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Abstract. We consider the problem of efficiently answering similarity join
queries over vector data generated by machine learning models. Owing to
the high dimensionality and density of such vectors, approximate solutions
are prevalent for dealing with large datasets. In this context, we investigate
how to evaluate similarity joins using the Hierarchical Navigable Small World
(HNSW), a state-of-the-art, graph-based index designed for approximate k-
nearest neighbor (kNN) queries. We explore the design space of possible so-
lutions, ranging from alternatives on top of HNSW to deeper integration of sim-
ilarity join processing into this structure. Experimental results show that our
proposal achieves substantial speedups with negligible accuracy loss.

1. Introduction

Recently, there has been a fast-growing interest in processing dense, high-dimensional
vectors. This trend is fueled by modern machine learning models that embed complex
unstructured data, such as text, image, and audio, into vector representations retaining
semantically meaningful information. This data processing paradigm based on vector
embeddings provides the backbone of a wide range of applications, including recommen-
dation, video search, image-text retrieval, and question answering, among many others
[Wang et al. 2021].

Queries over vector embeddings are typically based on similarity or distance mea-
sures such as Cosine similarity and Euclidean distance. Such queries come in two flavors:
given an input vector v, the k-nearest neighbor (kNN) search returns the k vectors most
similar to v, and the threshold-based search returns all vectors whose similarity with v
is not less than a given threshold. Such flavors naturally apply to join queries, in which
the k most similar vector pairs or all the vector pairs whose similarity is not less than
the threshold are returned. In this paper, we focus on threshold-based join queries, called
henceforth similarity joins.

Vectors generated by embedding models have intrinsic characteristics that make
similarity join evaluation on large datasets challenging. First, these vectors are high-
dimensional, which renders many indexing methods ineffective owing to the well-known
“curse of dimensionality”. Second, embedding models generate dense vectors, i.e., all
dimensions contain non-zero values, in contrast to traditional term-based tokenization
methods that generate sparse vectors, i.e., most of the values in the dimensions are
zero. Several similarity join algorithms, such as AllPairs [Bayardo et al. 2007] and L2AP
[Anastasiu and Karypis 2014], exploit vector sparsity to derive filters and reduce the com-
parison space. Unfortunately, such filters exhibit little to no pruning power on dense
vectors, leading to a drastic drop in performance [Santana and Ribeiro 2022].
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A common approach to dealing with the above issues is resorting to approximate
solutions. Instead of always producing an exact answer, approximate algorithms may
miss some valid results to trade accuracy for performance. In this context, the Hierarchical
Navigable Small World (HNSW) [Malkov and Yashunin 2020] is among the most popular
indexing structures for approximate kNN search. In a nutshell, HNSW is an in-memory,
hierarchical organization of Delaunay graph approximations with tunable parameters for
controlling recall-performance tradeoffs. Previous benchmark studies reported HNSW as
state-of-art [Aumüller et al. 2020], which also matches our own experimental comparison
(see Section 4).

In this paper, we investigate how to evaluate approximate similarity joins using
HNSW. This indexing structure is designed for kNN search and does not natively sup-
port threshold-based queries. Thus, we first propose evaluating similarity joins on top of
HNSW by judiciously selecting and incrementing the k parameter. Then, we explore the
design space of deeper integration of similarity join processing into HNSW by modify-
ing its internal algorithms for proximity graph building and searching. Our experimental
study on several real-world datasets shows that the best-performing version of our pro-
posal achieves up to 300x and 26x speedups over a exact method and external approach,
respectively, with negligible accuracy loss.

The rest of this paper is organized as follows. In Section 2, we provide background
material and formally define the problem of our focus. In Section 3, we present our
contributions. Our experimental evaluation is presented in Section 4. We discuss related
work in Section 5 and wrap up with the conclusions in Section 6.

2. Background

In this section, we first discuss techniques for embedding data into vectors before provid-
ing formal definitions of the problems considered in this paper. Finally, we overview the
HNSW structure.

2.1. Embedding Techniques

A vast body of techniques for embedding text into numerical vectors has been devel-
oped over the years. Earlier approaches, such as Bag of Words and TF-IDF, relied on
statistical methods to project text onto a discrete vector space. Such embedding models
usually involve several thousands of dimensions as each term in the corpus corresponds
to a dimension; thus, vectors representing sentences or documents are very sparse.

Embedding techniques based on neural networks project text onto a continuous
vector space. Compared to statistical methods, the resulting embeddings have much
lower dimensionality and are dense; note that these vectors still have high dimension-
ality, e.g., several hundreds of dimensions. State-of-the-art techniques employ language
models based on the Transformer architecture [Vaswani et al. 2017]. These models are
pre-trained on large text corpora, such as Wikipedia, in an unsupervised manner; BERT is
the most popular pre-trained language model based on Transformers [Devlin et al. 2019].
As embeddings are generated considering the whole input sequence, they capture seman-
tic and contextual information, including intricate linguistic aspects, such as polysemy
and synonymy, that are not detected by earlier approaches. Besides text, the Transformer
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architecture has been employed to produce embeddings for other modalities, such as im-
age, audio, and video, as well as combinations of different data types in multimodal em-
beddings. In this paper, we focus on vector embeddings generated by neural networks; in
the following, we assume that the input data has already been mapped to vectors.

2.2. Definitions and Terminology

We assume a set of real-valued vectors V of fixed dimensionality n. Given two vectors
x and y, let sim (x, y) be a commutative similarity function that returns a value in [0, 1].
We formally define relevant similarity operations to our context as follows.

Definition 1 (kNN Search) Given a query vector x and an integer k, a kNN search over
V returns the answer set Aknn = {({y1, ..., yk} ⊆ V : ∀y ∈ AkNN and ∀y′ ∈ V −
AkNN , sim (x, y) ≥ sim (x, y′)}.

Definition 2 (Similarity Search) Given a query vector x and a similarity threshold τ , a
similarity search over V returns the answer set Ass = {y ∈ V : sim (x, y) ≥ τ}.

Definition 3 (Similarity Join) Given a similarity threshold τ ∈ [0, 1], a similarity join
over V returns the answer set Asj = {(x, y) ∈ V × V : sim (x, y) ≥ τ}.

Obviously, we can compute the similarity join by performing a similarity search
for each x ∈ V in a nested-loop join fashion. The following lemma expresses the con-
dition for containment and equivalence between kNN and similarity search and, in turn,
establishes a connection between kNN search and similarity join.

Lemma 1 Given a query vector x, consider two search queries, kNN and SS, over
V: the former is a kNN search and returns the answer set Aknn for a given k value,
and the latter is a similarity search and returns the answer set Ass for a given thresh-
old value τ . Let yk be the vector with lowest similarity in Aknn, i.e., yk ∈ Aknn and
∀y ∈ Aknn, sim (x, yk) ≤ sim (x, y). Further, let yk+1 be the vector with highest sim-
ilarity not in Aknn, i.e., yk+1 /∈ Aknn and ∀y′ /∈ Aknn, sim (x, yk+1) ≥ sim (x, y′). If
sim (x, yk+1) < τ , then SS is contained in kNN as Ass ⊆ Aknn. If sim (x, yk+1) < τ
and sim (x, yk) ≥ τ , then SS and kNN are equivalent as Ass ⊆ Aknn and Aknn ⊆ Ass.

Proof 1 (Sketch) We prove Lemma 1 by contradiction. Suppose that sim (x, yk+1) < τ
and there exists a vector y ∈ Ass \ Aknn, i.e., Ass ̸⊆ Aknn. If y ∈ Ass, then
sim (x, y) ≥ τ ; but if y /∈ Aknn, then sim (x, yk+1) ≥ sim (x, y) ≥ τ , which contra-
dicts with sim (x, yk+1) < τ . Now, suppose that sim (x, yk) ≥ τ and there exists a vector
y ∈ Aknn \ Ass, i.e., Aknn ̸⊆ Ass. If y ∈ Aknn, then sim (x, yk) ≤ sim (x, y); but if
y /∈ Ass, then sim (x, yk) ≤ sim (x, y) < τ , which contradicts with sim (x, yk) ≥ τ .

In this paper, we focus on the cosine similarity and assume that all input vectors
have been normalized to unit length, i.e., ||x|| = 1,∀x ∈ V . Thus, the cosine similarity
between two vectors x and y corresponds to their dot product: sim (x, y) ≡ dot (x, y) ≡
n∑

i=1

xi×yi, where xi is value of the ith dimension of x. Finally, we note that the techniques

proposed in this paper also apply to the Euclidean distance.
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2.3. HNSW

HNSW is an indexing structure based on a layered organization of proximity graphs. At
each layer, an approximation of the Delaunay graph is built by preserving only links to the
closest neighbors of a node. HNSW heuristically inserts long-range links to satisfy small-
world navigation properties and, thus, achieve logarithmic complexity scaling of search
operations. Links are organized into hierarchical layers according to their length. Figure
1 illustrates the HNSW multi-layer organization, which resembles a probabilistic skip list
structure in which proximity graphs replace linked lists. The maximum layer of a node
is determined through a random choice with exponential decay probability distribution.
Search starts on the top layer, which contains only the longest links, and proceeds down
the hierarchy every time a minimum local is reached in its greedy traversal, finishing at
the bottom layer (Layer 0).

Figure 1. HNSW structure

HNSW is designed for approximate kNN
search, which means the answer set Aknn may con-
tain elements that are not within the actual k-nearest
neighbors to the query vector. The parameters
efConstruction and ef determine the num-
ber of neighbors considered during proximity graph
building and searching, respectively, thereby con-
trolling recall-performance tradeoffs. For each in-
serted element, the number of connections estab-
lished with its closest neighbors is determined by
the parameter M. In all layers, the maximum num-
ber of connections per node is also parameterized,
which ensures the logarithmic complexity. HNSW
is considered state-of-the-art for approximate kNN search [Aumüller et al. 2020] —
we compare HSWN against competing solutions in the context of similarity join
evaluation in Section 4 – and has been incorporated by modern vector DBMSs (e.g.,
[Wang et al. 2021]).

3. Approximate Similarity Join Algorithms

In this section, we present our HNSW-based similarity join (HSJ) algorithms. As men-
tioned in the previous section, HNSW returns approximate results; hence our proposed
solutions are also approximate. Further, as HNSW is a kNN indexing structure and does
not support threshold-based queries, we devise strategies to use this structure for similar-
ity join. First, we propose an approach to evaluating similarity joins on top of HNSW
based on the judicious handling of the k parameter. Then, we present algorithms that
adapt the internals of HNSW to similarity search.

3.1. Similarity Join on Top of HNSW

A basic approach to evaluating similarity join using HNSW is to first index V and, then,
perform a kNN search for each vector to find its similar counterparts, i.e., the Ass an-
swer set. To this end, one has to use for each kNN search a k value that establishes
an equivalence or at least containment relationship with a similarity search based on the
fixed threshold (recall Lemma 1); in the latter, some dissimilar vector have to be removed
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from the answer set Aknn. Of course, such k value is not known beforehand. An intu-
itive strategy is to issue multiple kNN searches with increasing k till all similar vectors
are retrieved. The choices of the initial k value and its increment along the searches play
a crucial role in the overall performance: if the chosen values are too small, a greater
number of kNN searches are needed to retrieveAss; if they are too large, many dissimilar
vectors are retrieved incurring in unnecessary overhead.

Given the above observations, we now propose heuristics for selecting the initial
k value and defining its increment at each interaction. For the initial k value, we use
the HNSW parameter ef increased by a factor determined by the similarity threshold:
kinitial = ef +(1− τ) ∗ ef . The idea is to use a greater kinitial for smaller thresholds. For
the increment of k, we look at yk, the least similar element in Aknn. The k’s increment
follows the similarity of yk to the current query vector, which monotonically decreases at
each interaction: knew = k + ((1 − τ) ∗ k)/(1 − sim(x, yk)). The intuition behind this
heuristic is to decrease k’s increment as sim(x, yk) approaches τ .

Algorithm 1 describes HSJ-Ext, the external variant of HSJ that executes on top
of HNSW without modifying its internal structure. First, all vectors are indexed in the
HNSW graph (Line 4). Then, V is scanned again (Line 6), and for each vector x, the
correspondingAknn ⊇ Ass is computed by issuing kNN searches with x and increasing k
(Lines 7–14); the initial k value and its increment are calculated according to the heuristics
previously described (Line 5 and 11, respectively). The vectors in Aknn with similarity
higher than τ are joined with vector x and inserted into Asj (Lines 15-18).

HSJ-Ext fully benefits from the highly efficient kNN search procedure of HNSW.
However, even with the proposed heuristics for determining the k value, a large number
of searches may be needed for low thresholds. Each search requires a complete traversal
of the proximity graph hierarchy from the top to the bottom layer. To avoid such repeated
searches, we propose integrating similarity join processing into HNSW, as described next.

3.2. Similarity Join Integrated into HNSW

Algorithm 2 describes HSJ-Ths algorithm, which directly performs similarity searches
within a modified HNSW structure. As in the previous algorithm, HSJ-Ths first indexes
all vectors (Line 5) and subsequently pass over V again, issuing a similarity search query
for each vector (Line 6). In contrast to HSJ-Ext, Ass is now computed inside HNSW
by the new RANGE-SEARCH method (Line 7). This modification allows HNSW to tra-
verse the graph only once, finding similar elements above the specified threshold. Using
the RANGE-SEARCH method, we can directly retrieve the Ass set of similar elements,
eliminating the need for additional post-processing.

Algorithm 4 details the RANGE-SEARCH method, which is based on the KNN-
SEARCH method from the original HNSW paper. RANGE-SEARCH follows a similar
approach in searching for objects in the upper layers (Lines 5–8) until it reaches the entry
point in the bottom layer. At this layer (Line 9), it calls the new RANGE-SEARCH-
LAYER method (Algorithm 5), which was based on the SEARCH-LAYER method in
HNSW, to search for nodes similar to the query vector with the threshold as the stopping
condition for graph traversal. The RANGE-SEARCH-LAYER method incorporates the
following modifications: (1) the local minimum is only used as a stopping condition if
the similarity is less than the threshold (Line 8); (2) it also checks if the similarity of the
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Algorithm 1: HSJ-Ext

Input : Set of vectors V , a threshold τ , the HNSW’s
parameters M, efC, and ef

Output: The answer set Asj

1 Asj ← ∅
2 Aknn ← ∅
3 hnsw ← buildHNSW (V.dimension, M, efC, ef)
4 hnsw.insertAll(V)
5 kinitial = ef + ((1− τ) ∗ ef)
6 foreach x ∈ V do
7 k ← kinitial
8 Aknn ← kNN-SEARCH(hnsw, x, k)
9 yk ← vector with the lowest similarity in Aknn

10 while sim(x, yk) ≥ τ do
11 k ← k + ((1− τ) ∗ k)/(1− sim(x, yk))
12 Aknn ← kNN-SEARCH(hnsw, x, k)
13 yk ← vector with the lowest similarity in Aknn

14 end
15 foreach y ∈ Aknn do
16 if sim(x, y) ≥ τ then
17 Asj .add(x, y)
18 end
19 end
20 end
21 return Asj

Algorithm 2: HSJ-Ths

Input : Set of vectors V , a
threshold τ , the HNSW’s
parameters
M, efC, and ef

Output: The answer set Asj

1 Asj ← ∅
2 Ass ← ∅
3 ef = ef + ((1− τ) ∗ ef)
4 hnsw ← buildHNSW (V.dimension,

M, efC, ef)
5 hnsw.addAll(V) // insert all

vectors with hnsw’s INSERT

algorithm

6 foreach x ∈ V do
7 Ass ←

RANGE-SEARCH(hnsw,
x, ef, τ )

8 foreach y ∈ Ass do
9 Asj .add(x, y)

10 end
11 end
12 return Asj

current element to the query is greater than the threshold as a condition for including it as
a candidate, in addition to the other conditions (Line 15); (3) it only removes candidates
from the dynamic list if their similarity is smaller than the threshold (Line 18); and (4)
includes in the answer set only elements with similarity above the threshold (Line 25).
We found that the parameter ef cannot be disregarded in the search with the threshold
as the stopping condition, as it defines a minimum number of candidates to consider and
prevents reaching a false local minimum.

Finally, we propose HSJ-ThsInc (Algorithm 3), which uses the RANGE-SEARCH
method in an incremental way. In contrast to the previous approach that performs a
complete indexing of the vectors before the search, HSJ-ThsInc performs an incremen-
tal search at the moment each vector is added to the index (Lines 7 and 12, respectively).
This approach has significant advantages, such as the reduction of the search scope, lim-
ited to the data already indexed, and avoidance of repeated processing of similar pairs.

4. Experiments
In this section, we present an experimental study of our algorithms for approximate sim-
ilarity join. The objectives of our evaluation are: 1) to assess the performance of our
techniques in terms of execution time and recall rate, i.e., the percentage of results re-
turned by the approximate method compared to the exact method.; 2) to compare the
performance of HNSW against competing non-graph solutions in the context of similar-
ity join; 3) to compare the performance of the HSJ-Ths and HSJ-ThsInc versions with the
external approach HSJ-Ext and also with the brute-force approach for exact results; and
4) to test the scalability of our proposals.
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Algorithm 3: HSJ-ThsInc

Input : Set of vectors V , a threshold τ ,
the HNSW’s parameters
M, efC, and ef

Output: The answer set Asj

1 Asj ← ∅
2 Ass ← ∅
3 ef = ef + ((1− τ) ∗ ef)
4 hnsw ← buildHNSW (V.dimension,

M, efC, ef)
5 for x ∈ V do
6 if hnsw ̸= ∅ then
7 Ass ← RANGE-

SEARCH(hnsw, x, ef, τ )
8 foreach y ∈ Ass do
9 Asj .add(x, y)

10 end
11 end
12 INSERT(hnsw, x) // hnsw’s

INSERT algorithm

13 end
14 return Asj

Algorithm 4: RANGE-SEARCH

Input : index hnsw, query vector x, size
of the dynamic candidate list ef
and threshold τ

Output: The answer set Ass

1 W ← ∅
2 Ass ← ∅
3 ep← get enter point for index
4 L←level of ep
5 for lc← L ... 1 do
6 W ←

SEARCH-LAYER(x, ep, ef = 1, lc)
// hnsw’s SEARCH-LAYER alg.

7 ep← get nearest element from W to x

8 end
9 Ass ←

RANGE-SEARCH-LAYER(x, ep, ef,
lc = 0, τ )

10 return Ass

Algorithm 5: RANGE-SEARCH-LAYER

Input : query element x, enter points ep, size of the
dynamic candidate list ef , layer number lc,
threshold τ

Output: The answer set Ass

1 v ← ep // set of visited elements

2 C ← ep // set of candidates

3 W ← ep // dynamic list of found nearest

neighbors

4 Ass ← ∅
5 while |C| > 0 do
6 c← extract the most similar element from C to

x
7 f ← get the least similar element from W to x
8 if sim(c, x) < sim(f, x) and sim(f, x) < τ then
9 break // all elements in W are

evaluated and threshold reached

10 end
11 foreach e ∈ neighbourhood(c) at layer lc do
12 if e /∈ v then
13 v ← v ∪ e
14 f ← get the least similar element from

W to x
15 if sim(e, x) ≥ sim(f, x) or |W | < ef or

sim(e, x) ≥ τ then
16 C ← C ∪ e
17 W ←W ∪ e
18 if |W | > ef and sim(f, x) < τ

then
19 remove the least similar

element from W to x

20 end
21 end
22 end
23 end
24 end
25 foreach y ∈W do
26 if y.sim ≥ τ then
27 Ass.add(y)
28 end
29 end
30 return Ass

4.1. Experimental Setup

We used four databases, three of which were semi-synthetically generated (DBLP1,
IMDB2, and Spotify3), and one widely used benchmark dataset (Glove). For the Glove
dataset, we utilized the version with 100 dimensions and 1,183,514 vectors provided
by the ANN-Benchmarks4 project. The characteristics of the semi-synthetic data are

1http://dblp.uni-trier.de
2https://www.imdb.com/interfaces
3https://research.atspotify.com/datasets/
4https://github.com/erikbern/ann-benchmarks
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shown in Table 1, and the normalized dense vectors were generated using the Sentence-
Transformers framework [Reimers and Gurevych 2019]. The experiments were con-
ducted on a server equipped with an Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz
(12 CPU) processor and 32 GB of RAM.

Datasets Attributes Min Size Max Size Avg Size Records Duplicates Total Dimensions
DBLP Title, Author 6 1081 125 50000 2 100000 768
IMDB Title, Actors, Description 31 477 161 20000 5 100000 384
Spotify Artist name, Track name 5 204 33 50000 2 100000 384

Table 1. Description of semi-synthetic datasets

4.2. Similarity Joins with ANN Algorithms
Approximate nearest neighbor (ANN) algorithms play a crucial role in real-time appli-
cations and are specifically designed for kNN search. In the context of similarity join, it
is possible to adapt the application of these algorithms to achieve approximate similarity
join (recall Lemma 1). One simplified approach is to perform repeated top-k search calls,
increasing the value of k at each iteration, until the least similar object returned in the
search is below the established threshold. Some indexing structures provided by Faiss,
such as the inverted file index (IVF) and the flat index, allow threshold-based searches.
However, the HNSW, Annoy, and ScanN structures do not have this capability natively.

Threshold nmslib.brute force faiss.IndexLSH faiss.IVFFlat
Recall Time (s) Recall Time (s) Recall Time (s)

0.6 100% 3431 95.18% 1190 92.99% 153
0.7 100% 2609 99.98% 1127 95.29% 153
0.8 100% 2023 100.00% 1127 97.81% 152
0.9 100% 1780 100.00% 1126 99.49% 152

Threshold Annoy nmslib.HNSW ScanN
Recall Time (s) Recall Time (s) Recall Time (s)

0.6 94.57% 327 97.43% 47 79.49% 88
0.7 97.33% 235 98.23% 39 97.29% 80
0.8 99.06% 186 99.12% 34 99.03% 71
0.9 99.26% 143 99.42% 31 99.81% 63

Table 2. Similarity Join Experiments with ANN Algorithms

To evaluate the application of HNSW compared to Faiss, Annoy, and ScanN in
similarity join, we conducted initial experiments using the DBLP database indicated in
Table 1. For each indexing structure, we implemented a two-step algorithm: (1) indexing
all the vectors and (2) traversing each vector in the database and querying the index for
similar objects above the similarity threshold using the cosine function. We employed the
top-k search approach for the threshold, as mentioned earlier. In the case of Faiss with
the IVF index, we performed a range-search query. For these experiments, we utilized
the official libraries of Faiss5, Annoy6, HNSW7, and ScanN8, with Python bindings. We

5https://github.com/facebookresearch/faiss
6https://github.com/spotify/annoy
7https://github.com/nmslib/nmslib
8https://github.com/google-research/google-research/tree/master/
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used the brute-force version of the nmslib library to obtain exact results. In Faiss, we
employed approximate indexes, such as the LSH type, which applies locality-sensitive
hash functions to maximize collisions and group vectors, and the IVFFlat type, which
reduces the search scope through inverted file and clustering.

The results of these experiments can be seen in Table 2 and indicate that the
HNSW structure achieved a better tradeoff between execution time and recall rate. HNSW
obtained better execution times, from 31s to 47s, maintaining recall above 97%, even at
lower thresholds. ScanN also achieved low execution times, but when lowering the thresh-
old to 0.6 the recall drops dramatically. These results correspond to previous work that
demonstrated that the HNSW structure provides state-of-the-art solutions compared to
other competing methods. [Aumüller et al. 2020].

4.3. Similarity Joins with HNSW

We conducted experiments to evaluate the performance of our techniques in terms of ex-
ecution time and recall rate, comparing them to the exact brute-force method and the ex-
ternal approach. The implementation was done in Java using the HNSW library available
on GitHub9 and exploiting the multicore processor parallelism. We used the values 64,
32, and 32 as parameters M, efC, and ef, respectively, in all executions. We performed
multiple algorithm executions, varying the threshold from 0.5 to 0.9 with an increment of
0.1, and the recorded times represent the average of five executions. A maximum limit
of 100 hours was defined for the execution of the algorithms. If this limit is reached, the
execution is terminated. The algorithms are indicated in the graphs as follows: BF for
brute force, EXT for HSJ-Ext, THS for HSJ-Ths, and INC for HSJ-ThsInc. The execution
of the brute-force method on the GLOVE dataset with a threshold of 0.5 was interrupted
due to reaching the time limit. Therefore, it was not possible to obtain the recall rates of
the methods for this threshold and dataset.

Figure 2. Runtime of methods

The runtimes are shown in Figure 2, and the recall rates are available in Table 3.
The results demonstrate that our techniques significantly outperform the exact method,
with recall rates approaching 100% for the different thresholds evaluated. In the GLOVE
dataset and threshold 0.6, the exact method ran in 54 hours, while the HSJ-ThsInc took

scann
9https://github.com/jelmerk/hnswlib
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Threshold
DBLP IMDB

BF EXT THS INC BF EXT THS INC
0.9 100% 99.99% 99.97% 99.94% 100% 99.77% 99.44% 99.95%
0.8 100% 99.95% 99.93% 99.87% 100% 99.45% 99.28% 99.81%
0.7 100% 99.92% 99.91% 99.61% 100% 99.21% 99.19% 98.83%
0.6 100% 99.90% 99.89% 99.41% 100% 99.03% 98.98% 98.48%
0.5 100% 99.37% 99.23% 98.80% 100% 99.25% 98.85% 98.71%

Threshold
SPOTIFY GLOVE

BF EXT THS INC BF EXT THS INC
0.9 100% 99.97% 99.91% 99.93% 100% 99.75% 99.74% 99.75%
0.8 100% 99.90% 99.87% 99.88% 100% 99.69% 99.67% 99.59%
0.7 100% 99.87% 99.80% 99.61% 100% 98.82% 99.03% 98.89%
0.6 100% 99.86% 99.75% 99.17% 100% 98.01% 98.33% 98.17%
0.5 100% 98.61% 98.24% 97.50% - - - -

Table 3. Methods recall rate

10.6 minutes (300x) with a recall of 98.17%. Additionally, we observed that the HSJ-
Ths and HSJ-ThsInc versions, which utilize the new HNSW graph search method, the
latter employing incremental indexing, outperformed the external approach HSJ-Ext in
all datasets, achieving maximum speedups of 13x and 26x, respectively. These speedups
were achieved in the GLOVE dataset and threshold of 0.5, with runtimes of 34, 65.8, and
894 minutes for HSJ-ThsInc, HSJ-Ths, and HSJ-Ext, respectively.

Regarding multicore parallelism, non-incremental approaches with all vectors pre-
indexed avoid synchronization issues between processes, allowing independent searches
across the entire index. However, the incremental approach may face challenges in syn-
chronization, potentially leading to incomplete results in certain searches. Nonetheless,
experimental results demonstrate that despite parallelism in the incremental version, the
recall rate remains comparable to that of the non-incremental version. This outcome is
likely due to the distribution of input vectors, which mitigates synchronization problems.
Further evaluations with diverse datasets are necessary to validate these findings.

The HNSW index’s memory consumption is crucial to consider during its con-
struction. The number of connections determined by the parameter M affects the average
memory consumption per element. In addition, the dimensionality and number of vectors
also affect. In the experiments carried out, in the dataset of 100,000 vectors with 384
and 768 dimensions, the index size was 375 Mb and 675 Mb, respectively. For 1,183,514
vectors with 100 dimensions, the index size reached 1,815 Mb.

5. Related Work
L2AP [Anastasiu and Karypis 2014] is a state-of-the-art algorithm for exact similarity
join over sparse vectors using based on cosine similarity. It introduces, primarily, the
filtering based on the Cauchy-Schwarz inequality, achieving superior performance even
when compared to approximate techniques. However, L2AP relies on the characteristics
of sparse vectors to derive the filters, and it has been shown to have poor efficiency in
dense vector spaces [Santana and Ribeiro 2022].

Numerous works have been carried out to improve the performance of similar-
ity join on set-represented data, especially for exact results [Ribeiro and Härder 2011,
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Christiani et al. 2018]. For dense vectors, the focus has been on parallelism and the use
of GPUs to achieve exact results [Johnson et al. 2019], as well as the application of di-
mensionality reduction or quantization for approximate results [Paparrizos et al. 2022].
However, the quantity and dimensionality of the data still have a direct impact on the
execution time for obtaining exact results. Furthermore, when applying quantization and
dimensionality reduction techniques, despite significant performance gains, the recall rate
experiences a drastic decrease.

With the increasing use of dense vector embeddings, particularly in the fields
of data science and machine learning, there have been works aimed at optimizing
similarity search over such vector spaces. An important aspect of these research ef-
forts is the development of indexing structures and algorithms for approximate near-
est neighbor (ANN) search. Among the prominent algorithms developed are FAISS
[Johnson et al. 2019], Annoy [Bernhardsson 2015], Hierarchical Navigable Small World
(HNSW) [Malkov and Yashunin 2020], and ScanN [Guo et al. 2020]. These methods
have been designed for kNN search and are not specifically optimized for similarity join.

Among the mentioned algorithms, the HNSW stands out for offering signifi-
cant improvements in search time with minimal reduction in recall [Echihabi et al. 2019,
Aumüller et al. 2020]. It has been widely used in various applications, ranging from real-
time searches to data discovery in data lakes [Fan et al. 2023]. Considering these charac-
teristics, this work explores the use of this structure for performing similarity joins.

6. Conclusions
In this paper, we presented algorithms for approximate similarity join using the HNSW
graph structure. We propose three algorithms for approximate similarity join and a novel
graph search method based on a threshold as the stopping criterion. Experimental results
demonstrate that approximate similarity join with HNSW is an efficient and accurate ap-
proach for retrieving similar object pairs in large datasets. Compared to the exact method
and external approach, the proposed technique reduced execution time by up to 300x and
26x, respectively, while maintaining recall rates close to 100%. These results highlight
the potential of leveraging the HNSW structure for similarity joins, expanding its applica-
bility beyond kNN search. In future work, we suggest exploring additional optimizations,
such as exploiting the threshold in graph construction and investigating other indexing
structures to further enhance similarity join operation on dense vectors.
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