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Abstract. The FAIR Principles state that scientific data should be Findable, Ac-
cessible, Interoperable, and Reusable in order to adhere to the Open Science
movement. However, designing a FAIR-compliant repository can be a challenge
due to the complexity of managing a huge volume and variety of research data
and metadata, which can also be generated at a high velocity. This complexity
calls for a Software Reference Architecture (SRA) to guide data engineers dur-
ing the implementation process. In this paper, we conduct a systematic review
that encompasses research efforts regarding architectural solutions for imple-
menting FAIR-compliant repositories. We analyze 323 references from Scopus,
ACM, IEEEXplore, and specialists recommendations. From this analysis, we
discover 7 studies that describe general purpose big data SRAs, 13 pipelines
that implement the FAIR Principles to specific contexts, and 3 FAIR-compliant
big data SRAs. We describe their key characteristics and discuss their limita-
tions, highlighting tendencies and research opportunities.

1. Introduction
The concept of Open Science has emerged in the scientific community to increase
collaboration between researchers across the globe. It states that every digital as-
set originated from research objects should be made available and usable free of
charge [Medeiros et al. 2020]. To standardize the development of data sharing reposi-
tories capable of adhering to the Open Science concept, the FAIR Principles have been
proposed [Wilkinson et al. 2016]. The objective behind these principles resides in en-
suring that the aforementioned digital assets are findable, accessible, interoperable, and
reusable by both humans and machines. However, their implementation might be chal-
lenging depending on the volume, variety, and velocity of the scientific data and metadata
to be shared, which is a complexity inherent to big data environments [Chen et al. 2014].

Considering this complexity and the fact that the FAIR Principles are de-
fined in proximity to the user level, a data engineer would benefit considerably from
adopting a Software Reference Architecture (SRA) during the implementation pro-
cess. An SRA can be defined as an architectural framework that encapsulates the ex-
pertise on creating specific system architectures (or pipelines) within a particular do-
main [Nakagawa et al. 2011]. Consequently, a FAIR-compliant SRA would serve as a
guiding blueprint for data engineers when constructing a big data sharing repository, ef-
fectively connecting the FAIR Principles with specific implementation details.

Given the importance of big data FAIR-compliant SRAs to the context of Open
Science, we conduct a systematic review of the literature encompassing this domain. A
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systematic review is a rigorous method that systematically searches, selects, appraises,
and synthesizes existing research studies. It aims to provide an evidence-based summary
of specific research questions, following predefined criteria to minimize bias while iden-
tifying research gaps [Scannavino et al. 2017]. In the literature, the work of Davoudian
and Liu (2020) surveys big data SRAs available up to the year of 2020. However, the au-
thors do not consider the FAIR principles in their comparisons. In our work, we analyze
different architectural solutions for implementing big data sharing repositories capable
of fulfilling the FAIR Principles. To the best of our knowledge, our work is novel since
no other survey covering this specific type of analysis has been returned by the search
engines during the conduction of the systematic review.

Our paper presents the following contributions:

• A systematic review of the literature that employs a reproducible methodology,
laying the groundwork for future research on FAIR-compliant big data SRAs.

• A synthesis of architectural solutions for implementing repositories in line with
the FAIR Principles. We also classify these solutions as general purpose big data
SRAs, context-specific pipelines to implement FAIR-compliant repositories, and
FAIR-compliant big data SRAs.

• A discussion encompassing the limitations and tendencies of the analyzed solu-
tions, as well as the research opportunities that arise from these observations.

This paper is structured as follows. Section 2 describes the methodology and
conduction, Section 3 presents the data synthesis and classification, Section 4 outlines
limitations, tendencies, and research opportunities, and Section 5 concludes the paper.

2. Methodology and Conduction
A systematic review needs to follow a plan with phases and activities so that it can subse-
quently be reproduced. These are defined based in the work of Scannavino et al. (2017),
as follows: (i) planning, encompassing the definition of an objective, research questions,
search engines, keywords, search string, and selection criteria; (ii) conduction, including
the studies selection and synthesis; and (iii) discussion of the results. This process is flex-
ible in regards to reevaluating its phases, enabling their redefinition if deemed necessary.

For the planning phase, we first define the objective of the systematic review as
“identifying studies that propose SRAs capable of implementing the FAIR Principles and
addressing the intrinsic characteristics of big data environments". Then, from this ob-
jective, we derive research questions to verify if there are studies in the literature that
propose: (i) general purpose big data SRAs; (ii) pipelines to implement specific FAIR-
compliant repositories; or (iii) FAIR-compliant big data SRAs. Afterwards, we determine
which search engines will be employed based on their reach, novelty, and availability
for accessing the returned studies. Considering these criteria, we conduct our systematic
review on IEEEXplore Digital Library1, ACM Digital Library2, and Elsevier Scopus3.

To conduct the systematic review using these search engines, we need to derive
the following artifacts from the previously defined research questions: (i) search keywords

1IEEEXplore Digital Library: https://ieeexplore.ieee.org
2ACM Digital Library: https://dl.acm.org
3Elsevier Scopus: https://www.scopus.com
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Step 1: Executing
the search string

Returned
317 entries

Step 3: Removing
duplicates and non-

article entries

Selected
288 articles

Step 4: Initial
selection (title
and abstract)

Selected
75 articles

Step 5: Final
selection (full

read)

Selected
23 articles

Removed 15
non-article

entries

Removed 213
articles

Removed 52
articles

Removed 20
duplicates

Step 2: Articles
recommended
by specialists

323 entries
to be

analyzed

Added 6
articles

Figure 1. Conduction of the systematic review using the selection procedure.

and their synonyms; and (ii) a search string that connects these keywords using logical
operators such as “AND" and “OR". We define the following search string, containing the
derived keywords and the chosen synonyms:

(("FAIR principles" OR "FAIR guiding principles" OR "open science")
AND ("implementation" OR "workflow" OR "pipeline"))

OR (("software reference architecture" OR "SRA" OR
"generic architecture")
AND (("big data" OR "cloud" OR "cloud computing")

OR ("FAIR principles" OR "FAIR guiding principles" OR
"open science")))

To delineate the selection criteria, we consider studies that: (i) address the research
questions; (ii) propose architectural solutions; (iii) are freely accessible in academic envi-
ronments; (iv) are available in English or Portuguese; (v) pertain to the field of Computer
Science; and (vi) were published since 2020. To define this time frame, we leverage the
studies of Jacobsen et al. (2020) and Van Reisen et al. (2020). These studies propose
several recommendations for the implementation of the FAIR Principles based on a liter-
ature review conducted between the years of 2016, when the FAIR Principles were first
proposed, and 2019. Since we are interested in solutions that adopt their recommenda-
tions during the definition of FAIR-compliant implementations, we disconsider studies
that have been published prior to the year of 2020. The same time frame can be adopted
for studies that define big data SRAs, since the work of Davoudian and Liu (2020) surveys
the most relevant architectures in the literature up to the year of 2020. However, studies
outside this time frame can also be included if they are recommended by specialists.

With the selection criteria defined, the systematic review can be conducted accord-
ing to the selection procedure, as illustrated in Figure 1. In Step 1, we execute the search
string in the chosen search engines, using their interface to limit the search to the article
title, keywords, and abstract. We also use this interface to disconsider articles outside the
scope of the selection criteria (iv), (v), and (vi), leaving only the criteria (i), (ii), and (iii)
to be analyzed in subsequent steps. The search string retrieved a total of 317 entries4, 11
from ACM, 43 from IEEEXplore, and 263 from Scopus. An equivalent search string with
Portuguese keywords was also executed in the search engines, but no additional work
was retrieved. Then, in Step 2, we include 6 references that have been recommended by

4We performed the search in April 8, 2023.
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specialists, increasing the total number of entries to 323. However, 20 of these entries
are duplicates and 15 do not correspond to scientific papers. We remove these in Step 3,
leaving 288 studies to be analyzed, 8 from ACM, 41 from IEEEXplore, 233 from Scopus,
and 6 from specialists recommendations.

Then, we perform an initial selection (Step 4) on the obtained studies by reading
their title and abstract. If the study meets the selection criteria, it is approved to be ana-
lyzed in the next step. Of the 288 analyzed articles, 75 are approved in the initial selection,
2 of which are from ACM, 10 from IEEEXplore, 57 from Scopus, and 6 from specialists
recommendations. The next step of the systematic review is the final selection (Step 5).
In this activity, we read the studies selected in the previous step in their entirety to verify
if they still meet the selection criteria. We approved 23 studies in this step, comprised
of 4 from IEEEXplore, 13 from Scopus, and 6 from specialists recommendations. These
studies are then synthesized and classified into groups, as detailed in Section 3.

3. Data Synthesis and Classification

We synthesize the content of the articles approved in the final selection and classify them
into three distinct groups, based on which research questions they answer: (i) general
purpose big data SRAs (Section 3.1); (ii) pipelines to implement specific FAIR reposi-
tories (Section 3.2); and (iii) FAIR-compliant big data SRAs (Section 3.3). We compare
these studies based on their key characteristics. These encompass essential features for
open science repositories (i.e. FAIR compliance, metadata management, source data re-
trieval by metadata), big data capabilities, storage of data and metadata, and being generic
enough to adhere to the concept of an SRA. When relevant, we also analyze the repository
context and the focus of the developed solutions.

3.1. Group 1: General Purpose Big Data SRAs

The research efforts allocated in this group encompass big data SRAs that have not been
specifically engineered to align with the FAIR Principles (Table 1). Instead, these solu-
tions emphasize the provision of real-time analytics to support users in decision-making,
without focusing on the collection and management of metadata and data provenance.

The first work in this group describes the traditional data warehousing architec-
ture [Chaudhuri and Dayal 1997]. It consists of a dedicated environment for the execution
of analytical queries, encompassing components such as a data warehouse, data marts,
and a metadata repository. The Kappa architecture [Kreps 2014] uses a single streaming
layer for big data computation, supporting both batch and real-time processing through
the buffering of historical data in a logging system for an extended duration. On the other
hand, the Lambda architecture [Kiran et al. 2015] employs three layers for this type of
computation, one for creating batch views, one for processing recent data into real-time
views, and one to store and merge these views for later consumption.

Liquid [Fernandez et al. 2015] is an SRA that aims to overcome the limitations of
Kappa and Lambda by employing incremental processing instead of fully recomputing
views. It is comprised of two layers: (i) messaging, which stores data and metadata as
messages, as well manages checkpoints from which this data can be partially recomputed;
and (ii) processing layer, performing jobs and transformations on the messages. Although
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Table 1. Comparison of general purpose big data SRAs.

Work∗
Fits the

concept of
an SRA

FAIR-
compliant

Metadata
manage-

ment

Source data
retrieval by
metadata

Enables
big data
analytics

Storage of data
and metadata

Chaudhuri and Dayal (1997) ✓ ✗ ✓ ✗ ✓ Same infrastructure

Kreps (2014) ✓ ✗ ✗ ✗ ✓ Does not apply

Kiran et al. (2015) ✓ ✗ ✗ ✗ ✓ Does not apply

Fernandez et al. (2015) ✓ ✗ ✗ ✗ ✓ Does not apply

Martínez-Prieto et al. (2015) ✓ ✗ ✗ ✗ ✓ Does not apply

Nadal et al. (2017) ✓ ✗ ✓ ✗ ✓ Same infrastructure

Ataei and Litchfield (2021) ✓ ✗ ✓ ✗ ✓ Same infrastructure
∗Architectures proposed prior to the year of 2020 are classified in this group due to their inclusion
in the systematic review as recommendations from specialists.

the messaging layer stores metadata, no implementation regarding its management is de-
fined on Liquid. The Solid architecture [Martínez-Prieto et al. 2015] unifies heteroge-
neous data into a single model, defining layers for big data storage, querying, streaming,
and merging of historical and runtime data. It distinguishes itself from Lambda by storing
data in a single layer instead of performing its duplication into batch and real-time views.
As for the Bolster architecture [Nadal et al. 2017], the authors use a semantic layer with
metadata management for data governance. This includes an ontology-based repository
for input data characteristics, accompanied by a dispatcher component that determines
whether the streaming data should be directed to the batch or speed layer.

Furthermore, NeoMycelia [Ataei and Litchfield 2021] is an SRA based on mi-
croservices and events. Each microservice has a local database with a caching compo-
nent. This architecture is comprised of several components, such as: (i) a gateway for
user connection; (ii) controllers and service meshes for stream and batch data processing;
(iii) an event backbone and an event archive to support the communication between mi-
croservices; (iv) a data lake that stores structured, pseudo-structured, unstructured, and
semi-structured data; (v) a query controller and query engine to support query execution;
and (vi) a semantic layer, which contains a metadata management system responsible for
storing metadata, preparation rules, and data evolution.

3.2. Group 2: Pipelines to Implement Specific FAIR Repositories

Studies classified in this group represent pipelines that implement the FAIR Principles to
the context of specific data sharing repositories (Table 2). Solutions that do not imple-
ment data sharing repositories are disconsidered, such as FAIRness assessment tools or
workflows to conduct specific scientific experiments.

In Assante et al. (2021), the authors propose the AGINFRA PLUS platform, which
enables researchers to store, analyze, visualize, and publish agriculture and food data in
accordance with open science. Moreover, Pană et al. (2021) developed a pipeline that ex-
tracts data and metadata from several seismic databases available online, integrating them
into a single repository stored in a PostgreSQL local database to enable analytics. Fur-
thermore, the work of Pestryakova et al. (2022) describes a pipeline that extracts data and
metadata from COVID-19 related publications, transforming them into CovidPubGraph,
a knowledge graph which, in itself, can be considered as a data sharing repository.
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Table 2. Comparison of pipelines to implement specific FAIR repositories.

Work
Fits the

concept of
an SRA

FAIR-
compliant

Metadata
management

Source data
retrieval by
metadata

Enables
big data
analytics

Storage of
data and
metadata

Context

Assante et
al. (2021) ✗ ✓∗ ✓ ✓ ✗

Same infras-
tructure

Agriculture
and food data

Pană et
al. (2021) ✗ Partially ✓ ✓ ✗

Same infras-
tructure

Earthquake
data

Pestryakova
et al. (2022) ✗ ✓ ✓ ✓ ✗

Same infras-
tructure

COVID-19
papers data

Brůha et
al. (2022) ✗ ✓∗ ✓ ✓ ✗

Same infras-
tructure

Health and
brain data

Jha et
al. (2022) ✗ Partially ✓ ✓ ✗

Same infras-
tructure Oncology data

Felikson et
al. (2022) ✗ ✓∗ ✓ ✓ ✓

Same infras-
tructure

Earth data
from NASA

Borges et
al. (2022) ✗ ✓∗ ✓ ✓ ✗

Same infras-
tructure

COVID-19
patients data

Sciacca et
al. (2022) ✗ ✓∗ ✓ ✓ ✓

Same infras-
tructure

Underwater,
atmospheric,

and space data

Toulet et
al. (2022) ✗ ✓∗ ✓ ✓ ✗

Same infras-
tructure

Textual data
from papers

Schwagereit
et al. (2022) ✗ ✓ ✓ ✓ ✗

Same infras-
tructure In vivo data

Deng et
al. (2022) ✗ ✓∗ ✓ ✓ ✗

Separate in-
frastructures

Immunology
data

Rueda-Ruiz
et al. (2022) ✗ ✓∗ ✓ ✓ ✓

Same infras-
tructure LiDAR data

Lehmann et
al. (2023) ✗ ✓∗ ✓ ✓ ✓

Same infras-
tructure Sensor data

∗The authors state that the pipeline is FAIR-compliant, however no details are given on how it
fulfills each FAIR principle.

The Body in Numbers system [Brůha et al. 2022] encompasses the collection of
health-related data and metadata taking into consideration the FAIR Principles. The au-
thors propose a pipeline that consists of five modules to collect, annotate, analyze, inter-
pret, and publish brain and physical data and its associated metadata. In Jha et al. (2022),
the authors propose a pipeline to extract data and metadata from several healthcare sys-
tems. A series of Python scripts is employed to extract image features and perform data
cleaning and integration, storing the result as data triples. Additionally, the work of Felik-
son et al. (2022) describes the cloud infrastructure behind the repository of NASA’s Earth
Information System. Its goal resides in enabling researchers and end users to conduct their
own analyses close to big data stored in the cloud, and to make it easier to access data
products and information, to reproduce analyses, and to build on existing work, following
the concept of Open Science.

The VODAN BR project [Borges et al. 2022] aims to collect and implement a
data management infrastructure for COVID-19 hospitalized patients’ cases in Brazil, ac-
cording to the FAIR principles. The authors describe its architecture, which covers the
processes between the collection of clinical data to the publication of its metadata in
the network as triplestores. Furthermore, NEANIAS [Sciacca et al. 2022] is a service-
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oriented architecture to provide analytics for underwater, atmospheric and space related
data. It is comprised of four high level core services to support open science lifecycles,
integration with the open science cloud, artificial intelligence, and visualization. The
work of Toulet et al. (2022) describes a pipeline to extract metadata from scientific papers
and to generate knowledge from their full text, storing both as triplestores in a Virtuoso
server. Moreover, in Schwagereit et al. (2022) the authors describe FISH, a platform to
share in vivo data according to the FAIR Principles. It consists of multiple management
and storage component available through microservices.

Deng et al. (2022) propose ImmuneData, a platform that extracts and integrates
the metadata of different immunology databases into a single repository, which stores this
metadata in a unified metadata model proper for biomedical data. This enables users to use
a single engine to query this metadata to retrieve the source data objects. Additionally, in
Rueda-Ruiz et al. (2022), the authors propose a general specification for cloud repositories
to store large scale LiDAR data. It consists of a conceptual data model implemented on
MongoDB and an API to handle requests. Finally, the work of Lehmann et al. (2023)
proposes an architecture that merges the concepts of Research Data Management (RDM)
based on the FAIR Principles with the concept of a digital twin, which is the virtual
counterpart of a physical sensor. The architecture collects sensor data and metadata and
sends them to a layer called RDM Core Space, where the data is stored in its raw format
and the metadata is stored as a knowledge graph. Both the sensor data and metadata can
then be used by smart applications through a messaging broker.

3.3. Group 3: FAIR-compliant Big Data SRAs

This group of studies encompasses a range of architectural frameworks that not only are
generic enough to fit the concept of an SRA, but also are concerned with the requirements
imposed by the FAIR Principles (Table 3). These studies also employ solutions to handle
the intrinsic characteristics of big data environments (i.e. volume, variety, and velocity),
such as parallel and distributed data processing and cloud computing technologies.

The work of Castro et al. (2022a) proposes BigFAIR, a FAIR-compliant SRA to
store, process, and query scientific data and metadata. This architecture is comprised
of several layers organized in two separate infrastructures: (i) local, encompassing the
local environments of the data providers, where the source data objects remain stored;
and (ii) repository, encompassing big data technologies for centralized metadata storage,
data and metadata processing, and ad-hoc data anonymization. Metadata is stored either
in the Metadata Lake in its raw format, or in the Metadata Warehouse after undergoing
transformations, which ensures metadata persistence even when the associated source data
objects no longer exist. The authors detail the compliance of each layer with each FAIR
Principle. By taking advantage of the existing local infrastructures of data providers, this
architecture is able to support data ownership and increase flexibility.

CloudFAIR [Castro et al. 2022b] is a FAIR-compliant SRA that handles both sci-
entific data and its associated metadata in a single cloud infrastructure. The authors claim
that this unification unburdens data providers in regards to the management of a local in-
frastructure and also improves performance. By being an extension of BigFAIR, Cloud-
FAIR inherits its full compliance with the FAIR Principles, as well as the storage of
transformed metadata in a Metadata Warehouse to guarantee its persistence. However,
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Table 3. Comparison of FAIR-compliant big data SRAs.

Work
Fits the

concept of
an SRA

FAIR-
compliant

Metadata
management

Source data
retrieval by
metadata

Enables
big data
analytics

Storage of
data and
metadata

Focus

Castro et
al. (2022a) ✓ ✓ ✓ ✓ ✓

Separate
infrastructures

Flexibility, data
ownership

Castro et
al. (2022b) ✓ ✓ ✓ ✓ ✓

Same
infrastructure

Performance,
simplification
for providers

Vazquez et
al. (2022) ✓ Partially ✓ ✓ ✓

Same
infrastructure

Metadata quality
assurance

instead of using a Metadata Lake to store only metadata in its raw format, CloudFAIR
uses a multi-tiered Data Lake that stores two copies of the source data objects: a fully
anonymized copy and an encrypted copy without anonymization. The authors conduct a
performance evaluation that proves that this storage strategy, along with the other features
of CloudFAIR, improve performance in up to 75.95% when compared to BigFAIR.

Finally, the work of Vazquez et al. (2022) propose GADDS, a generic platform
that stores research data and metadata in the cloud, achieving partial compliance with
the FAIR Principles. Metadata is stored in a blockchain environment, which enforces
metadata quality control since every entry is validated by every node in the network in
a decentralized manner. A version control software is also employed to track changes in
the metadata and guarantee its persistence even when the associated source data object
is excluded. However, GADDS is unable to track changes in the data objects. Thus,
if a data object changes, the older versions of its associated metadata will point to the
novel version of the data object. These data objects are stored by GADDS in an object
storage in the cloud that enables data replication into multiple nodes, allowing parallel
and distributed data processing. The authors validate GADDS with a case study related
to tissue engineering and discuss its FAIR compliance at a high level.

4. Discussion
4.1. Limitations
The objective of this systematic review resides in retrieving studies that propose SRAs
capable of implementing the FAIR Principles while also addressing the intrinsic charac-
teristics of big data environments. However, the studies synthesized in Section 3 face
some limitations in this regard, described as follows and depicted in Figure 2a.

Studies in Group 1 (Section 3.1) inherently diverge from the concept of a FAIR-
compliant SRA in regards to their purpose. First, these SRAs fall short in meeting the
requirements set by the FAIR Principles due to their limited capabilities for retrieving
source data objects based on metadata and for keeping metadata alive even when the
associated data objects are no longer available. Additionally, these architectures do not
employ a specific component for storing metadata about the metadata. They either do
not store this content or store all the metadata in the same component, compromising the
richness and performance of metadata analyses.

Regarding Group 2 (Section 3.2), none of the reviewed studies propose architec-
tures generic enough to fit the concept of an SRA. Rather, they propose pipelines that
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Figure 2. Main limitations and data contexts of studies in Groups 2 and 3.

are specific to implement a FAIR-compliant repository in a given context. Furthermore,
the majority of these studies fail to clarify which of the FAIR Principles are satisfied by
their solutions. Only the studies of Pestryakovaet al. (2022) and Schwagereit et al. (2022)
detail how their full FAIR compliance is achieved, while the studies of Pană et al. (2022)
and Jha al. (2022) clarify their partial compliance. This lack of information gives rise to
substantial concerns, such as making sure that all principles are fulfilled and identifying
which part of the solution is responsible for implementing each principle. Studies in this
group are also limited in regards to their big data capabilities. Only the studies of Felikson
et al. (2022), Sciacca et al. (2022), Rueda-Ruiz et al. (2022), and Lehmann et al. (2023)
employ big data technologies in the construction of their solutions. Although enabling
big data analytics is not a requirement imposed by the FAIR Principles, it is of significant
importance to support the decision-making process. It not only allows data consumers to
perform different types of analyses on the stored data and metadata, but also contributes
to an increase in the overall performance of the repository.

The studies classified in Group 3 (Section 3.3) also present some limitations. For
instance, GADDS [Vazquez et al. 2022] is unable to achieve full compliance with the
FAIR Principles. By storing metadata in a blockchain environment, it can only be ex-
posed to members inside the network. This hinders the general public unable to access
the content of a repository implemented by GADDS, compromising findability and acces-
sibility. Also, this SRA does not implement global unique identifiers, further impacting
on its FAIR compliance. Another limitation of the studies in this group is related to their
focus. For instance, CloudFAIR [Castro et al. 2022b] uses a single cloud infrastructure to
store data and metadata to improve performance and to unburden data providers. How-
ever, by doing so it relinquishes support to data ownership and flexibility, key features of
BigFAIR [Castro et al. 2022a]. This can be a problem in situations in which the repos-
itory is required to comply with different data protection regulations, or to implement
specific security policies. The reverse situation is also true: BigFAIR forsakes perfor-
mance and simplification for data providers in order to support data ownership and obtain
flexibility. Furthermore, by not using a blockchain environment like GADDS, both Big-
FAIR and CloudFAIR relinquish decentralized metadata control, negatively impacting on
the quality assurance of stored metadata.
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4.2. Tendencies

After analyzing the data synthesis obtained in this systematic review (Section 3), we can
identify some tendencies in the described studies. For instance, applying the FAIR Princi-
ples to health-related data is a common occurrence. Between the studies of Group 2 (Sec-
tion 3.2), the following adhere to this context: (i) Pestryakova et al. (2022), with data from
COVID-19 research publications; (ii) Brůha et al. (2022), using health and brain data; (iii)
Jha et al. (2022), employing oncology related data; (iv) Borges et al. (2022), using data
from COVID-19 patients; and (v) Deng et al. (2022), leveraging immunology data. Ad-
ditionally, both BigFAIR [Castro et al. 2022a] and CloudFAIR [Castro et al. 2022b] use
COVID-19 patients data in their experiments, whereas GADDS [Vazquez et al. 2022] em-
ploys fiber cell tissue research data during its instantiation. Another commonly addressed
context is that of earth-related data, being covered by the repositories of Pană et al. (2021),
Felikson et al. (2022), Sciacca et al. (2022), and Rueda-Ruiz et al. (2022). The proportion
of studies per data context is illustrated in Figure 2b.

Another observed tendency is the adoption of microservices for the construc-
tion of architectures and pipelines, which is a paradigm to deploy applications as
a collection of events that are inherently independent. This strategy is observed in
NeoMycelia [Ataei and Litchfield 2021], the latest general purpose big data SRA avail-
able in the literature, and in the FISH platform [Schwagereit et al. 2022], a pipeline to
implement an in vivo data repository in accordance with the FAIR Principles. Finally,
the employment of the same infrastructure for the management of data and metadata is
another detected tendency. The majority of the surveyed solutions use this strategy, with
only a few exeptions [Deng et al. 2022, Castro et al. 2022a]. According to the experi-
ments conducted in Castro et al. (2022b), a possible reason for the occurrence of this
tendency is the improvement of query performance when storing data and metadata in the
same infrastructure. This strategy also unburdens data providers in regards to maintaining
a local repository to store scientific data, while overlooking data ownership and flexibility.

4.3. Research Opportunities

The aforementioned limitations and tendencies give rise to opportunities to con-
duct innovative research. For instance, the development of a novel FAIR-compliant
SRA capable of unifying the advantages of BigFAIR [Castro et al. 2022a], Cloud-
FAIR [Castro et al. 2022b], and GADDS [Vazquez et al. 2022] would considerably ben-
efit the scientific community. However, leveraging flexibility, data ownership, perfor-
mance, simplification for data providers, and metadata quality assurance in a single archi-
tecture is challenging. A possible solution is developing this SRA in multiple modules,
each prioritizing one of the aforementioned characteristics. These modules can then be
instantiated depending on the requirements imposed by the data providers and consumers.

Another opportunity that arises from the previously identified tendencies is the
development of a FAIR-compliant SRA using the strategy of microservices. This strategy
has successfully been employed by Ataei and Litchfield (2021) for developing a general
purpose big data SRA and by the work of Schwagereit et al. (2022) for implementing a
FAIR-compliant repository. However, we have not identified a solution that merges these
research fields during the conduction of the systematic review, representing a gap that can
be further explored by the scientific community.

Proceedings of the 38th Brazilian Symposium on Databases

85



5. Conclusions and Future Work

In this paper, we presented a systematic review of the literature that identified architec-
tural solutions capable of implementing the FAIR Principles and addressing the intrinsic
characteristics of big data environments. We detailed its methodology and conduction, en-
abling reproducibility. Moreover, we introduced a data synthesis of the selected studies,
as well as their classification in three distinct groups. We also identified the limitations
of these solutions, deriving tendencies and research opportunities. Future work consists
on analyzing a broader scope of studies by considering the snowball technique. We also
plan on providing future updates for this systematic review and to explore the identified
research opportunities, proposing novel architectural solutions for the implementation of
the FAIR Principles in big data environments.
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Brůha, P. et al. (2022). Workflow for health-related and brain data lifecycle. Front. Digit.
Health, 4.

Castro, J. P. C. et al. (2022a). FAIR Principles and Big Data: A software reference
architecture for Open Science. In Proc. ICEIS, pages 27–38.

Castro, J. P. C. et al. (2022b). Open Science in the cloud: The CloudFAIR architecture
for FAIR-compliant repositories. In Proc. ADBIS, pages 56–66.

Chaudhuri, S. and Dayal, U. (1997). An overview of data warehousing and OLAP tech-
nology. SIGMOD Rec., 26(1):65–74.

Chen, M., Mao, S., and Liu, Y. (2014). Big data: A survey. Mob. Netw. Appl., 19(2):171–
209.

Davoudian, A. and Liu, M. (2020). Big data systems: A software engineering perspective.
ACM Comput. Surv., 53(5):1–39.

Deng, N. et al. (2022). ImmuneData: an integrated data discovery system for immunology
data repositories. Database, 2022.

Felikson, D. et al. (2022). NASA’s earth information system: Sea-level change. In
OCEANS 2022, Hampton Roads, pages 1–8.

Proceedings of the 38th Brazilian Symposium on Databases

86



Fernandez, R. C. et al. (2015). Liquid: Unifying nearline and offline big data integration.
In Proc. CIDR.

Jacobsen, A. et al. (2020). FAIR principles: interpretations and implementation consider-
ations. Data Intell., 2(1-2):10–29.

Jha, A. K. et al. (2022). Implementation of big imaging data pipeline adhering to FAIR
principles for federated machine learning in oncology. IEEE Trans. Radiat. Plasma
Med. Sci., 6(2):207–213.

Kiran, M. et al. (2015). Lambda architecture for cost-effective batch and speed big data
processing. In IEEE Trans. Big Data, pages 2785–2792.

Kreps, J. (2014). Questioning the Lambda architecture. Available at https://www.
oreilly.com/radar/questioning-the-lambda-architecture/.
Accessed in April 8, 2023.

Lehmann, J. et al. (2023). Establishing reliable research data management by integrating
measurement devices utilizing intelligent digital twins. Sensors, 23(1):468.

Martínez-Prieto, M. A. et al. (2015). The solid architecture for real-time management of
big semantic data. Future Gener. Comput. Syst., 47:62–79.

Medeiros, C. B. et al. (2020). IAP input into the UNESCO Open Science Recommenda-
tion. Available at https://www.interacademies.org/sites/default/
files/2020-07/Open_Science_0.pdf. Accessed in April 8, 2023.

Nadal, S. et al. (2017). A software reference architecture for semantic-aware big data
systems. Inf. Softw. Technol., 90:75–92.

Nakagawa, E. Y., Antonino, P. O., and Becker, M. (2011). Reference architecture and
product line architecture: A subtle but critical difference. In Proc. ECSA, pages 207–
211.
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