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Abstract. A myriad of applications from different domains collects time series
data for further analysis. In many of them, such as seismic datasets, the ob-
served data is also associated to a space dimension, which corresponds, in fact,
to spatial-time series. The analysis of these datasets is difficult due to both the
continuous nature of the observed data and the relationship between spatial and
time dimensions. Meanwhile, sequential patterns mining techniques have been
successfully used in large volume of transactional databases to obtain insights
from data. In this work, we start exploring the discovery of frequent sequential
patterns in seismic datasets. For that, we discretize continuous values into sym-
bols and adapt well known sequential algorithm to mine spatial-time dataset. To
better understand the quality of the identified patterns, we visualize them over
the original seismic traces images. Our preliminary results indicate that the
study of sequence mining in seismic datasets is promising.

1. Introduction
Frequent pattern mining is widely used to obtain new exploratory knowledge from data.

Earlier frequent patterns techniques focused on finding association rules on transactional

databases, where each transaction is assumed to be independent from the others. Later,

this concept evolved to sequential pattern mining taking advantage of the fact that some

successive transactions belong to the same customer. Such concept was further general-

ized to handle databases composed of generic types of data-sequences [Mabroukeh and

Ezeife, 2010].

Meanwhile, many important event records are characterized as time series, in

which data are chronological ordered observations. When such data is continuous, it

is not efficient to conduct an exact match comparison between values [Fu, 2011]. More-

over, some important phenomena are indeed spatial-time series, leading to an additional

challenge caused by the introduction of spatial dimension that increases the complexity

due to the spatial-time relationship associated to the collected observations [Han et al.,

2007].

In such scenario, considering that a time series corresponds to a sequence of ob-

servations, and a spatial-time series associates a position to such time series, we can state

our problem definition as follows: given a set of spatial-time series, find the sub sequences
of these observations that are frequent according to the user-defined constraints.
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We initially tackle the problem by proposing a solution that interprets a set of

spatial-time series as a collection of spatial data-sequences, where each data-sequence is

a sequence of observations. In order to do that, we initially discretize continuous values, in

a way that is possible to find frequent patterns looking for exact matching of observations.

Then, we apply an adapted sequential pattern detection algorithm. Finally, results are

visually represented to display the positions, according to the original dataset, of each

detected sequence.

In order to assess whether such approach can be promising for discovering spatial-

time series patterns, we apply our technique in a real world seismic use case to detect

zones of geologic boundaries, such as seismic horizons and faults. In seismic surveys, the

material reflection values are associated to a particular time (depth) and position. From

the visualization of identified patterns, we observed that our approach is promising as it

is able to detect frequent sequences that spatially and timely correspond to some geologic

boundaries of the subsoil.

Besides this introduction, this work is organized in four more sections. Section 2

describes our methodology, including the main algorithm. Section 3 presents preliminary

results. Section 4 provides the main related work for identifying patterns in spatial-time

series while Section 5 presents final considerations and indicates future steps for this

research.

2. Sequence Mining in Spatial-Time Series
We start by formalizing the problem of sequence mining in spatial-time series.

2.1. Problem Formulation
A spatial-time dataset D is composed of a list of spatial data-sequences such that D =
{d1, d2, ..., dn}. Each data-sequence di is composed of a list of observations such that

di = < v1, v2, ..., vm >. Also we define a sequence sk as a list of observations such

that sk = < v1, v2, ..., vz > | ∀vi, vi ∈ D. We wish to find all frequent sequences Sf

= < s1, s2, ..., sw > | ∀si ∈ Sf , si ⊂ dj and support(si, D) > min-support. Thus,

for each sequence si ∈ Sf , the number of data-sequences that contains this sequence

divided by the total number of data-sequences in D is greater or equal than a minimum

relative support min-support chosen by the user. In this way, the min-support constraint

guarantees that the sequence si is a frequent sequence in the spatial-time dataset D.

2.2. Mining Spatial-Time Series
Given the problem formulated in 2.1, we describe the process adopted to mine spatial-

time series. Initially, a discretization step transforms continuous value ranges into sym-

bolic values. Symbolic Aggregate Approximation (SAX) algorithm [Lin et al., 2003] was

chosen by virtue of its ability in creating an equiprobable symbolic representation for time

series observations that considers data distribution. Each symbol is associated to a range

with the approximate same number of observations [Lin et al., 2003].

Next, we apply a sequential pattern detection algorithm, adapted from the GSP

algorithm [Mabroukeh and Ezeife, 2010]. The algorithm firstly detects frequent single

observations. Then, composed candidate frequent sequences are built from the combina-

tion of previously detected frequent sequences. Finally, these candidates sequences are

evaluated by removing the ones that are not really frequent.
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2.3. Sequential Pattern Mining Algorithm

Algorithm 1 depicts the mechanics for identifying spatial-time patterns. Initially, frequent

single items are found through function getFrequentItems, i.e., items that reach the user

defined min-support. Each of the discovered frequent items is transformed in 1-sequence

structure (sequence of size one) by function convertToSequences. Then, in function

joinSequences, the previously generated (k-1)-sequences are permuted to compose fre-

quent k-sequence candidates. Next, the support of each frequent k-sequence candidate is

computed and the ones that do not reach the min-support are discarded through function

pruneCandidates. This preserves only the verified frequent k-sequences. The algorithm

goes back to function joinSequences and repeats until no new candidate is generated in

joinSequences or until none of the new candidates satisfies the min-support constraint

defined in function pruneCandidates.

Algorithm 1 Sequential pattern mining on Spatial-Time Series

1: function FINDFREQUENTSEQUENCES(d seq,min sup,max stretch)

2: freq items ← getFrequentItems(d seq,min sup)
3: freq k seq ← convertToSequences(freq items)
4: while count(freq k seq) > 0 do
5: all freq seq ← all freq seq ∪ freq k seq
6: cand k seq ← joinSequences(freq k seq)
7: freq k seq ← pruneCandidates(
8: cand k seq, d seq, min sup, max stretch)
9: end while

10: return all freq seq
11: end function

The joinSequences function shown in Algorithm 1 produces a list of k-sequences

Sk =< s1, s2, ..., sn > joining all the permutations of each pair of (k-1)-sequences (s1, s2)
in a list of (k-1)-sequences Sk−1. As defined in the GSP algorithm, if the input list (k-1)-
sequences is a 1-sequences list (i.e. list of sequences containing just one item), the result

of the joinSequences function is a 2-sequences list generated by the permutation of each

pair (s1, s2) of the 1-sequences input list. Otherwise, if the input list (k-1)-sequences is

composed of sequences containing more than one item, each permutation of pair (s1, s2)
is joined only if the sequence s1 without its first item is equal to the sequence s2 without

its last item, and the join result is a k-sequence containing all the s1 items extended with

the last item of the s2.

Algorithm 1 clearly differs from GSP algorithm in the sense that, due to the nature

of the spatial-time series, the former does not include itemsets and sliding time window
constraints that are transaction related. Moreover, our adaptation to support spatial-time

series does not needs to include the definition of taxonomies (generalizations). We use

the min-support constraint to define how much the discovered sequences must be fre-

quent over the space, as well as we define the max-stretch constraint in replacement of

original GSP max-gap constraint to relax the support count of candidate sequences. With

the max-stretch definition, a data-sequence supports a candidate sequence if the items of

the candidate are contained in the data-sequence in the same order and if the first and

last items the candidate are found in the data-sequence with a maximum distance of the
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candidate size plus the max-stretch value. In such way, both max-gap and max-stretch
supports noise in the sequence comparison. However, max-stretch produces more restric-

tive frequent sequences according to time.

3. Preliminary Results
Seismic datasets are collected from a set of receivers capturing the waves generated from

artificially produced shots on the terrain surface and reflected by the different materials

of the subsoil. The wave propagates under the ground in a certain velocity, reflect in each

material layer and go back to the surface in a determinate time, so that the early received

reflection signal corresponds to more superficially depths of the ground, and vice-versa.

Particularly important things to recognize are faults and horizons, i.e., zones of major

unconformities that corresponds to specific geologic boundary [Zhou, 2014].

The spatial-time dataset chosen as input for this work is part of the Netherlands
Offshore F3 Block seismic survey. The dataset is produced collecting the reflection values

of the subsoil materials, resulting in a 3D cube composed of a range of 100 to 750 inlines
and 300 to 1250 crosslines sections orthogonal to the surface plan. Each inline or crossline
is composed of several sets of observations made at different aligned positions on the

surface. For each position at the surface, a set of observations is collected, composing

a spatial-time series of seismic reflection values at different reflection time, where each

observation time corresponds to a depth of the subsoil.

For the scope of this experiment, only the inline 100 was considered. It is a spatial-

time dataset composed of 951 spatial-time series, each of them represents the reflection

values of different locations of the ground. Each spatial-time series contains 462 observa-

tions representing the different depths of the subsoil. The time series can be figured out as

vertical columns of pixels in the inline 100, shown in Figure 1.a, where the lower reflec-

tion values are represented with red pixels and the higher reflection values are represented

with dark pixels.

(a) (b)

Figure 1. Seismic trace image of inline 100 of the Netherlands Offshore F3 Block
dataset (a). Resulting sequence < a, a, y, y > positions, evidencing where red and
dark lines are nearby each other (b).

The discretization was performed using SAX algorithm [Lin et al., 2003] with a

word size value equal to the SAX input dataset size, since we are not interested in applying
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dimensionality reduction feature of the SAX algorithm. The choice of this experiment was

to empirically test several alphabet sizes, more specifically we explored 5, 10, 15, 20, and

25 alphabet sizes.

Our algorithm allows for defining the min-support as well as the value of max-
stretch constraint. In our experiment we empirically tested the combinations of ranges

of these parameters, more specifically 100%, 95%, 90%, 85%, 80% min-support values

in combination with 0, 1, 2, 3 max-stretch values. Our results indicate that a too low

value for min-support as well as a too high value of max-stretch can lead to detect a large

number of not useful sequences. Conversely, a too high value for min-support or a too low

value of max-stretch constraint can lead to detect a little number of frequent sequences or

sequences too small to be interesting.

Figure 1.b shows the < a, a, y, y > frequent sequence discovered using the inline
100 dataset discretized using an alphabet size of 25 and running the algorithm with a

min-support of 70% and a max-stretch of 2. The image is generated drawing several blue

circles, each of them indicates the start position of one frequent sequence detection in the

original dataset. It corresponds to the area in the original Figure 1.a where red and dark

lines were found nearby each other, evidencing several horizon segments. In fact, the

sequence < a, a, y, y > represents two red pixels followed by two dark ones.

4. Related Work
Sequential Pattern mining aims in finding statistically relevant patterns from values that

are organized in sequences. Over the last decade, many algorithms have been created

[Mabroukeh and Ezeife, 2010]. Yet, when it comes to sequence mining on spatial-time

series, we observe room for research.

Spatial-time series can be composed of observations from either moving or per-

sistent objects [Frank, 2003]. When one of the varying properties of the objects is the

position, we can target for patterns like routes frequently followed by objects or paths

with some similar attributes. Such analysis of trajectory data, clearly differs from the goal

of this work.

On the other side, spatial-time series can be obtained from observation of multiple

locations or static objects that have properties changing over the time. Both Alatrista-

Salas et al. [2015] and Leong and Chan [2012] try to discovery patterns in spatial-time

series. Alatrista-Salas et al. [2015] uses a discretization technique that leads to four or

five bins in each variable. After this data preprocessing, they apply PrefixSpan sequential

mining algorithm. Alatrista-Salas et al. [2015] define interesting relations between data-

sequences using the space information, but its application is restricted to their studied

domain. Leong and Chan [2012] uses GSP algorithm over a synthetic discrete dataset of

daily events, organizing the data as spatial data-sequences and computing support count

for each candidate pattern. Leong and Chan [2012] use transactions to aggregate multi-

ple observations in the same time, which loses time granularity. In our work, we applied

SAX indexation that allows for distributing data equally with respect to the chosen al-
phabet size. Also, we do not lose time granularity by preserving the temporal order of

observations, since we are interested in finding frequent sequences that are constrained

both space and time. Finally, our algorithm differs, since we introduced the concept of

max-stretch to allow noise data, in the way as max-gap, but it produces more restrictive
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frequent sequences according to time.

5. Conclusions
The visualization of the detected frequent sequences indicates that the results are promis-

ing. The algorithm was able to detect sequential patterns in the spatial-time series dataset.

The position of the detected frequent sequences follows some of the geologic boundaries

of the subsoil as can be shown in Figure 1.b. However, there are several aspects that can

be improved in future works. Specially, when it comes to identify seismic faults, which

are patterns that are constrained in a specific region.

The choice of having high values for min-support constraint forces the identified

frequent patterns to be found nearly all data sequences, i.e., nearly all spatial-time series

(vertical columns of the image of Figure 1.a). It does not take in account if frequent

sequences are continuous patterns or if they are segmented in the dataset.

To reduce the large number of frequent sequences that can be obtained from the al-

gorithm, we can only include the maximal sequences in the result, as proposed by Agrawal

and Srikant [1995]. This principle takes advantage of the fact that each subsequence of a

frequent sequence is already frequent. Moreover, ranking the resulting sequences can be

another way to handle the large number of frequent sequences obtained. Tight sequences

could gain a better rank than sparse ones, as well as sequence with greater information

gain, like sequence < a, d, c, f >, could gain a better rank than others containing lower

information gain, such as < a, a, a, a >.
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