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Abstract. Finding homologous proteins and grouping them are tasks of utmost
importance in biology, which currently rely on tools based on information from
these proteins’ DNA or amino acid sequences. These tasks require identifying
evolutionary patterns that are challenging to obtain automatically using tradi-
tional methods. This work proposes a data modeling approach to leverage evo-
lutionary patterns in homology searching, ranking, and clustering tasks through
an alignment-free process using image similarity algorithms. This strategy is
valuable even for distant homologs and contributes to data privacy and secu-
rity.

Resumo. Encontrar proteínas homólogas e agrupá-las são tarefas de extrema
importância para a biologia, que atualmente conta com ferramentas baseadas
em informações do DNA ou das sequências de aminoácidos dessas proteínas.
Essas tarefas exigem a identificação de padrões evolutivos que são difíceis de
obter automaticamente usando métodos tradicionais. Este trabalho propõe uma
abordagem de modelagem de dados para alavancar padrões evolutivos em tare-
fas de busca, classificação e agrupamento de homólogos por meio de um pro-
cesso alignment-free usando algoritmos de similaridade de imagem. Essa es-
tratégia é valiosa mesmo para homólogos distantes e contribui para a privaci-
dade e segurança dos dados.

1. Introduction
Computers have become an indispensable aspect of modern society, profoundly impacting
every facet of our lives. Their remarkable capacity to process and store immense volumes
of information is a key attribute that renders computers highly valuable. This ability
to handle vast datasets has fostered the development of a diverse array of applications
and technologies. However, for computers to effectively process data, it is crucial to
organize and format it in a manner that the machines can comprehend. This necessitates
understanding the nature of the data and establishing connections, achieved through the
use of conceptual and logical models. Once these initial steps are accomplished, the data
can be translated into a practical representation through a physical model, facilitating its
utilization in real-world scenarios.
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Bioinformatics involves the processing and analysis of vast amounts of data from
various sources, including DNA and protein sequences, gene expression profiles, and
metabolic pathways. The most commonly used data format in bioinformatics for ho-
mology study is text representation through FASTA files [Mills 2014]. It provides a
simple and ready-to-use way to store sequence information and annotations of DNA,
RNA, or protein molecules, which can be visualized in any text editor application and
is easy to process for most programs. Relational information can also be stored in sim-
ilar text files representing for instance nucleotide or amino acid sequence alignments
(ClustalW, MEGA, MSF, etc), phylogenetic relationships (NEXUS, NEWICK, PHILIP,
etc) [Leonard et al. 2006], or 3D molecular structure (PDB) [Bernstein et al. 1977].

The dot plot is a valuable tool for simultaneously assessing sequence and struc-
tural similarities between homologous sequences. It involves comparing a sequence to
itself (self-comparing) or to another sequence (inter-comparing) generating 2D graphs
with matches between sequences [Gibbs and Mcintyre 1970]. On the other hand, dot
plots provide visual representations of evolutive processes (substitutions, insertions, and
deletions) and internal structural information (direct and inverted repeats) that may
not be evident in the data representations discussed earlier. However, the current ap-
proach for extracting and utilizing this information primarily relies on manual observa-
tion. Another aspect of the dot plot that has not been thoroughly explored is its po-
tential for data masking. Data masking techniques have been extensively studied in the
field of preserving the privacy of biological data, particularly in medical contexts, and
they provide a means to ensure data security without compromising access to informa-
tion [Siddartha and Ravikumar 2019, Siddartha and Ravikumar 2020].

There are quite conventional data modeling approaches for
DNA [Lifschitz et al. 2022, Bilotta et al. 2019], but we encounter more difficulty
when dealing with representations of evolutive processes. An interesting data rep-
resentation approach has considered sequences as images through the Chaos Game
Representation (CGR), where the DNA sequence is translated into an image using a
mathematical function that places each nucleotide at a specific location in the image based
on its position in the DNA. CGR and its compact version based on letter frequencies
(FCGR) have various applications in biology [Löchel and Heider 2021]. Despite being
able to represent many interesting characteristics of sequences, CGR still have issues
detecting evolutive processes [Kania and Sarapata 2021], and it does not allow for gains
in explainability and security.

In this work, we will focus on molecular homology, particularly orthologous pro-
teins, which descending from a common evolutionary ancestor, tend to perform the same
function in different species [Fitch 1970]. This work proposes a novel physical model
inspired by dot plots for the data modeling approach to leverage evolutionary patterns in
homology searching, ranking, and clustering tasks through an alignment-free process us-
ing image similarity algorithms. This strategy is valuable even for distant homologs and
contributes to data privacy and security integrating with bioinformatics workflows.

2. Methods and materials

The dataset, building, and validation process for this work are presented in this section.
Validation measures to assess the performance are described for homology clustering and
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searching too.

2.1. Dataset
The dataset comprises DNA sequences of protein-coding genes of Globin family, obtained
from Ensembl 1, including five distinct groups of homologous proteins (Hemoglobinβ ,
Myoglobin, Neuroglobin, Cytoglobin, and Androglobin), with 15 species (Chloroce-
bus Sabaeus, Otolemur Garnettii, Nomascus Leucogenys, Saimiri Boliviensis, Prolemur
Simus, Aotus Nancymaae, Gorilla Gorilla, Pan Troglodytes, Rhinopithecus Roxellana,
Rhinopithecus Bieti, Pan Paniscus, Mandrillus Leucophaeus, Carlito Syrichta, Cebus Ca-
pucinus, and Pongo Abelii) represented in each group, yielding a total of 75 DNA se-
quences for analysis). There is a script to extract these five datasets from Ensembl and it’s
available on project GitHub 2 with name get_globins.sh.

Analyzing these homologous datasets, Hemoglobinβ and Myoglobin exhibit rela-
tively uniform sequence lengths of 441 and 465 nucleotides respectively, and no standard
deviation (σ), while the variation in sequence length gradually increases for Neuroglobin
(451.6: σ = 11.43), Cytoglobin (596.2: σ = 66.25), and Androglobin (4726.4: σ =
694.56), successively.

In order to evaluate the effectiveness of the new data model in capturing evolution-
ary patterns, a combination of synthetic and real data was utilized. Synthetic sequences
were generated using the INDELible tool [Fletcher and Yang 2009], following the config-
uration file indelible.conf available on the corresponding GitHub repository. A total of 40
random sequences, each consisting of 3000 nucleotides, were created. These sequences
were organized into 10 separate lineages, with four sequences within each lineage.

2.2. Image Comparison
The image comparison techniques used in this study rely on methods based on the Hu-
man Visual System (HVS) to evaluate whether images are similar using properties that
can be perceived by human vision as if we are manually analyzing a dot plot. These
methods were employed to identify similarities between generated images and search for
homologs using just the images. Blastn (basic local alignment search tool version for
nucleotides) [McGinnis and Madden 2004] was used as a baseline to compare the results.
A BLAST search provides researchers with the ability to compare a query protein or nu-
cleotide sequence to a database of sequences. It allows for the identification of database
sequences that exhibit significant similarity to the query sequence.

Various image similarity algorithms that use HVS were used in this
study, ranging from simpler to more complex methods: Universal Qual-
ity Index (UQI)[Wang and Bovik 2002], Structural Similarity Index Measure
(SSIM)[Wang et al. 2004, Bakurov et al. 2022], and MultiScale Structural Similar-
ity Index Measure (MS-SSIM) [Wang et al. 2003]. SSIM and MS-SSIM were applied
with their default settings, without any hyperparameter optimization and UQI adjusted
the window to 11 to be comparable with SSIM and MS-SSIM. In the implementation
of the similarity matrix using the image comparison algorithms, when two images of
different sizes were compared, the smaller one was resized to the same size as the larger
image and then compared.

1https://www.ensembl.org/index.html
2https://github.com/BioBD/DNA2D
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2.3. Proposed Data Model

The proposed new data model for representing DNA is inspired by the 2D dot
plots. It represents the internal structures of DNA, allowing for the use of meth-
ods to identify patterns of evolutionary characteristics in the images. A common way
to represent images is through the RGB (Red, Green, and Blue) channels standard
[Plataniotis and Venetsanopoulos 2000]. Each channel represents one entity from our
model: direct repeats on the red channel, inverted repeats on the green, and reverse repeats
on the blue channel.

Our methodology involved the creation of self-comparison matrices for DNA se-
quences, where each cell in the matrix was assigned a number to represent the corre-
spondence between identical nucleotides, similar to a regular self-comparison matrix. To
enhance the visibility of sections with more matches, we generated images with pixel
values ranging from 0 to N nucleotides, where N represents the maximum number of nu-
cleotides followed by a match. Initially, the values in the matrix were set to 1 for matches
and 0 for non-matches. The algorithm then calculated the number of consecutive matches
in each sequence and assigned the maximum number of matches in a row, denoted as N ,
as the pixel value in the matrix M . This process is illustrated in Figure 1.

Figure 1. Demonstration of matrix filling. First, add the number 1 in all corre-
spondences and then change it to the maximum in each one in a row.

Then these matrix numbers were normalized between 0 and 255, expanding the
strength of that color represented according to the greater correspondence of the com-
pared nucleotide windows and keeping the images with the same comparison standard. A
pseudo-code with complexity O(size1 × size2) representing how each channel was pop-
ulated is represented in Algorithm 1, where size1 and size2 are the sizes of the compared
sequences.

To store these matrices, we utilized the RGB channels of an image. The compar-
isons between sequences were made in the following manner: the sequence with itself
was stored in the R channel, the sequence with its reverse complement in the G channel,
and the sequence with the same inverted in the B channel. This methodology allowed us
to incorporate three layers of genetic information into a single image, as depicted in Fig-
ure 2 revealing evolutionary processes or patterns. The images were saved in PNG format,
which is a lossless compression and keeps the file size small.

2.4. Sequence Searching and Clustering

To establish a comparative benchmark for homologous sequence searching, were em-
ployed the Blastn algorithm on a local database that exclusively contained sequences
from all datasets described in subsection 2.1. To ensure a fair comparison, we used a
word_size of 11 in the Blastn algorithm, allowing it to search for nucleotide repetitions
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Algorithm 1 Pseudo-code for image channel creation by comparing two DNA
sequences.

function MAKECHANNEL(seq1, seq2, pixelmax = 255)
size1 ← SIZE(seq1)
size2 ← SIZE(seq2)

channel←



0 0 . . .
... . . .
0 0




(size1×size2)

for s1 = 0, s1++, s1 ≤ size1 do
for s2 = 0, s2++, s2 ≤ size2 do

if seq1[s1] = seq2[s2] then
channel[s1, s2] = 1 ▷ Fill with 1 if match

end if
end for

end for
seqmax = FILLDIAG(channel) ▷ Fill diagonal with sequential match
return channel × pixelmax ÷ seqmax ▷ Return normalized channel

end function

of 11 nucleotides, similar to the filter_size parameter used in HVS algorithms, as de-
scribed in subsection 2.2. For the Blastn search, more parameters were set, including
evalue = 10000 not filter out results encompassing sequences displaying low similarity
scores between them, and max_hsps = 1 to focus only on the best hit. The Blastn Bit
score results were obtained for each sequence and ranked based on the match of the first
K sequences from the same dataset returned. To evaluate and validate the performance
of the information retrieval algorithms in this way, we used the Mean Average Precision
(MAP) metric [Alhijawi et al. 2023].

The proposed approach differs from the control in the search phase by transform-
ing the sequences into images before comparing them. These images are then processed
by the HVS algorithms to compute a similarity score between each pair. The similarity
scores were ranked from most to least similar, and the MAP is calculated from the top K
items to validate that only sequences from the same dataset were retrieved.

For clustering, the control was performed using Clustal Omega with default pa-
rameters, and a similarity matrix was computed using the image comparison algorithms.
Each score in the matrix was inverted (1 − score) to convert it into a dissimilarity ma-
trix for compatibility with the UPGMA algorithm, which is an agglomerative hierarchi-
cal clustering method used to build phylogenetic dendrograms [Huelsenbeck 1995]. The
Robinson-Foulds (RF) [Robinson and Foulds 1981] distance metric, normalized between
0 and 1, was applied to compare the dendrograms built by the new algorithm against
the control. A lower RF metric indicates better results, which means that the obtained
dendrogram is similar (or equal) to control.

The experiments and corresponding source code are publicly available on GitHub,
ensuring transparency and reproducibility. Additionally, all the data used in the study was
versioned and made accessible through Google Drive as part of the project. The complete
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Figure 2. Dot plot of self-comparison matrices between Human Hemoglobin Beta
chains made by the proposed methodology. Grayscale values have been
reversed for easier viewing. A) only R channel with grayscale sequential
auto-comparison; B) G channel only with grayscale reverse complemen-
tary; C) B channel only with grayscale inverse; D) mixing between RGB
channels forming an image.

Dataset Identity # Gaps Median Mean Std Min Max
Hemoglobinβ 0.75 0 0 0 0 0 0

Myoglobin 0.76 0 0 0 0 0 0
Neuroglobin 0.61 2 0 4.4 11.43 0 39
Cytoglobin 0.40 15 66 87.8 66.25 6 306

Androglobin 0.61 15 125 327.6 694.56 50 2906
Indelible 0 40 3302 3302 0 3302 3302

Table 1. Identity, number of gapped sequences and amount of gaps from samples
after global alignment with Clustal Omega.

experimental workflow is illustrated in Figure 3.

3. Results

All the results achieved in this study are reproducible and were obtained using Python
3.7+ code with Jupyter Notebooks. By employing these technologies, we conducted ho-
mology searching and clustering experiments on all datasets described in subsection 2.1.

3.1. Dataset Insights

In the first experiment, Clustal Omega [Sievers and Higgins 2018] was employed to per-
form sequence alignment on each dataset in order to extract insights. The obtained data
and corresponding statistics can be found in Table 1.

The analysis of these statistics reveals minimal (0.1%) differences in identity be-
tween the Myoglobin and Hemoglobinβ datasets, indicating the highest similarity datasets
with more than 0.7 of identity and without any gaps observed in the multiple sequence
alignment (MSA). Despite having a greater variation in sequence length (σ = 694.56) and
a high number of gaps in the MSA (dataset mean of 327.6 gaps), Androglobin exhibits
the MSA identity equal to that of Neuroglobin. However, due to its shorter sequence
length, Neuroglobin has almost no gaps in the MSA (dataset mean of 4.4 gaps). On the
other hand, while Cytoglobin shows a low MSA identity (0.4) with its counterparts, it has
fewer gaps (mean only 87.8) compared to Androglobin.
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Figure 3. Homology Searching and Clustering experiment workflow. Differences
between control (up) and new method (down) from Ranking and control
(down) and new method (up) for Clustering.

The Hemoglobinβ and Myoglobin dataset comprises two identical sequences
across different species. The Neuroglobin set has two pairs of identical sequences, while
no identical sequences were found in the Cytoglobin and Androglobin datasets. Synthetic
INDELible sequences have a fixed number of nucleotides and do not share any MSA iden-
tity because of their high dissimilarity. The number of gaps was static in all sequences
during the alignment, providing a more stable and diverse dataset. Another notable dif-
ference between Globins and synthetic sequences is the Longest Common Subsequence
(LCS), a high marker of heredity between DNA sequences [Alsmadi and Nuser 2012,
Namiki et al. 2012].

The LCS was obtained by iteratively comparing pairs of sequences within a
dataset to determine the longest shared string between them. Subsequently, the median
LCS metric was calculated for each dataset by considering all LCS values of that dataset
sequences pairwise. It is worth noting that the synthetic sequences exhibited an LCS of
only 11 nucleotides, leading to limited evolutionary detection when compared to the LCS
values of Globins: 88 for Hemoglobinβ; 65 for Myoglobin; 77 for Neuroglobin; 113 for
Cytoglobin; and 130 for Androglobin.

3.2. Homology Searching

To ensure a fair evaluation of search ranking performance across datasets of varying sizes
and properties, we used the control as the main reference. To measure the accuracy of
the retrieved results, we employed the MAP metric, which is widely used for evaluating
information retrieval systems. Unlike other ranking metrics MAP is particularly use-
ful when it’s important to determine whether K items are within the result, because the
metric scores items in a binary way (correct or not) based on the ranking order. Table 2
summarizes the MAP scores obtained for all the algorithms and the control, where higher
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Dataset Blast control UQI SSIM MS-SSIM K Number
Hemoglobinβ 1 1 1 1 15

Myoglobin 1 1 1 1 15
Neuroglobin 1 0.85 0.69 0.74 15
Cytoglobin 1 0.45 0.47 0.56 15

Androglobin 1 0.90 0.21 0.90 15
Indelible 0.66 0.61 0.63 0.98 40

Table 2. MAP results for each dataset searching for K top most similar sequences
compared to Blast control.

scores indicate better performance.

MS-SSIM outperformed all other algorithms, including the control, with a MAP
result of 0.98 compared to 0.66 for the synthetic INDELible dataset. However, when MS-
SSIM was excluded, the algorithms, including the control, showed similar performance on
this synthetic dataset. Although the synthetic dataset presented challenges for detecting
similarities, as expected, MS-SSIM performed well.

The datasets of Hemoglobinβ and Myoglobin, as well as INDELible, do not have
sequences of different sizes, therefore, they achieved the best MAP values (1.0) in the
new methodologies with HVS and with the control, returning all the elements correct in
the search results. Our HVS implementation just resize images to compare them and with
same size sequences we don’t need resize getting better results.

Cytoglobin showed low MAP results (around 0.5 for all HVS algorithms) due to
the lower sequence identity and significant differences in sequence lengths. On the other
hand, despite the varying sizes of Androglobin sequences, reflected in numerous gaps,
the results obtained with MS-SSIM supported the presence of similar subsequences to
other homologous sequences. MS-SSIM’s ability to compare images at multiple scales
allowed it to identify similarities even within subimages. This, combined with high LCS
in Androglobin as described in subsection 2.1, led to improved results with MS-SSIM
(MAP of 0.9). However, it should be possible to achieve similar outcomes by adjusting
the SSIM hyperparameters, as UQI performed equal to MS-SSIM without using multiple
scales. It is worth noting that SSIM is a more stable version of UQI, with differences
in implementation language, stability constants, and the application of a Gaussian filter
in the analyzed window [Wang et al. 2004]. In terms of implementation, UQI was not
implemented using TensorFlow code, but the version of Sewar Python library was used 3.

3.3. Homology Clustering

The MS-SSIM cluster exhibited the best clustering performance with an RF value of 0.16,
outperforming UQI and SSIM clusters, which had RF values of 0.19. The crucial aspect
in this clustering task is the distinction between distances among sequences from different
datasets. This indicates that, while the MS-SSIM algorithm successfully identified similar
sequences, it also effectively discriminated between diverse datasets. On the other hand,
UQI demonstrated excellent performance in identifying sequences within the same dataset
but was not as effective as SSIM in distinguishing between distinct datasets.

3https://pypi.org/project/sewar/
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The dendrogram generated using MS-SSIM closely resembled the Clustal cluster-
ing, with only two Neuroglobin sequences positioned incorrectly, as depicted in Figure 4.
However, these sequences stand apart from all other groups, preventing misclassification.
Upon closer analysis, we discovered that these two sequences, along with two others,
possess different sizes within the dataset, and the resizing approach employed by our
methodology did not contribute to the desired outcomes. In the same figure, we can ob-
serve that the INDELible synthetic sequences exhibit variations in the Clustal control,
whereas our method places them in more appropriate groups. All remaining sequences
align correctly with the control, and even the synthetic sequences exhibit distinct branches
for each synthetic lineage.

4. Discussion

The field of DNA data representation is constantly evolving, and our work introduces a
novel 2D data model specifically designed for homology analysis. We have developed an
innovative alignment-free approach that yields promising results in homology searching,
ranking, and clustering tasks. This novel methodology contributes to data representation
and analyses in the field of bioinformatics.

One key advantage of our approach is its independence from an evolutionary
model. Instead of relying on predefined models, we focus on comparing the impact
of various evolutionary events on groups of homologous sequences. This allows for a
comprehensive analysis of the entire sequence, enabling researchers to gain insights that
may be missed when examining only selected residues. By taking this holistic approach,
our methodology opens up new possibilities for understanding evolutionary patterns at a
deeper level.

The Indelible dataset simulates distant homologs and the new data model com-
bined with the comparison methodology presented here is a potential method to detect
distant homologs instead of using only the technique with the secondary structure as usu-
ally done [Ginalski et al. 2004, Ginalski et al. 2003], but more research is needed on this
field to assert that.

In addition to this possible application with distant homologs, the new DNA repre-
sentation hides nucleotide data, making it unnecessary to store the actual genome data, but
simply the representations of evolutionary patterns such as direct and inverse repetitions
and substitutions which are crucial for understanding genetic relationships. DNA through
representations in the R, G and B channels includes a security layer for data masking
on the actual organism data, ensuring the privacy of individuals’ genomic information, a
critical concern in today’s data-driven world.

Along with data representation, the HVS image analysis technique was introduced
in bioinformatics as a measure of distance in a search algorithm. By leveraging the visual
patterns present in DNA sequences, we can measure distance and similarity using an
innovative approach. This method contributes not only to the field of bioinformatics but
also to the domain of information retrieval, image analysis and pattern recognition.

We chose HVS algorithms based on the structural information they provide, high-
lighting the strong interdependencies among pixels, particularly when they are spatially
proximate. This interdependence bears a striking resemblance to the interdependence

Proceedings of the 38th Brazilian Symposium on Databases

9



Figure 4. Hierarchical Clustering from datasets. Each color represents one
dataset. Green palettes are INDELible lineages. A) Clustal control den-
drogram and B) using MS-SSIM distances.

Proceedings of the 38th Brazilian Symposium on Databases

10



found in DNA sequence nucleotides, especially in coding sequences where close nu-
cleotides are translated 3 by 3 into amino acids that will interact to create proteins.

Considering that the Globins datasets consist of coding sequences of proteins, it
is important to note that in this study, the algorithms analyzed the sequences at every
11 nucleotides, yielding promising results. It is believed that utilizing multiples of 3,
aligning with the characteristic of protein production, could further enhance the outcomes
and should be explored in future researchs.

5. Conclusions

In this work we was using HVS algorithms with default large Gaussian filter (standard
deviation of 1.5) blurring the images and results already indicate that HVS algorithms
can perform tasks well with the new data model. With this, it is possible to explore the
use of images with lower resolution and smaller size, facilitating their storage or even
thinking about a database to store the new model that already improves performance for
HVS application. This not only addresses the challenges of managing large-scale ge-
nomic datasets but also offers opportunities for database researchers to explore innovative
approaches in data organization and retrieval.

Even with all these results exposed here, this method open opportunities for more
research goals. One big issue with our approach is that it needs improvement of algorithm
complexity, parallelism and indexing, because now the methodology is using the raw data
without performance improvements and takes substantially more time in comparison to
traditional approaches like Clustal and Blast to process whole experiment.

Another possibility for future work is the development of better comparative forms
for images generated of different sizes by the new proposed data model, given that the
datasets that had the worst results were those with sequences of different sizes. Along
with this, it is also possible to improve the current data model including better ways to
represent evolutionary patterns and compare sequences using DNA annotations or repre-
senting frameshifts (substitutions, insertions and deletions) better than now.

In conclusion, this research contributes to the field of DNA data representation,
offering valuable insights and potential applications in database analysis for researchers
in bioinformatics and computational genomics. Our methodology, with its unique data
model and alignment-free approach, showcases the potential for further exploration and
advancements in the understanding of DNA homology and related bioinformatics tasks,
such that phylogeny, sequence match and perhaps protein 3D structure prediction.

6. Acknowledgments

The authors would like to acknowledge the institutions that made this work possi-
ble. PUC-Rio’s Informatics Department provided crucial infrastructure support, with-
out which the project would not have been feasible. The individual research grant from
CAPES (Brazilian Ministry of Education) and the institutional grant from CNPq (Brazil-
ian Ministry of Science and Technology) were essential in facilitating the successful com-
pletion of the study.

Proceedings of the 38th Brazilian Symposium on Databases

11



References

Alhijawi, B., Awajan, A., and Fraihat, S. (2023). Survey on the Objectives of Recom-
mender Systems: Measures, Solutions, Evaluation Methodology, and New Perspec-
tives. ACM Computing Surveys, 55(5):1–93.

Alsmadi, I. and Nuser, M. (2012). String Matching Evaluation Methods for DNA Com-
parison. International Journal of Advanced Science and Technology, 47.

Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., and Vanneschi, L. (2022). Struc-
tural similarity index (SSIM) revisited: A data-driven approach. Expert Systems with
Applications, 189:116087.

Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers,
J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977). The Protein Data Bank:
a computer-based archival file for macromolecular structures. Journal of molecular
biology, 112(3):535–542.

Bilotta, M., Tradigo, G., and Veltri, P. (2019). Bioinformatics Data Models, Representa-
tion and Storage. Encyclopedia of Bioinformatics and Computational Biology: ABC
of Bioinformatics, 1-3:110–116.

Fitch, W. M. (1970). Distinguishing Homologous from Analogous Proteins. Systematic
Zoology, 19(2):99.

Fletcher, W. and Yang, Z. (2009). INDELible: A flexible simulator of biological sequence
evolution. Molecular Biology and Evolution, 26(8):1879–1888.

Gibbs, A. J. and Mcintyre, G. A. (1970). The Diagram, a Method for Comparing Se-
quences: Its Use with Amino Acid and Nucleotide Sequences. European Journal of
Biochemistry, 16(1):1–11.

Ginalski, K., Pas, J., Wyrwicz, L. S., von Grotthuss, M., Bujnicki, J. M., and Rychlewski,
L. (2003). ORFeus: detection of distant homology using sequence profiles and pre-
dicted secondary structure. Nucleic Acids Research, 31(13):3804–3807.

Ginalski, K., von Grotthuss, M., Grishin, N. V., and Rychlewski, L. (2004). Detecting
distant homology with Meta-BASIC. Nucleic Acids Research, 32(suppl 2):W576–
W581.

Huelsenbeck, J. P. (1995). Performance of Phylogenetic Methods in Simulation. System-
atic Biology, 44(1):17–48.

Kania, A. and Sarapata, K. (2021). The robustness of the chaos game representation
to mutations and its application in free-alignment methods. Genomics, 113(3):1428–
1437.

Leonard, S. A., Littlejohn, T. G., and Baxevanis, A. D. (2006). Common File Formats.
Current Protocols in Bioinformatics, 16(1):A.1B.1–A.1B.9.

Lifschitz, S., Haeusler, E. H., Catanho, M., de Miranda, A. B., Molina de Armas, E.,
Heine, A., Moreira, S. G., and Tristão, C. (2022). Bio-Strings: A Relational Database
Data-Type for Dealing with Large Biosequences. BioTech 2022, Vol. 11, Page 31,
11(3):31.

Proceedings of the 38th Brazilian Symposium on Databases

12



Löchel, H. F. and Heider, D. (2021). Chaos game representation and its applications in
bioinformatics. Computational and Structural Biotechnology Journal, 19:6263.

McGinnis, S. and Madden, T. L. (2004). BLAST: at the core of a powerful and diverse
set of sequence analysis tools. Nucleic Acids Research, 32(Web Server issue):W20.

Mills, L. (2014). Common File Formats. Current Protocols in Bioinformatics, 45(1).

Namiki, Y., Ishida, T., and Akiyama, Y. (2012). Fast DNA Sequence Clustering Based
on Longest Common Subsequence. In Communications in Computer and Information
Science, volume 304 CCIS, pages 453–460. Springer, Berlin, Heidelberg.

Plataniotis, K. N. and Venetsanopoulos, A. N. (2000). Color Image Processing and Ap-
plications. Digital Signal Processing. Springer Berlin Heidelberg, Berlin, Heidelberg.

Robinson, D. F. and Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathemat-
ical Biosciences, 53(1-2):131–147.

Siddartha, B. K. and Ravikumar, G. K. (2019). A Novel Data Masking Method for Se-
curing Medical Image. Proceedings of the 2nd International Conference on Smart
Systems and Inventive Technology, ICSSIT 2019, pages 30–34.

Siddartha, B. K. and Ravikumar, G. K. (2020). An efficient data masking for securing
medical data using DNA encoding and chaotic system. International Journal of Elec-
trical and Computer Engineering (IJECE), 10(6):6008.

Sievers, F. and Higgins, D. G. (2018). Clustal Omega for making accurate alignments
of many protein sequences. Protein Science : A Publication of the Protein Society,
27(1):135.

Wang, Z. and Bovik, A. C. (2002). A universal image quality index. IEEE Signal Pro-
cessing Letters, 9(3):81–84.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: From error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612.

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Multi-scale structural similarity
for image quality assessment. In Conference Record of the Asilomar Conference on
Signals, Systems and Computers, volume 2, pages 1398–1402.

Proceedings of the 38th Brazilian Symposium on Databases

13


