
Fast and Scalable Relational Division on Database Systems
André S. Gonzaga1, Robson L. F. Cordeiro1

1 Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo (USP) – São Carlos, SP – Brazil

asgonzaga@usp.br, robson@icmc.usp.br

Abstract. The Relational Algebra is composed of several operators to assist queries
and data manipulation on Relational Databases. The Relational Division operator,
particularly, allows simple representations of several queries involving the concept of
“for all”, however, the SQL does not have an explicit implementation for it. In this
paper, we compare the performance of the best implementation known for the division
operator in SQL, considering different cases of use. We also present a new algorithm
for the division, which we implemented through stored procedures. We performed a
case study using the relational division to select genetic data. The results showed
that our implementation for the relational division is potentially faster than the best
implementation in SQL.

1. Introduction
Data queries applying the concept of “for all” are widely used in real applications — e.g., to

select candidates having all the skills for a given job, to select providers that produce all the

models of a given type of product, to select the diseases that have all the given symptoms.

The division (÷) operator, defined in the Relational Algebra, allows to represent these types

of queries with a single operation, since it is the only direct algebraic correspondent to the

Universal quantification (∀) from the Relational Calculus [Codd 1972]. However, none of the

Relational Database Management Systems (RDBMS) implement this operator, forcing users to

write complex nested queries in order to express a simple concept of data relationship. In other

words, there is no generic, intuitive and efficient implementation for the division operation.

In this work we investigate the performance of the best implementation known for the

division operator in RDBMS on different cases of use. We also present a new implementation

using stored procedures to perform the operation through a new algorithm potentially faster than

the best implementation in SQL. We also applied the relational division on a practical context,

selecting individuals that have all the given genetic conditions, considering a genetic dataset

with Single Nucleotide Polymorphism (SNP). For that, the main contributions of this work are:

1. Evaluate the division implementations in RDBMS in different cases of use.

2. Investigate which aspects of the data affect the execution time of each implementation.

3. Propose a new algorithm to solve the relational division queries.

4. Perform a case study to select genetic data using the relational division.

2. Background
2.1. Genetic Data
The genome of an individual is the complete set of genetic information in its organism. It is

associated to all phenotypic expressions of the individual, varying from its predisposition to de-

velop diseases until the color of its eyes, for example [Zhang et al. 2004]. The genome is stored

in molecules of DNA (deoxyribonucleic acid) called chromosomes. Each chromosome carries

the genes responsible to develop the organism traits, formed from a chain of four nucleotide

bases — A, T, C, and G. Population of the same species has almost all the DNA carrying the

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

169

same nucleotides at a specific position in the DNA sequence, however, if more than one percent

of the population have variations at a specific position, the position is therefore classified as a

Single Nucleotide Polymorphism, or SNP (pronunced “snip”), as it is shown in Figure 1. When

a SNP occurs within a gene, then it is described as having more than one allele, that is, a pair

of genes that appear at a particular location on a particular chromosome and control the same

characteristics. The datasets containing SNPs are represented by the position at chromosome

and a pair of alleles, each one expressed by the numbers 1 or 2.

SNP 1 SNP 2 SNP 3

Individual 1: aattccgctgaagtgacgttggggcattacaa
Individual 2: aataccgctgatgtgacgttggggcatcacaa
Individual 3: aatcccgctgaggtgacgttggggcatgacaa

Figure 1: An example of SNPs along the chromosome of the individuals.

2.2. Relational Division

The Relational Division (÷)[Codd 1972] has an important role of expressing relational queries,

since it is the only, directly, algebraic correspondent to the Universal Quantification (∀) from

the Relational Calculus, allowing simple and intuitive algebraic representations for queries in-

volving the concept of “for all”. The division operation is a derived operator. That is, it can

be expressed as a combination of other basic operators, as shown in the Equation 1. In this

expression R1 and R2 are relations representing the dividend and the divisor of the operation,

respectively. The division operates over the union-compatible lists of attributes A and B from

relations R1 and R2. The result is a relation with the list of attributes A, in which A contains all

the attributes that are not in A.

R1[A÷ B]R2 ⇔ (πAR1)− πA((πAR1)×R2)−R1) (1)

For instance, consider the Relational Division operation showed in Table 1 to answer the query

“Which individuals have all the given genetic conditions”. In this example, the dataset is com-

posed of SNP, representing the variations in a DNA sequence among individuals. In the ex-

ample schema1, the individual is represented by the attribute ID. Each individual have several

tuples representing the SNPs — attributes Allele 1 and Allele 2 with its position along

the chromosome — attribute Position. The relations involved in the division are Table 1a

and 1b, representing the dividend R1 and the divisor R2, respectively. The lists of attributes

A and B, from the division equation, represents the columns used to validate the genetic con-

ditions desired for each individual, which in this example are given by the subset of attributes

{Position, Allele1, Allele2}. The result relation is given by Table 1c, including all of

the attributes of R1 that are not included in the list of attributes A. In this example, just attribute

ID is part of the result relation, representing the individuals who have a tuple with the same

values for each tuple in the R2, in this example, just the individual 1.

3. Related Work
The computational complexity of the Relational division was studied in

[Leinders and Van den Bussche 2005], in which it is proven that any implementation of

the division using only operators from the Relational Algebra, e.g., Query 1, produces

expressions with a minimum time complexity of O(n2), where n is the number of tuples in the

dividend. However, it is also shown that there are alternative approaches that uses counting and

1Usually, the datasets contains more than 10,000 SNP for each individual. Thus, it is unfeasible represent them

through attribute columns.

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

170

Table 1: Example of the Relational Division used to select individuals that satisfy de-
sired genetic conditions, in a dataset representing single nucleotide polymorphism
alleles and their position along the chromosome of the individuals.

ID Position Allele 1 Allele 2
1 0.10 1 2

1 44.5 2 2

1 84.0 2 1

2 0.10 2 2

2 44.5 1 1

2 84.0 1 2

3 0.10 1 2

3 44.5 2 1

3 84.0 2 2

(a) R1 — Genetic data of individuals.

÷
Position Allele 1 Allele 2

44.5 2 2

84.0 2 1

(b) R2 — Desired genetic conditions.

=
ID
1

(c) Selected

individuals.

A A

B
A

sorting strategies to optimize the operator implementation, allowing to achieve a complexity of

O(n log n), e.g., Query 2. In [Celko 2009], implementations of queries that use the Relational

Division concept were investigated. Several cases of application were studied, and also covers

alternative definitions of the operator. However, the work did not made any experiment to

validate the performance of these custom queries. The work [Camps 2014] optimizes the

division query through tuple reduction, i.e., filtering the data before executing the query.

Query 1: Division query based on the formal definition.

SELECT DISTINCT A FROM (

(SELECT A FROM R1)

MINUS (SELECT A FROM
((SELECT ∗ FROM (SELECT A FROM R1) CROSS JOIN R2)

MINUS (SELECT ∗ FROM R1)))) ;

Query 2: Division query based on counting tuples.

SELECT A FROM R1 NATURAL JOIN R2
GROUP BY A

HAVING COUNT (∗) = (SELECT COUNT (∗) FROM R2) ;

The work [Matos and Grasser 2001] compares possible implementations of the Relational Di-

vision in Structured Query Language (SQL). The study was made more than ten years ago and,

although the small amount and the lack of diversity of the data used in the experiments, it shows

that using the counting approach — Query 2, had the best performance and the lesser writing

complexity among all the other implementations. On our previous work [Gonzaga 2014], we

also investigate several different implementations, found on literature, of the Relational Divi-

sion using SQL. However, differently from the [Matos and Grasser 2001], we performed ex-

periments with millions of tuples and with a large diversity on data. The results, although,

corroborate that the query using the counting approach — Query 2, is the most efficient overall.

Execution plan 1: Division query based on counting tuples.
FILTER
HASH GROUP BY

NESTED LOOPS
TABLE ACESS (FULL) R2
INDEX RANGE SCAN R1

SORT AGGREGATE
TABLE ACCESS (FULL) R2

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

171

4. Proposed Algorithms
4.1. Index-Division
We developed a new algorithm for the division operation, shown in Algorithm 1, which has as

premise the existence of index structures over the dividend attributes in list A. This approach

starts with a set of valid individuals GV filled with all possible individuals, that is, it assumes

that all individuals satisfy the requirements at the beginning. Then, for each SNP requirement

in R2 it is performed a index query in relation R1, using the requirement as the query object.

It recovers then for each tuple retrieved by the query, to which individual it belongs. Then, the

valid individuals are updated with the intersection of the currently valid groups and the groups

that meet the last requirement, of the previous iteration. Therefore, at the end of the algorithm,

just the individuals that meet all the SNPs requirements will be members of the set of valid

individuals (GV).

Algorithm 1 Division based on index.

Gv = π(A)(R1)
for each tuple t ∈ R2

R ← π(A)(σ(t)R1)
for each tuple r ∈ R
Gv ← Gv ∩ r

return GV

The proposed algorithm performs, for each tuple in relation R2 an indexed search query

in relation R1. Assuming that an index structure performs search queries with a complexity of

O(logn), where n is the relation cardinality, thus, the theoretic complexity of the algorithm is

O(mlog n), where n and m are the number of tuples in relations R1 and R2, respectively. On

this work we implemented the proposed algorithm through stored procedures using PL/SQL on

the Oracle database system.

4.2. Division Data Generator
To study the algorithms performance on different scenarios, we develop a data generator using

parameters: (1) Cardinality, the number of tuples in the relations of dividend R1 and of divisor

R2; (2) Number of individuals, the number of groups of tuples representing the individuals to be

evaluated in the operation; (3) Correlation, the percentage of individuals, from the total, which

satisfy all the requirements on R2 thus being part of the result, e.g, 10% of correlation means

that only 10% of all individuals are going to be selected on the final result; (4) Variability, the

differences in size between individuals, adjusting the number of tuples on each group. High

variability means that some individuals have many tuples, and others have just a few. Low

variability means that almost all individuals have the same number of tuples;

All these parameters are linked and affect one another, thus, to perform the data gener-

ation, our algorithm is as follows: (1) set the cardinality of the divisor relation R2; (2) set the

number of individuals based on the correlation value; (3) create the group of tuples for each in-

dividual, taking the variability value into account; (4) distribute the values for each one of these

tuples ensuring that only the individuals which are part of the result, setted by the correlation

value, will satisfy all the tuples in the divisor.

5. Experiments
All the experiments were performed in a machine with an Intel i7 2.67GHz processor and 12Gb

RAM, using the Oracle Database 11g Express running on a Ubuntu 14 operation system. All

the queries use index structures to optimize their performance.

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

172

5.1. Synthetic Data

We perform experiments varying the parameters used on the data generator. Each plot in Figure

2 represents the variation of a single parameter while the others are fixed in: (1) dividend, one

million of rows; divisor, ten rows; (2) one hundred of individuals; (3) 10% of correlation; (4)

50% of variability; The plot in Figures 2a and 2b shows that the cardinality of the relations of

dividend and divisor, is the only parameter that have significant impact on the query running

time. The plot of number of individuals, correlation and variability, showed in Figures 2c,

2d and 2e presents no significant variations on running time. The plot presented in Figure 2g,

where we generate 40 test cases varying the parameters as:(1) dividend, from hundred to million

of rows; divisor, from one to hundred of rows; (2) from two individuals to hundreds; (3) from

1% to 100% of correlation; and the variability fixed in 50%; shows that, overall, although the

execution plan for the counting query — Execution Plan 1, is different from the Index Division

algorithm, both approaches have almost the same performance. The query that translate the

formal definition have the worst performance on all test cases. Theses results can be associated

to the plot in Figure 2f, which shows the computer processing cost generated by the Oracle

DBMS for each division query.

Index Division (ID) Counting (C) Formal Defnition (FD)

106 107

103

104
(a)

Dividend Size

R
u
n
n
in

g
ti

m
e

(m
s)

106 107

103

104
(b)

Divisor Size
102 103

103

104

(c)

Number of Individuals

0.01 0.1 0.25 0.5 1

103

104

(d)

Correlation (%)

R
u
n
n
in

g
ti

m
e

(m
s)

0 0.25 0.5 1

103

104

(e)

Variability (%)

ID C FD

104

106 (f)

Algorithm

C
P

U
C

o
st

0 10 20 30 40

102

103

104
(g)

Test case number

R
u
n
n
in

g
ti

m
e

(m
s)

1 2 3 4

102

104

(h)

Case study tests

Figure 2: Relational Division queries performance on different use cases.

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

173

5.2. Case Study
We performed a case study where the division is used to select animals that have all the given

genetic conditions, represented by SNPs. The dataset used was obtained through the XVI QTL-

MAS Workshop2 public data, where a cattle population has been simulated. It contains 10,000

SNP genotypes for 4,100 individuals, which gives a relation with more than 40 million tuples

— considering the schema presented in Table 1. We performed four divison queries varying

the genetic conditions from one to fifteen, and the correlation from 20% to 1%. The results are

shown in Figure 2h and corroborate the results presented in the previous section, showing that

the index division algorithm and the counting query have almost the same performance, while

the formal definition is thousand times slower.

6. Conclusion
We evaluate the implementations of the relational division, and we showed that the cardinality

of the relations involved in the division operation is the characteristic that most affects the exe-

cution time of the queries. Also, we present a case study using genetic data showing a practical

application of the division operation over a high volume of data. The Index division algo-

rithm showed to have almost the same performance against the best division query presented

in the literature, being slighter faster overall. However, the Index Division was implemented

through stored procedures using PL/SQL, which means that the algorithm have the bottleneck

of switching contexts from traditional SQL and the procedural language. Thus, we consider that

a possible implementation of the Index Division inside the core of the DBMS could achieve the

best performance on relational division queries.

7. Acknowledgment
We thank the financial support of FAPESP, projects 2015/ 05607-6 and 2014/21483-2, CAPES

and CNPq to this work.

References
Camps, D. (2014). High performance relational division in sql server. Simple-Talk. [Online;

acessed April 26,2016].

Celko, J. (2009). Divided we stand: The sql of relational division. Simple-Talk. [Online;

acessed April 26,2016].

Codd, E. F. (1972). Relational completeness of data base sublanguages. In: R. Rustin (ed.):
Database Systems: 65-98, Prentice Hall and IBM Research RJ 987, San Jose, California.

Gonzaga, A. (2014). Study aimed at simplification and optimization of relational division in

database systems. Term Paper, University of São Paulo, São Carlos, Brazil.

Leinders, D. and Van den Bussche, J. (2005). On the complexity of division and set joins in

the relational algebra. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 76–83. ACM.

Matos, V. M. and Grasser, R. (2001). Assessing performance of the relational division operator.

Data Base Management, 22-20-30:1–11.

Zhang, K., Qin, Z. S., Liu, J. S., Chen, T., Waterman, M. S., and Sun, F. (2004). Haplotype block

partitioning and tag snp selection using genotype data and their applications to association

studies. Genome Research, 14(5):908–916.

2http://qtl-mas-2012.kassiopeagroup.com/

31th SBBD – SBBD Proceedings – Short and Vision Papers October, 2016 – Salvador, BA, Brazil

174

