarity join is a popular approach to dealing with text data, whose repre-

sentation is typically sparse and high-dimensional. Text data can be easily mapped to sets

and there is a rich variety of set similarity functions available to capture various notions of

similarity. Moreover, predicates involving such functions can be equivalently expressed

as a set overlap constraint. As a result, set similarity join is reduced to the problem of

identifying set pairs with enough overlap.

The set overlap abstraction provides the basis to several optimizations. Prefix fil-
tering [Sarawagi and Kirpal , Chaudhuri et al. 2006] is arguably the most important of

such optimizations. In fact, this technique is employed by all state-of-the-art algorithms

considered in a recent experimental evaluation [Mann et al. 2016]. Prefix filtering ex-

ploits the threshold value to prune dissimilar set pairs by inspecting only a fraction of

them. A filter-and-verify framework is typically used in this context, where input sets are

sequentially processed: with the support of an inverted index, prefix filtering is employed

to discard set pairs that cannot meet the overlap constraint; then, the surviving pairs are

evaluated and those verified as similar are sent to the output.
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Unfortunately, prefix filtering is only effective at high threshold values. Its prun-

ing power drops drastically at lower thresholds, leading to an explosion of the number

of set pairs that need to be compared in the verification step. Length-based filtering

[Sarawagi and Kirpal ], another popular optimization technique, also suffers from the

very same limitation. This serious drawback may render set similarity join unsuitable to

applications which often require lower thresholds to produce accurate results — important

examples are duplicate detection and clustering [Hassanzadeh et al. 2009]. Moreover, fil-

tering effectiveness and, in turn, algorithm performance heavily rely on characteristics of

the underlying data distribution [Sidney et al. 2015]. In particular, the filtering effect is

severely reduced (or even eliminated) on more uniform data distributions.

One alternative way to tackle the problem of efficiently answering set similarity

join queries is to exploit parallelism. Today virtually all processors support parallelism

through the use of multiple cores. Multi-core processing is a growing industry trend and

it has been followed by the so-called many-core architectures like GPUs (Graphic Pro-

cessing Units). Many-core processors, also known as accelerators, have a large number of

processing units — hundreds or thousands — but in the form of slower and simpler cores.

Recent developments and affordability of GPUs have made them attractive to scientists

in different areas. GPUs are designed for massive multi-threaded parallelism and are

inherently energy efficient, because they are optimized for throughput and performance

per Watt. However, GPUs have a different architecture and memory organization and to

fully exploit their capabilities it is necessary considerable parallelism (tens of thousands

of threads) and an adequate use of its hardware resources. This imposes some constraints

in terms of designing appropriate algorithms, requiring the design of novel solutions and

new implementation approaches.

In this paper, we present a parallel algorithm and a GPU-based implementation

for the set similarity join problem. Our solution takes advantage of data parallelism by

processing individual tokens of a given set in parallel. This operation can be seen as a set

similarity search since it finds all sets in a set collection that are similar to a given input

set. When performing a self-join, this operation is applied repeatedly, in batch, so that all

sets of the collection are compared against all. This greatly improves the similarity join

processing and can be easily mapped to modern highly-threaded accelerators like many-

core GPUs. The proposed solution, called gSSJoin (GPU-based Set Similarity Join),

efficiently implements an inverted index, by using a parallel counting operation followed

by a parallel prefix-sum calculation. At search time, this inverted index is used to quickly

find sets sharing tokens with the input set. Furthermore, we construct an index for the

input set which is used for a load balancing strategy to evenly distribute the similarity

calculations among the GPU’s threads. Finally, the most similar (above a given threshold)

sets are returned to the CPU. In addition to exploiting intra-set parallelism, the solution

also deals with inter-set parallelism, which allows the use of modern multi-GPU systems.

Our main contribuitions are:

• A fine-grained parallel algorithm for both indexing the data and performing the

set similarity joins.
• A highly threaded GPU implementation that takes advantage of intensive occupa-

tion, hierarchical memory, and coalesced memory access.
• A scalable multi-GPU implementation that exploits both data parallelism and task

parallelism.
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• Extensive experimental work with standard real-world textual datasets.

This paper is organized as follows. In Section 2, we introduce the set similar-

ity join problem. Section 3 presents an overview of the architecture and programming

models of a GPU. Section 4 describes our solution. Section 5 presents the experimental

evaluation. Section 6 covers related work, while Section 7 concludes the paper.

2. Background

2.1. Basic Concepts and Problem Definition

Strings can be mapped to sets of tokens in several ways. A well-known method is based

on the concept of q-grams, i.e., sub-strings of length q obtained by “sliding” a window

over the characters of the input string. For example, the string “gSSJoin” can be mapped

to the set of 3-grams tokens {’gSS’, ’SSJ’, ’SJo’, ’Joi’, ’oin’}.

Given two sets r and s, a set similarity function sim (r, s) returns a value in [0, 1]
to represent their similarity; a greater value indicates that r and s have higher similarity.

We formally define the set similarity join operation as follows.

Definition 1 (Set Similarity Join). Given two set collections R and S , a set similarity

function sim, and a threshold τ , the set similarity join between R and S returns all scored

set pairs 〈(r, s), τ ′〉 s.t. (r, s) ∈ R× S and sim (r, s) = τ ′ ≥ τ .

A popular set similarity function is the well-known Jaccard similarity. Given two

sets r and s, the Jaccard similarity is defined as J (r, s) = |r∩s|
|r∪s| . A predicate involving

the Jaccard similarity and a threshold τ can be equivalently rewritten into a set overlap

constraint: J (r, s) ≥ τ ⇐⇒ |r ∩ s| ≥ τ
1+τ

(|r| + |s|). In this paper, we focus on the

Jaccard similarity, but all concepts and techniques presented henceforth holds for other

set similarity functions as well such as Dice and Cosine [Ribeiro and Härder 2011].

Example 1. Consider the sets r = {A,B, C,D,E} and s = {A,B,D,E, F}. Thus, we

have |r| = |s| = 5 and |r ∩ s| = 4; thus sim (r, s) = 4
6
≈ 0.66. For a threshold τ = 0.6,

the set overlap constraint is |r ∩ s| ≥ 0.6
1+0.6

(5 + 5) = 3.75.

Further, we can use the prefix filtering principle [Sarawagi and Kirpal ,

Chaudhuri et al. 2006] to prune dissimilar sets by examining only a subset of them. We

first assume that the tokens of all sets are sorted according to a total order. A prefix rp ⊆ r
is the subset of r containing its first p tokens. Given two sets r and s, if |r ∩ s| ≥ α, then

r(|r|−α+1) ∩ s(|s|−α+1) �= ∅. For a threshold τ , we can identify all candidate matches of a

given set r using a prefix of length |r| − �|r| · τ
+ 1; we denote such prefix by pref (r).

The original overlap constraint only needs to be verified on set pairs sharing a pre-

fix token. Finally, we pick the token frequency ordering as total order, thereby sorting the

sets by increasing token frequencies in the set collection. Thus, we move lower frequency

tokens to prefix positions to minimize the number of verifications.

2.2. General Algorithm

Most current set similarity join algorithms for main memory employ an inverted index

and follow a filter-and-refine framework [Mann et al. 2016]. A high-level description of

this framework presented by Algorithm 1. An inverted list It stores all sets containing a

token t in their prefix. The input collection C is scanned and, for each set r, its prefix
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Algorithm 1: General set similarity join algorithm.
Input: A sorted set collection C, a threshold τ
Output: A set S containing all pairs (r, s) s.t. sim (r, s) ≥ τ

1 I1, I2, . . . I|U| ← ∅, S ← ∅

2 foreach r ∈ C do
3 foreach t ∈ prefβ (r) do
4 foreach s ∈ It do
5 if not filter (r, s)
6 S ← S ∪ refine (r, s)
7 It ← It ∪ {r}

8 return S

(a) Effects of threshold values and token

frequency distribution

(b) Number of candidates

with varying threshold.

(c) Number of candidates

with varying q values.

Figure 1. Limitations of algorithms based on prefix filtering.

tokens are used to find candidate sets in the corresponding inverted lists (lines 2–4). Each

candidate s is checked using filters, such as positional [Xiao et al. 2011] and length-based

filtering [Sarawagi and Kirpal ] (line 5); if the candidate passes through, the actual sim-

ilarity computation is performed in the refine step and r and s are added to the result if

they are similar (line 6). Finally, r is appended to the inverted lists of its prefix tokens

(line 7). An important observation is that Algorithm 1 is intrinsically sequential: sets,

prefix tokens, and candidate sets are processed sequentially, while the inverted index is

dynamically created.

3. Limitations of Current Algorithms
Currently, prefix filtering is the prevalent optimization technique for CPU-based, set

similarity join algorithms. As such, all these algorithms benefit from its pruning

power, but also suffer from its limitations. In particular, prefix filtering effectiveness

is heavily dictated by two factors: threshold value and token frequency distribution

[Sidney et al. 2015].

There is a clear correlation between threshold values and similarity join perfor-

mance. Invariably, execution time increases with lower threshold values. The explanation

is that lower threshold values imply larger prefixes as illustrated in Figure 1(a). As a re-

sult, more inverted lists have to be scanned (Algorithm 1, lines 3–4) and a larger number

of candidate pairs have to be verified. Figure 1(b) shows the number of candidates (in log

scale) for decreasing Jaccard thresholds on a 100K sample taken from the DBLP dataset

(details about the datasets are given in Section 6). As we decrease the threshold from 0.9

to 0.3, there is an increase of three orders of magnitude in the number of candidates.

Disregarding pruning due to other filters, the frequency of tokens in the prefix

determines the number of candidates for a given set. The total token order based on
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frequency places rare tokens in the prefixes. As a result, inverted lists are shorter and

there is much less prefix overlap between dissimilar sets. Of course, the effectiveness

of this strategy depends on the underlying token frequency distribution. For a uniform

distribution, it behaves not better than an ordinary lexicographical order. Figure 1(a)

depicts the impact of the token frequency skew on size of the lists associated with prefix

tokens and 1(c) shows the number of candidates (in log scale) for increasing values q-

gram size (larger values of q results in more skewed token distribution). We can observe

an increase of one order of magnitude in the number of candidates.

The above observations indicate intrinsic limitations of prefix filtering, and, in

turn, current set similarity join algorithms. Next, we provide a general overview of the

underlying many-core architecture before present our massively parallel approach, which

avoids such drawbacks.

4. GPU Architecture and Programming Model

Next we provide a brief description of a GPU architecture and its corresponding program-

ming model (Cf. [Kirk and Wen-mei 2012] for more details). An abstracted architecture

view of a GPU is illustrated in Figure 2. This architecture is common to most GPUs cur-

rently available. The GPU architecture has two levels of parallelism, where P streaming

multi-processors (SMs) are at the first level and p streaming processors (SPs) withn each

multi-processor. Thus a parallel program can be first divided into blocks of computation

that can run independently on the P SMs (fat cores), without communicating with each

other. These blocks have to be further divided into smaller tasks (threads) that execute on

the SPs (thin cores), but with each thread being able to communicate with other threads

in the same block. Each of these threads has access to a larger global memory as well as

to a small but fast shared memory and registers.

Figure 2. Overview of a GPU architecture

The GPU supports thousands of light-weight concurrent threads and, unlike the

CPU threads, the overhead of creation and switching is negligible. To hide the global

memory’s high latency, it is important to have more threads than the number of SPs and

to have threads accessing consecutive memory addresses that can be easily coalesced. An-

other important data movement channel is the PCIExpress connection, whereby CPU and

GPU can exchange data between each one’s address space but in a much slower speed.

The GPU programming model requires that part of the application runs on the CPU while

the computationally-intensive part is accelerated by the GPU. A GPU program exposes

parallelism through a data-parallel special function, called kernel function. During imple-

mentation, the programmer can configure the number of threads to be used. Threads exe-

cute data parallel computations of the kernel and are organized in groups (thread blocks)
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that are further organized into a grid structure. When a kernel is launched, the blocks

within a grid are distributed on idle SMs while the threads are mapped to the SPs.

5. The gSSJoin Algorithm

5.1. Pre-processing

Before performing the set similarity join, we map input strings to sets of tokens using

q-grams and create an inverted index in the GPU memory, assuming the input collection

fits in memory and is static. Let S be the set collection and V be the vocabulary of the

collection, that is, the set of distinct tokens of the input collection. The input collection is

the set E of distinct token-sets (t, s) pairs occurring in the original collection, with t ∈ V
and s ∈ S . An array of size |E| is used to store the inverted index. Once the set E has

been moved to the GPU memory, each pair in it is examined in parallel, so that each time

a token is visited the number of sets where it appears is incremented and stored in the

array count of size |V|. A parallel prefix-sum is executed on the count array by mapping

each element to the sum of all tokens before it and storing the results in the index array.

Thus, each element of the index array points to the position of the corresponding first

element in the invertedIndex, where all (t, s) pairs will be stored ordered by token. The

cardinality of all sets is computed in parallel with each processor contributing partially

(incrementing) in the respective position of the array cardinality of size |S|. Algorithm

2 depicts the data indexing process.

Algorithm 2: DataIndexing(E)

input : token-set pairs in E[ 0 . . |E| − 1 ].
output: count, index, cardinality, invertedIndex.

1 array of integers count[ 0 . . |V| − 1 ] // count array, initialized with zeros.
2 array of integers index[ 0 . . |V| − 1 ].
3 array of integers cardinality[ 0 . . |S| − 1 ].
4 invertedIndex[ 0 . . |E| − 1 ] // the inverted index

5 Count the occurrences of each token in parallel on the input and accumulates in count.
6 Perform an exclusive parallel prefix sum on count and stores the result in index.

7 Access in parallel the pairs in E, with each processor performing the following tasks:

8 begin
9 Contribute on the cardinality computation of each set in cardinality[s].

10 Store in invertedIndex the entries corresponding to pairs in E, according to index.

11 end
12 Return the arrays: count, index, cardinality and invertedIndex.

5.2. Set Similarity Search

After inverted index construction, our algorithm can be viewed as a batch of set similarity

search operations. Given an input set, the set similarity search consists of two steps. First,

the Jaccard similarity of the input set s to all sets have to be computed. Then, the sets

most similar (above the threshold) to the input set, are selected. The Jaccard similarity

computation takes advantage of the inverted index model, because only the similarities

between the input set s and those sets in S that have tokens in common with s have to be

computed. These sets are the elements of the invertedIndex pointed to by the entries of

the index array associated with the tokens occurring in the input set s.

The obvious solution to compute the Jaccard similarity is to distribute the tokens

of input set s evenly among the processors and let each processor p access the inverted
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lists corresponding to tokens allocated to it. However, the distribution of tokens in sets

of the collections follows approximately the Zipf’s Law. This means that few tokens

occur in a large amount of sets and most tokens occur in only a few sets. Consequently,

the size of the inverted lists also varies according to the Zipf’s Law, thus distributing the

workload according to the tokens of s could cause a great imbalance of the work among

the processors.

Thus, we propose a load balance method to distribute the sets evenly among

the processors so that each processor computes approximately the same number of Jac-

card similarities. In order to facilitate the explanation of this method, suppose that

we concatenate all the inverted lists corresponding to tokens in s in a logical vector

Es = [ 0 . . |Es| − 1 ], where |Es| is the sum of the sizes of all inverted lists of tokens in s.

Given a set of processors P = {p0, · · · p|P|−1}, the load balance method should allocate

elements of Es in intervals of approximately the same size, that is, each processor pi ∈ P
should process elements of Es in the interval [i� |Es|

|P| 
,min((i + 1)� |Es|
|P| 
 − 1, |Es| − 1)].

Since each processor knows the interval of the indexes of the logical vector Es it has to

process, all that is necessary to execute the load balancing is a mapping of the logical in-

dexes of Es to the appropriate indexes in the inverted index (array invertedIndex). Each

processor executes the mapping for the indexes in the interval corresponding to it and

finds the corresponding elements in the invertedIndex array for which it has to compute

the Jaccard similarity to the input set.

Let Vs ⊂ V be the vocabulary of the input set s. The mapping proposed in

this paper uses three auxiliary arrays: counts[ 0 . . |Vs| − 1 ], starts[ 0 . . |Vs| − 1 ]] and

indexs[ 0 . . |Vs| − 1 ]. The arrays counts and starts are obtained together by copying in

parallel count[ti] to counts[ti] and index[ti] to starts[ti], respectively, for each token ti
in the input set s. Once the counts is obtained, an inclusive parallel prefix sum on counts
is performed and the results are stored in indexs.

Algorithm 3 shows the pseudo-code for the complete similarity search. In lines 3–

6, the arrays counts and starts are obtained. In line 8, the array indexs is obtained by ap-

plying a parallel prefix sum on array counts. Next, each processor executes a mapping of

each position x in the interval of indexes of Es associated to it to the appropriate position

of the invertedIndex. This mapping is described in lines 10-17 of the algorithm. Then,

the mapped entries of the inverted index are used to compute the intersection between

each set associated with these entries and the input set. The intersections are computed

partially by each processor, but the complete intersections are available when all proces-

sors have finished this phase. Lines 20-24 show how the Jaccard similarities are computed

and compacted. Each processor is responsible for
|S|
|P| similarities. Each Jaccard similarity

calculation uses the intersection (calculated in the previous phase) and the cardinality of

the sets. Similarities above the given threshold are flaged and filtered by an exclusive

parallel prefix sum. Thus only those similarities are returned (line 22) to the CPU.

5.3. Multi-GPU Similarity Join

The gSSJoin algorithm was designed having in mind a many-core architecture (acceler-

ator) with (global) shared memory. It exploits data parallelism when processing a single

input set and uses a single accelerator. It does that by making use of thousands of threads

to index the dataset and to find the most similar sets to a given input set. However, when
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Algorithm 3: SimilaritySearch(invertedIndex, s)

input : invertedIndex, count, index, cardinality, threshold, inputset s[ 0 . . |Vs| − 1 ].
output: Jaccard similarity array jac sim[ 0 . . |S| − 1 ] initialized with zeros.

1 array of integers counts[ 0 . . |Vs| − 1 ] initialized with zeros

2 array of integers indexs[ 0 . . |Vs| − 1 ]

3 for each token ti ∈ s, in parallel do
4 counts[i] = count[ti];
5 indexs[i] = index[ti];

6 end
7 Perform an inclusive parallel prefix sum on counts and stores the results in indexs

8 foreach processor pi ∈ P do
9 for x ∈ [i� |Es|

|P| �,min((i+ 1)� |Es|
|P| � − 1, |ES | − 1)] do

// Map x to the correct position indInvPos of the invertedIndex
10 pos = min(i : indexs[i] > x);
11 if pos = 0 then
12 p = 0; offset = x;

13 else
14 p = indexs[pos− 1]; offset = x− p;

15 end
16 indInvPos = starts[pos] + offset
17 uses s[pos] and invertedIndex[indInvPos] in the partial computation of the intersection

between s and the set associated to invertedIndex[indInvPos]
18 end
19 for x ∈ [i� |S|

|P| �,min((i+ 1)� |S|
|P| � − 1, |S| − 1)] do

// Jaccard similarity calculation for S sets using P processors
20 uses intersection and union (through cardinality) to compute the Jaccard similarity

21 flag sets with Jaccard similarity above the threshold

22 end
23 end
24 Perform an exclusive parallel prefix sum on the flagged sets to compact the selected sets

25 Return the array: jac sim with the selected jaccard similarities.

dealing with self-joins, the gSSJoin search has to be invoked repeatedly, to deal with

the processing of many input sets. The gSSJoin algorithm can handle that by process-

ing the queries one after another, once the input data has been indexed. This streaming

operation requires that the most similar sets are returned before another input set can be

processed. In addition, a set-specific memory allocation is needed for every set. More-

over, machines with more than one accelerator (GPU) can not take advantage of the extra

computing power for the gSSJoin search. These observations have motivated us to extend

the gSSJoin to deal with multiple sets in a multi-GPU platform.

In the multi-GPU version, called mgSSJoin, task parallelism is exploited in addi-

tion to data parallelism. The data indexing step is performed by replicating the input data

in each of the g available GPUs and then, in parallel, creating g copies of the inverted

index. Thus, each GPU receives the same task and they all produce the same inverted

index in their memory. Next, the gSSJoin search proceeds by partitioning the m sets

(tasks) into the g GPUs. Each GPU then receives m/g tasks. This is possible since the

tasks (sets) are completely independent of each other. Since the sets are of different size,

we pre-allocate memory based on the biggest set, i.e., the set with the largest number of

tokens). This saves us a lot of time since GPU memory allocation can be very costly. Al-

gorithm 4 shows the pseudo-code for the mgSSJoin. Note that this algorithm, differently

from the previous ones, exploits task parallelism and runs on the CPU. The GPU function

(kernel) calls (invocations), for data indexing and gSSJoin search, take place in lines 3

and 9 respectively.
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Algorithm 4: MultiGPUSearch(E)

input : token-set pairs in E[ 0 . . |E| − 1 ].
output: A list of the most similar, one for each set.

1 for each i ∈ g, in parallel do
2 set.gpu.device(i);
3 DataIndexing(E);

4 end
5 Allocate memory for the biggest set;

6 for each j ∈ g, in parallel do
7 set.gpu.device(j);
8 for each set s ∈ (m/g) in parallel do
9 SimilaritySearch(invertedIndex, s);

10 end
11 end
12 Return A list of the most similar sets, one for each set.

6. Experiments

6.1. Experimental Setup

We used two publicly available, real-world datasets: DBLP 1 contains information about

Computer Science publications and Netflix 2 contains information about movies. For

DBLP, we randomly selected 20k publications and extracted their title; then, we gener-

ated 4 additional “dirty” copies of each string, i.e., duplicates to which we injected textual

modifications consisting of 1–5 character-level modifications (insertions, deletions, and

substitutions). For both datasets, we converted all strings to upper-case letters and elim-

inated repeated white spaces. Statistics about the two datasets are shown in Table 6.1.

Finally, we tokenized all strings into sets of 2-grams and 3-grams and sorted the sets as

described in Section 2.1.

We compared gSSJoin against ppjoin and AllPairs [Xiao et al. 2011], two of three

best-performing algorithms according to the evaluation in [Mann et al. 2016]. We used

the binaries provided by the authors3. We implemented gSSJoin using the CUDA Toolkit

version 7.5. The experiments were conducted on a machine running CentOs 7.2.1511 64-

bits, with 24 Intel Xeon E5-2620, 16GB of ECC RAM, and four GeForce Zotac Nvidia

GTX Titan Black, with 6GB of RAM and 2,880 CUDA cores each.

Table 1. Dataset statistics.
Database Number of sets Max length Mean length Standard deviation

DBLP 100k 205 70 23.9

Netflix 200k 54 30.54 8.2

6.2. Performance Results

We now analyze and compare the efficiency of gSSJoin against ppjoin and AllPairs. To

this end, we measured the runtime performance with varying threshold parameters and

for q-grams of size 2 and 3. Figure 3 shows the results. As a general trend, all algorithms

exhibit similar performance, with some advantage to the latter, at high threshold values

1http://dblp.uni-trier.de/
2http://www.cs.uic.edu/l̃iub/Netflix-KDD-Cup-2007.html
3http://www.cse.unsw.edu.au/ weiw/project/simjoin.html
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(a) DBLP dataset, 3-grams (b) Netflix dataset, 3-grams

(c) DBLP dataset, 2-grams (d) Netflix dataset, 2-grams

Figure 3. Performance results using varying thresholds.

(DBLP dataset with 3-grams, in particular). However, as the threshold decreases, the per-

formance of ppjoin and AllPairs drops dramatically. As discussed in Section 3, ppjoin

and AllPairs, as most set similarity join algorithms, heavily depends on prefix filtering

effectiveness to obtain performance. At lower thresholds, filtering becomes ineffective

and verification workload skyrockets. In contrast, gSSJoin maintains nearly constant run-

times, thereby achieving increasing speedups over ppjoin.

Furthermore, the performance advantage of gSSJoin over ppjoin and AllPairs is

much greater on the Netflix dataset. The token frequency is much less skewed as com-

pared to DBLP, which leads to prefix tokens with higher frequency. As for treshold val-

ues, gSSJoin exhibits great robustness to data distribution variations. An identical trend

is observed for q-grams of size 2 for the same reason. In fact, the peak speedup gain for

gSSJoin is obtained on the Netflix dataset with 2-grams and 0.3 as threshold value: in this

setting gSSJoin is 57x faster than the other algorithms. Finally, gSSJoin suffers a drop

in performance for threshold value at 0.2 because of the huge number of set pairs in the

result that have to be copied to the CPU memory.

Table 2 shows the execution time using multiple GPUs. The use of multiple GPUs

showed an almost linear speedup increase. The data is easily divided between the GPUs,

making our solution capable of dealing with big datasets.
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Table 2. Execution Time (secs) Using Multiple GPUs, Threshold = 0.5
Number of GPUs: 1 2 3 4

DBLP 2gram 27.56 14.37 10.4 7.2

DBLP 3gram 16.73 8.77 6 4.47

Netflix 2gram 41.10 21.63 14.37 11.2

Netflix 3gram 23.52 12.69 8.5 6.5

7. Related Work
There is a substantial body of literature on the efficient computation of set similarity joins.

Here, we focus on key related work and refer the reader to [Mann et al. 2016] for a recent

experimental evaluation of several state-of-the-art set similarity join algorithms.

Most set similarity join algorithms proposed so far are intrinsically sequen-

tial [Sarawagi and Kirpal , Chaudhuri et al. 2006, Bayardo et al. 2007, Xiao et al. 2011,

Ribeiro and Härder 2011, Wang et al. 2012] and, therefore, cannot fully exploit the mod-

ern computer architectures. Main optimizations of such algorithms exploit the threshold

and the underlying data characteristics to derive efficient filters [Sidney et al. 2015] —

prefix filtering as prime example.

The processing of set similarity joins can easily become prohibitive for large

datasets and high-dimensional space. Thus, some parallel solutions have been proposed to

speedup this process. For example, a recent work proposed to perform similarity joins on

a distributed memory MapReduce framework [Vernica et al. 2010]. The authors report

some performance gains, but the high communication costs limit their solution. Other

works use a fine-grained parallel approach on shared-memory architectures.

Another form of optimization appears in approximate set similarity joins that use

some sort of data reduction technique to speed up processing at the cost of missing some

valid results. Locality Sensitive Hashing (LSH) is the most popular technique for ap-

proximate set similarity joins [Indyk and Motwani 1998]. The work in [Cruz et al. 2015]

proposes an approximate set similarity join algorithm designed for a many-core architec-

ture (GPU). The authors estimate the Jaccard similarity between two sets using MinHash

[Broder et al. 1998], an LSH scheme for Jaccard. Approximate approaches can obtain

good speedups, but at the cost of missing some valid output set pairs.

Our proposal differs from the above mentioned work in many aspects. First, our

proposal finds exact answers to set similarity join algorithms. However, our techniques

are orthogonal to the approximated solutions and can be combined with LSH (used in

a pre-processing step) for better performance. Second, our approach exploits massive

parallelism instead of filtering; as observed in our experimental results, this approach

exhibited better robustness to variations of threshold and data distributions.

8. Conclusions and Future Works
In this paper, we proposed the gSSJoin algorithm, a GPU-based solution to the set simi-

larity join problem. Our solution exploits intense GPU occupancy, hierarchical memory,

and coalesced memory access to achieve much better performance than the-state-of-the-

art CPU-based algorithms in most settings. We also proposed a multi-GPU variant to

further exploit task parallelism in addition to data parallelism. In future work, we plan
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to investigate the integration of GPU-based algorithms into a distributed framework and

incorporate candidate filtering techniques to obtain even greater speedups.
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