
Automatic Physical Design Tuning based on Hypothetical
Plans

Ana Carolina Almeida1, Angelo Brayner2, José Maria Monteiro2,
Sérgio Lifschitz3, Rafael Pereira de Oliveira3

1 Universidade do Estado do Rio de Janeiro - UERJ

ana.almeida@ime.uerj.br

2Universidade Federal do Ceará - UFC

{brayner,monteiro}@dc.ufc.br

3Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

{sergio,rpoliveira}@inf.puc-rio.br

Abstract. It is well-known that fine tuning in database physical design is an im-
portant strategy for speeding up data access. In this paper, we introduce a new
approach, denoted HypoPlans, to make relational database systems able to ex-
ecute self-tuning actions, based on the notion of Hypothetical Query Execution
Plans. HypoPlans is non-intrusive and completely autonomous. In this sense,
it is DBMS-independent and does not require any DBA intervention. Our ap-
proach is based on heuristics that run continuously. Thus, HypoPlans is able
to guide decisions on the current physical database configuration in order to
dynamically react to workload changes. More specifically, we present in this
paper the software architecture of a framework, which implements HypoPlans.
In order to evaluate the viability of our approach, we have instantiated this
framework for the database physical design concerning index (self)tuning. Our
experiments show that HypoPlans is quite effective and efficient, also presenting
low resource consumption.

1. Introduction
Database applications have become very complex, dealing with a huge volume of data

and database objects (e.g., tables, indexes and materialized views). Concurrently, low

query response time and high transaction throughput have emerged as mandatory require-

ments to be ensured by database management systems (DBMSs). Among other possible

interventions regarding database performance, database physical design fine tuning has

become a critical task since it may considerably speed up data access. However, manual

adjustment for these large systems may be unfeasible in many practical situations. Conse-

quently, several approaches for reducing human intervention in database physical design

tuning activity have been proposed [Bruno 2011].

We classify database physical design tuning tools as (i) continuous or non-continuous;
(ii) autonomous or non-autonomous; and (iii) intrusive or non-intrusive. Such tools are

characterized as continuous or non-continuous depending whether or not they are able

to dynamically capture and analyze the current workload. Autonomous physical design

tuning tools have the ability of automatically triggering adjustments in database physical

design (creation, dropping or rebuilding of database structures such as index and materi-

alized views). Conversely, non-autonomous tools transfer to the DBA this responsibility.

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

115

Intrusive solutions are those that require changes and that are tightly coupled to a partic-

ular DBMS code.

In this work, we present HypoPlans, which is a continuous, autonomous and non-

intrusive approach for physical design maintenance. HypoPlans may be characterized

by the following features: (i) it can be used with different DBMSs in a plug-and-play

manner; (ii) it is based on hypothetical query execution plans for dealing with automatic

physical design maintenance, and; (iii) there is a low-overhead during the physical design

tuning activity, since HypoPlans captures workloads in a lightweight manner.

The rest of this paper is organized as follows. Section 2 discusses some automated

database physical design tuning tools and strategies. Section 3 presents the HypoPlans
approach and software architecture, besides the notion of hypothetical plans. Section 4

brings the description of a HypoPlans instantiation and analyzes some experimental re-

sults. Section 5 concludes this work.

2. Related Work

Bruno et al [Bruno 2011] present an intrusive index tuning tool implemented as a com-

ponent of Microsoft SQL Server. In [Maier et al. 2010, Alagiannis et al. 2010] an in-

trusive and interactive solution, called PARINDA (PARtition and INDex Advisor), is

presented. Bruno et al propose in [Bruno and Chaudhuri 2010] an intrusive and inter-

active tool for Microsoft’s SQL Server, which is similar to PARINDA since it makes

tuning sessions interactive, allowing DBAs to try different tuning options and interac-

tively obtain a feedback. A new index recommendation technique, called semi-auto-

matic index tuning, based on the notion of a work function algorithm was proposed in

[Schnaitter and Polyzotis 2012]. In [Narasayya and Syamala 2010], the authors describes

a non-continuous approach to solve the problem of identifying the set of indexes that has

to be defragmented for a given workload. The proposed solution was implemented in an

intrusive manner, specifically Microsoft’s SQL Server. It is important to highlight that,

all these works presented in this section adopt an intrusive approach.

Regarding industrial tuning tools, most of them are intrusive, non-continuous and

not fully autonomous, such as DB2 Advisor, Database Tuning Advisor (MS SQL Server)

and SQL Adjust Advisor (Oracle) [Bruno 2011]. Existing continuous and autonomous

tools are all intrusive [Bruno 2011].

3. HypoPlans: hypothetical plans for a non-intrusive approach

In our approach, called HypoPlans, a database structure (e.g. an index or a materialized

view) may be either real or hypothetical. A real structure exists physically, i.e., it occupies
disk space and may be used for accessing data. On the other hand, for the hypothetical
structure, its definition exists only in the HypoPlans’ catalog. Indeed, the hypothetical

structures are used only for external what-if evaluations.

HypoPlans adopts the classical observation-prediction-reaction phases for self-

tuning [Weikum et al. 1994]. During the observation phase, HypoPlans monitors and

analyzes each task, in the workload (see Definition 1), in order to identify the most ad-

equate database structures and their respective benefits for that task (see Definition ??).
Throughout the execution of the prediction phase, HypoPlans attempts to infer the effects

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

116

that would result from changing the current physical design configuration C to a new con-

figuration C̄, where C̄ contains both real and hypothetical structures. The reaction phase
has the functionality of physically changing C to C̄.

Definition 1 (Workload) Let Ti be a task represented by a triple < Q, P, CEP >, where
Q is the SQL expression of query Q, P represents the execution plan P used to process Q
and CEP corresponds to estimated cost to execute plan P. We define a workload W for a
given DBMS in an instant t as the set W = {T1, T2,Tn} of tasks. �
Definition 2 (Benefit) Let T be a task of a workload W (T ∈ W), i a database structure
(an index ou a materialized view, for example), cost(T) the cost for executing T without
using i and cost(T, i) the execution cost using i. The benefit of using i to execute T ,
denoted Bi,T , is computed as follows: Bi,T = max{0, cost(T)− cost(T, i)}. �

HypoPlans implements the new concept of hypothetical query execution plans.
The key idea behind the concept of hypothetical query execution plan is to enable Hy-
poPlans to substitute a given sub-plan p belonging to the original execution plan P by a

hypothetical sub-plan p′, obtained through the use of hypothetical structures. HypoPlans
can build a hypothetical plan HP , which is equivalent to the original plan P , but with a

lower estimated execution cost. Thus, the hypothetical structures in a hypothetical sub-

plan p′ are good candidates to be physically created. In order to compare the execution

costs ofHP and P , a Canonical Cost Model (CCM) is used just for supporting HypoPlans
in finding efficient physical design tuning activities.

Definition 3 (Hypothetical Execution Plan) A hypothetical query execution plan (for
short, hypothetical plan) HP for a given task T is a query execution plan with the follow-
ing features: (i) the database structures (indexes or materialized views) used in HP may
be real or hypothetical; (ii) it is built from a real execution plan P (the execution plan
used by the DBMS to run the query T), and (iii) it is equivalent to P , i.e., HP and P yield
the same result whenever they are applied to execute T . �

Figure 1 depicts an abstract model of HypoPlans’ architecture. To run HypoPlans
for a given DBMS, it is necessary to instantiate three drivers: one for workload access

(DWA), a driver for statistics access (DSA) and another driver for DBMS update (DDU).

These 3 drivers are the only components of HypoPlans that are DBMS-specific. Nev-

ertheless, remember that these drivers are implemented in a non-intrusive fashion. The

main components of the architecture illustrated in Figure 1 are the following:

Workload Obtainment (WO). The WO component is responsible for periodically cap-

turing the workload submitted to the DBMS. Thus, WO has to access the DBMS catalog

in order to get the tasks executed by the DBMS. Thereafter, the triple <SQL Expression,
execution plan, estimated cost> representing each captured task is stored in a structure,

called Local Metabase.

Local Metabase (LM). LM stores the captured workload and a set of data on database

structures. For each index structure, for example, HypoPlans stores in LM the following

data: the structure id, the name of the table on which the structure is defined, the columns

that compose the search key, the structure state (real or hypothetical), the index type (i.e.,

primary or secondary), the estimated cost for creating the structure and its accumulated

benefit.

Driver for Workload Access (DWA). This component enables HypoPlans to access

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

117

metabase (or catalog) of a given DBMS.

Statistics Obtainment (SO). This component is in charge of accessing statistics infor-

mation of the target DBMS, such as table cardinality, the amount of disk pages required

to store a database table, the height of (b+ tree) index structures and so forth.

Driver for Statistics Access (DSA). This driver is responsible for ensuring the access to

database statistic data.

Integrated Heuristics for Index Maintenance (IHIM). A set of heuristics, which en-

capsulates the knowledge of the index self-tuning activity.

Index Maintenance (IM). The main functionality of IM is to analyze each task T of a

workload W in order to identify an appropriate index configuration IC for W . Thus, IM

is responsible for executing the observation and prediction phases.

DDL Generator (DG). This component executes the reaction phase. Its key goal is to

build DDL commands in SQL for either creating, dropping or rebuilding database struc-

tures (indexes and materialized views) into the target DBMS.

Driver for DBMS Update (DDU). It is responsible for enabling the execution of DDL

commands (built by the DG component) in the target DBMS.

Figure 1. HypoPlans’ Architecture.
It is important to make the following observations. First, the CCM does not have

the goal of being as precise as the DBMS internal cost model, since a hypothetical query

plan will not be used by native DBMS query optimizers. In other words, CCM has to be

precise just for supporting AIM-HypoPlans in finding a good set of candidate indexes for

a given SQL query. Second, the “what-if” approach requires as input parameters an SQL

query and a set of candidate indexes in order to provide an efficient execution plan and

its estimated execution cost. The “what-if” approach is not able to autonomously define

a set of candidate indexes which may reduce the response time for a given task t. Third,
inserting or deleting tuples into/from a table T imposes updates to the index structures

defined on T . Hence, the cost of updating an index structure is considered a negative

benefit. Fourth, AIM-HypoPlans considers both primary (clustered) and secondary (non-

clustered) indexes.

4. Experimental Results
We have instantiated the proposed approach to solve the problem of automatic index tun-

ing. This implementation, called AIM-HypoPlans, is available online1. We have imple-

1https://github.com/BioBD/dbx

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

118

mented AIM-HypoPlans (and its drivers) in Java for running it in three different database

servers: PostgreSQL 8.4 and two major DBMS. The names of the DBMSs have been

omitted for legal reasons and we call these DBMSs and their advisers of A and B.

In order to evaluate AIM-HypoPlans, we have executed several experiments using

AIM-HypoPlans and the advisers A and B. The workload used in our experiments has

been defined based on TPC-H benchmark. Out of all TPC-H queries we have chosen six

queries, which have the highest response times, namely queries 1,2,4,10,17 and 19. To

carry out the tests a 13GB TPC-H database (TPC-H scale factor 10) has been created.

We ran the tests using an Athlon 64x2, 2 GHz workstation with 2GB of RAM and a

250GB disk. In order to analyze the AIM-HypoPlans’ effectiveness, we have defined the

following strategy: for each index i recommended and created by AIM-HypoPlans, we

have identified if the index i was suggested by the DBMS’s adviser (A or B), if i has been
really used by to process queries submitted to the DBMS (A and B) and if the index i is
recommended by the DBT-3 (TPC-H benchmark). The results are presented in Table 1.

Query Table Column Adv. A Used by A Adv. B Used by B Used by PS AIM-HP DBT-3

1 Lineitem L_shipdate, L_Returnflag, L_linestatus Y N N N N Y N

1 Lineitem L_shipdate N N Y N N Y Y

2 Partsupp PS_partkey, PS_suppkey, PS_supplycost Y Y N Y Y Y N

2 Part P_partkey Y N N N Y Y Y

2 Partsupp PS_partkey N Y N Y Y Y Y

2 Supplier S_suppkey N N N N Y Y Y

4 Lineitem L_orderkey, L_commitdate, L_receipdate Y Y N Y Y Y N

4 Orders O_orderdate, O_orderkey, O_orderpriority Y Y N Y Y Y N

4 Lineitem L_orderkey N Y Y Y Y Y Y

4 Orders O_orderdate N Y Y Y Y Y Y

10 Customer C_custkey, C_nationkey, ..., C_comment Y Y N Y N Y N

10 Lineitem L_orderkey, L_returnflag Y N N N N Y N

10 Orders O_orderdate, O_orderkey, O_custkey Y Y N Y Y Y N

10 Lineitem L_orderkey N N Y N N Y Y

10 Orders O_orderdate N N Y N Y Y Y

10 Customer C_custkey N N N N N Y Y

17 Lineitem L_partkey Y N N Y Y Y Y

17 Part P_brand, P_container N Y Y Y Y Y N

19 Lineitem L_partkey,..., L_shipninstruct Y Y N Y N Y N

19 Part P_brand, P_container, P_size, P_partkey Y Y N Y Y Y N

19 Lineitem L_partkey N Y Y Y N Y Y

19 Part P_brand, P_container N N Y N Y Y N

19 Part P_brand, P_container, P_size N Y Y Y Y Y N

Table 1. HypoPlans effectiveness. Yes (Y) or No (N) for index creation.

Observing Table 1, one can note that AIM-HypoPlans has recommended and cre-

ated the 11 index structures suggested by DBT-3, whereas adviser A has recommended

only 2 structures. Moreover, from the set of indexes suggested by adviser A, DBMS A

has exploited approximately 64% (7 from 11 indexes). From the set of indexes created by

AIM-HypoPlans, DBMSA has employed approximately 57% (13 from 23 indexes). AIM-
HypoPlans has recommended and created the 11 index structures suggested by DBT-3,

whereas adviser B has recommended 9 structures. Regarding the eleven index structures

recommended by adviser B, AIM-HypoPlans has recommended 11 indexes from the 11

suggested by adviser B. One can verify that from the set of indexes suggested by adviser

B, DBMS B’s query processor has used approximately 55% (5 from 9 indexes). From

the set of indexes created by AIM-HypoPlans, DBMS B has used approximately 61% (14

from 23 indexes). The query engine of DBMS B has exploited more indexes automati-

cally created by AIM-HypoPlans than the indexes recommended by adviser B. In relation

to PostgreSQL, from the set of indexes created by AIM-HypoPlans, the PostgreSQL’s

query optimizer has used 15, i.e., a use ratio of 65%. Therefore, the CCM implemented

by AIM-HypoPlans is a good approximation of the DBMS A’s internal cost model.

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

119

5. Conclusion
In this paper, we have presented an autonomous and non-intrusive approach, HypoPlans,
for database physical design maintenance in zero-administration environments. HypoPlans
periodically captures the workload from the database metabase The autonomous behav-

ior ensures two advantages: 1) to dynamically and more quickly react to changes in the

workload by making decisions on the current database physical design whenever neces-

sary (without having to wait for the action of a DBA), and; 2) to give tuning suport to

companies without a specialized DBA, as well as for environments where DBA inter-

vention proves impractical, which is the case of cloud database environments. A non-

intrusive solution is that whose code is loosely coupled to a specific DBMS code, in

order to, for example, be able to make calls to the DBMS query optimizer. Thus, a new

release of the DBMS query optimizer does not imply in a new code of the self-tuning so-

lution. Nonetheless, HypoPlans depends on database metadata. However, we believe that

changes in metadata structure is less unlikely than changes DBMS code. Besides, if the

DBMS metadata eventually changes, the impact of this change is limited on the proposed

approach, since only the drivers should to be updated.

We conclude this paper by emphasizing that HypoPlans presents features, which

are essential for companies without a specialized DBA, as well as for environments where

DBA intervention proves impractical, which is the case for cloud database environments,

where autonomy and reliability are key features.

References
Alagiannis, I., Dash, D., Schnaitter, K., Ailamaki, A., and Polyzotis, N. (2010). An

automated, yet interactive and portable db designer. In Proceedings of the 2010 ACM
SIGMOD international conference, SIGMOD ’10, pages 1183–1186, New York, NY,

USA. ACM.

Bruno, N. (2011). Automated Physical Database Design and Tuning. Emerging directions

in database systems and applications. CRC Press.

Bruno, N. and Chaudhuri, S. (2010). Interactive physical design tuning. In International
Conference on Data Engineering, pages 1161–1164.

Maier, C., Dash, D., Alagiannis, I., Ailamaki, A., and Heinis, T. (2010). Parinda: an inter-

active physical designer for postgresql. In Proceedings of the 13th International Con-
ference on Extending Database Technology, EDBT ’10, pages 701–704, New York,

NY, USA. ACM.

Narasayya, V. and Syamala, M. (2010). Workload driven index defragmentation. In

Proceedings of the IEEE International Conference on Data Engineering, pages 497–

508. IEEE Computer Society.

Schnaitter, K. and Polyzotis, N. (2012). Semi-automatic index tuning: Keeping dbas in

the loop. Proceedings of the VLDB Endowment, 5(5):478–489.

Weikum, G., Hasse, C., Moenkeberg, A., and Zabback, P. (1994). The COMFORT auto-

matic tuning project, invited project review. Information Systems, 19(5):381–432.

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

120

