
Improving Interoperability between Relational and
Blockchain-based Database Systems: A Middleware approach

Rafael Avilar Sá1,2, Leonardo O. Moreira1, Javam C. Machado1,2

1Laboratório de Sistemas e Banco de Dados (LSBD)
Departamento de Computação (DC)

Universidade Federal do Ceará (UFC) – Fortaleza, CE – Brasil

2Mestrado e Doutorado em Ciência da Computação (MDCC)
Departamento de Computação (DC)

Universidade Federal do Ceará (UFC) – Fortaleza, CE – Brasil

{rafael.sa,leonardo.moreira,javam.machado}@lsbd.ufc.br

Abstract. Multi-model, federated and polystore architectures allow for query-
ing data from different sources through a unified interface, providing interop-
erability for databases. However, support for blockchain-based databases re-
mains scarce. MOON is a middleware designed to enable cross-model querying
of data in relational and blockchain databases through standard SQL syntax.
This paper aims to promote the interoperability of blockchain-based and rela-
tional database systems through a new approach, called Inter-MOON. Through
experimentation, Inter-MOON was found to offer near-total support for SQL
DML query syntax, be up to 10x faster than MOON, and show comparable per-
formance to similar tools.

1. Introduction
The blockchain, originally conceived as part of the Bitcoin electronic cash system
[Nakamoto 2008], allows storing data without a trustworthy third party to create an im-
mutable, irrefutable, and tamper-proof distributed linked list. However, blockchains are
characteristically slow at writing operations [Zheng et al. 2018]. This is, partly, done
on purpose, due to the usage of computationally-intensive security algorithms such as
Proof-of-Work (PoW) [Gervais et al. 2016]. On the other hand, while many relational
databases offer great performance, they cannot easily produce the same level of security
and integrity as blockchains. Therefore, they have different priorities and divergent data
models, each presenting unique challenges.

Considering the divergent characteristics of data, and the many kinds of storage
solutions which are now available, there is a need to make interoperability of hetero-
geneous data easier [Babcock et al. 2002, Stonebraker and Çetintemel 2018]. Federated
databases, multistores, and polystores are all examples of this phenomenon. However, de-
spite the growing market for blockchains [Gadekallu et al. 2022], attempts at providing
support for them in federated systems are still barely seen.

The approach to data Management on relatiOnal database and blOckchaiN
(MOON) [Marinho et al. 2020] is a tool meant to act as a singular entry-point for database
queries by applications using both blockchain-based and relational databases. Queries are
written in SQL syntax, analyzed and mapped by MOON’s middleware, and then executed

Proceedings of the 38th Brazilian Symposium on Databases

115

using either the relational or blockchain-based environments. This approach simplifies
development by eliminating the need for clients to use different query languages, frame-
works, or libraries for each entity, following in the footsteps of federated databases and
polystores.

Our new approach, called Inter-MOON, enhances interoperability between
blockchain-based and relational databases. In this work, we present Inter-MOON, test
and compare it against similar solutions, and point out its limitations and possible future
works. In summary, our contributions are:

1. Exploration of interoperability of relational and blockchain databases.
2. Proposal and development of Inter-MOON, a modified version of MOON with a

focus on interoperability and improved SQL grammar support, database support,
query processing speed, blockchain index search speed, and blockchain asset def-
inition.

3. Testing and comparison of MOON, Inter-MOON, and other available open-source
polystore solutions.

2. Related Work
For multistores, MISO [LeFevre et al. 2014] focuses on the optimal materialization of
data in heterogeneous big data environments, using both RDBMS and HDFS (Hadoop).
Inter-MOON is not meant for big data workloads and uses virtual tables created on the
RDBMS store to minimize processing on the blockchain component.

CloudMdsQL [Bondiombouy et al. 2016] is a cloud-based multistore system with
a SQL-like language that enables querying of relational and NoSQL sources while taking
advantage of each source’s native functions. We apply native SQL instead, focusing on
blockchain-based DBs rather than generalized NoSQL.

[Duggan et al. 2015] is one of the polystore founding works and introduces Big-
DAWG, which enables heterogeneous data retrieval through custom markup. It presents
the concept of islands of information and utilizes a subset of each query language asso-
ciated with a data model. The user must also choose where to materialize data, unlike in
Inter-MOON. On the other hand, Polyphony-DB [Vogt et al. 2018] conceptualizes a self-
adaptive system with data replication and partitioning. [Singhal et al. 2019] also presents
the building blocks of Polystore++, which envisions a highly performance-oriented poly-
store solution.

This work utilizes a ’one-size-fits-all’ approach to query languages using SQL,
while polystores generally strive for mixed query languages. Moreover, none of these
systems consider blockchain-based databases, which is a primary concern in this work.
Finally, this work also showcases experimental results, while both Polyphony-DB and
Polystore++ are vision papers. To the best of our knowledge, no known federations, mul-
tistores, polystores, or similar tools offer explicit support for blockchain-based solutions.

The original work [Marinho et al. 2020] introduces MOON, while this work in-
troduces Inter-MOON, an extension of MOON focused on improving interoperability
between relational and blockchain-based DBs through middleware using a subset of SQL
syntax. While both works share a similar core architecture, some key differences exist.
MOON does not support DELETE operations or multi-valued INSERT, and only offers

Proceedings of the 38th Brazilian Symposium on Databases

116

limited support for subqueries and aggregations, while our approach fully supports them.
We also optimize blockchain asset retrieval by returning all necessary assets in a single
trip, while MOON uses a simple mechanism to obtain each asset one trip at a time. Fi-
nally, the original work shows a driver system for RDB and a SQL Analyzer module, but
offers very few or no implementation details, unlike this work. More details in regard to
architectural modifications are present in each subsection of Section 3.

3. The Inter-MOON Approach
The Inter-MOON (Figure 1) approach is composed of three major parts: the middleware,
the SQL DB, and the Blockchain DB. The middleware is further divided into several
modules with separate functions. In summary, the Communicator accepts and forwards
queries to the Scheduler, which enqueues requests, keeping blockchain-related operations
in proper order. The SQL Analyzer and Mapper extract information from queries, which
are then executed using the Blockchain or SQL Client as needed. One departure from
MOON is the removal of the MOON Client module. In the original work, it is a bridge
present in the application used to send the SQL and the DB, and blockchain credentials
over to MOON. In Inter-MOON, the Communicator module directly receives SQL, and
environmental configuration files hosted by the middleware are used to store credentials.
This change is meant to eliminate the need to send sensitive information through the
network alongside every request.

Figure 1. Overview of the Inter-MOON architecture.

Inter-MOON is not a federation but a middleware that enables cross-querying
blockchain-based and relational entities through SQL. Entities are kept separate in their
respective data models, and there is no data replication. Like in polystores, the autonomy
of each DB is preserved, and the granularity of each store is left untouched. For example,
BigchainDB is document-based, as it uses a local MongoDB instance to save transaction
data.

In literature, the concept of interoperability is frequently divided into layers
[Hasselbring 2000]. In this work, we adopt a broad definition of interoperability, re-
ferring to it as the overall ability of a system to comprehend and engage with others.
We consider two layers: (L1) Interoperability between Inter-MOON and its clients at the
application layer and (L2) Interoperability among the storage engines at the middleware
layer. Additionally, we identify three qualities that compose interoperability in L2:

• Support - The middleware’s capability to communicate with data storage engines.

Proceedings of the 38th Brazilian Symposium on Databases

117

• Generality - The middleware’s capacity to understand and accurately map queries
to their correct engine.

• Efficiency - The middleware’s efficiency in finding and joining data in each stor-
age engine.

In the Inter-MOON architecture (Figure 1), the Communicator demonstrates in-
teroperability in (L1), allowing Inter-MOON to receive and answer requests from clients.
For (L2), the SQL and Blockchain clients allow the middleware to interact with stor-
age engines (Support), while the Mapper, Schema, SQL Analyzer, and Index Manager
modules work in tandem to extract information, join data and map SQL requests to the
blockchain data-model (Generality and Efficiency).

This paper focuses on interoperability in L2. Inter-MOON improves interoperabil-
ity in this context by increasing the number of supported DBs (Section 3.1), the number
of supported SQL keywords and operations (Section 3.2), and optimizing data retrieval
(Section 3.3). The proposed approach is generally applicable as long as both the relational
DB driver follows the Python DB-API interface and the blockchain-based DB has a local
instance of MongoDB or MongoDB-like database for storage and querying.

3.1. Support

To improve support, we must increase the number of data storage engines supported
by the middleware and the quality of the offered support. For relational DBs, our
approach is reminiscent of the Django [Holovaty and Kaplan-Moss 2009] and Laravel
[Stauffer 2019] designs for multiple database engine support. In short, it takes the form
of a generic DataBase Driver (DBD) object, which contains an adapter implementing
database access functions (Figure 2). The generic DBD structure is analogous to the pop-
ular decorator design pattern for software architecture, while the drivers are to the adapter
pattern.

Figure 2. Simple rendition of the generic database driver.

The Inter-MOON middleware was developed using Python. Python’s DB-API, a
standard protocol for designing database access libraries, greatly optimizes the develop-
ment of the generic DBD. Listing 1 shows a basic pseudo-code implementation. Connec-
tion settings can be obtained from the environmental configuration, as per Figure 1. This
structure promotes maintainability, decoupling, and database support, provided adapters
are developed following Python’s DB-API specification.

1 import psycopg2
2
3 class GenericDatabaseDriver:
4 def __init__(self, adapter):
5 self.adapter = adapter

Proceedings of the 38th Brazilian Symposium on Databases

118

6
7 def connect(self, *args, **kwargs):
8 return self.adapter.connect(*args, **kwargs)
9

10 driver = GenericDatabaseDriver(psycopg2)
11 with driver.connect("config.cfg") as conn:
12 conn.execute("SELECT * FROM users;")

Listing 1. The Generic Database Driver basic structure. It holds an adapter object
which represents the driver of a database engine.

Increasing support for blockchain-based DBs is beyond the scope of this
work, but a similar approach could be used. However, the lack of a unified data
model for blockchain is a current research issue [Meyer and dos Santos Mello 2022,
Yuan and Wang 2018], and introduces a considerable challenge in the creation of a base
interface for blockchain DB access.

3.2. Generality

Towards generality, our goal is to understand and accurately execute as many SQL DML
commands as possible to promote interoperability with blockchain on a querying level.
According to the ISO/IEC 9075-1 specification, SQL-data statements can be used to per-
form queries and insert, update, and delete information [Melton 2016]. Consequently, the
Inter-MOON middleware must be able to correctly map SQL-data statements to appro-
priate blockchain operations. These queries must be written using standard SQL syntax
and only contain one SQL statement per request. DDL commands are not supported by
default.

First, the SQL Analyzer module extracts and processes information from received
queries. MOON used a simple lazy search algorithm to find the first matching Ms token
(eg. "SELECT") or character literal (eg. brackets, comma) of index i given a query string
Qs where Ms = Qs(i) or Ms ⊂ Qs. A match was made when Ms ̸= ∅. This was used,
for example, to find the kind of operation being requested (SELECT, INSERT, UPDATE),
entities (table names), attributes, or the presence of conditionals.

Inter-MOON extends that behavior by applying a smart SQL parsing mechanism,
allowing it to observe statements as groups of tokens. Each group contains keywords,
identifiers, functions, or conditionals, all assigned based on the token’s semantic meaning
inside of its group. This helps prevent ambiguity and allows easier handling of nested
subqueries. For example, in the statement depicted in Figure 3, we can find conditionals
by searching for any groups beginning with a WHERE clause, or extract the table name
by looking for the first Identifier after a FROM keyword that is not a subquery.

Figure 3. Inter-MOON SQL analyzer token grouping example.

Proceedings of the 38th Brazilian Symposium on Databases

119

As for query mapping and execution, at its core, Inter-MOON behaves similarly to
MOON with some key changes. Blockchain entities are virtualized in session-available
temporary tables in the RDB for read operations, and the blockchain API driver is ac-
tivated for blockchain write operations. To map a SQL request, both approaches use a
Schema Manager module to manage blockchain entity schema in a similar fashion to a
relational data model, keeping track of its attributes.

However, unlike MOON, Inter-MOON allows blockchain entities to have a mu-
table schema. While blockchain should offer immutability, it is only concerning stored
information, not the structure that any piece of information should have. Hence, the afore-
mentioned virtual tables are built using both the attributes present in the queried assets and
the schema. When an asset of a given blockchain entity contains an attribute not found
in its schema, the attribute is ignored. When the opposite is true, the value of the miss-
ing attribute is set to NULL. This helps promote further interoperability by bringing the
blockchain schema applied by MOON closer to the relational data model.

Upon receiving a query, Inter-MOON expects it to fall into one of the following
scenarios: (1) SELECT, INSERT, UPDATE, or DELETE with only relational entities, (2)
SELECT, INSERT, UPDATE, or DELETE with only blockchain entities and (3) SELECT
with both blockchain and relational entities. For (1), Inter-MOON simply forwards the
query to the RDB and sends back the response. For (2), there are separate approaches
depending on the type of SQL statement, explained further below. The approach for (3)
is similar to the one used in (2) for SELECT.

MOON optimized the execution of SELECT statements without WHERE by skip-
ping blockchain entity virtualization and simply retrieving and returning every asset. This
had the side effect of ignoring many SQL tokens which could be used even without
WHERE. Therefore, for SELECT in (2) and (3), Inter-MOON supports all common SQL
tokens applicable to SELECT statements by always virtualizing needed blockchain en-
tities in the RDB. This includes joins, aggregations, and subqueries. The query is then
executed and results are returned as tuples. To see how Inter-MOON handles optimiza-
tion, seek Subsection 3.3. It is still possible for Inter-MOON to fail to run a properly
formatted query if the query information extraction step fails.

For INSERT, while MOON only supports simple INSERTs, multi-valued IN-
SERTs are also available in Inter-MOON. However, INSERT statements using a subquery
are not supported in either. We consider INSERT to be categorically equivalent to AP-
PEND, with multi-valued equivalent to several APPENDs. Attributes are extracted from
SQL and used as the asset data (Figure 4). Data is stored in its given type, defined in the
schema, to preserve integrity. Assets are stored in a JSON-like structure through transac-
tions inside blocks.

Figure 4. Rendition of the mapping mechanism for INSERT operations.

Blockchains have inherent limitations when performing DELETE or UPDATE op-

Proceedings of the 38th Brazilian Symposium on Databases

120

erations due to their append-only nature. In both MOON and Inter-MOON, for UPDATE
operations, a new transaction is created with updated data and a pointer to the old asset. As
for DELETE, MOON offers no support. Inter-MOON tackles DELETE by implementing
a soft-delete mechanism in which the asset index is removed from the blockchain index
table of the Index Manager module, preventing retrieval through Inter-MOON and offer-
ing a quasi-DELETE functionality. This approach ensures that blockchain consensus and
immutability are maintained.

While these approaches preserve consensus mechanisms, scalability becomes a
concern when dealing with a large number of assets. The scalability issue is an ongo-
ing topic of research in the field of blockchains [Zhou et al. 2020]. Some studies aim to
explore mutability in blockchains, which would further align them with relational sys-
tems [Politou et al. 2019]. However, developing a new blockchain or blockchain-based
technology is beyond the scope of this work.

3.3. Efficiency
The Index Manager module tracks the index and primary id of each blockchain asset by
storing them in tables in the RDB. When a query with blockchain entities is received, the
middleware consults these index tables to obtain the hash of all blockchain assets of said
entities for virtualization. In the original work, MOON retrieved each asset one at a time.
Consequently, this process grew slower as the number of indexes increased, following a
non-linear growth curve. See Algorithm 1 for an overview.

Algorithm 1 index searching algorithm in MOON.
Require: Set I = {i1, i2, i3, ..., in} of blockchain indexes, given |I| > 0.
Ensure: Set A = {a1, a2, a3, ..., an} of blockchain assets.

1: A← ∅
2: n← 0
3: N ← |I|
4: while n < N do
5: i← I(n)
6: B ← GetAssetByIndex(i)
7: A← A ∪B
8: n← n+ 1
9: end while

GetAssetByIndex(i) represents a request sent to the blockchain network to fetch
an asset of index i. As the number of requests increase, the network overhead present in
each request accumulate and response times grow. In a single network trip, there are 3
instances of present latency, Lreq, Lin and Lres for the request, in-network, and response
latency respectively, totaling Lsum = Lreq + Lin + Lres for the total network latency
produced by every usage of GetAssetByIndex(i).

Inter-MOON optimizes Lsum by executing one trip only for each query, retrieving
all assets with indexes in I using a GetAssetsByIndexSet(I) function and outputting
A ← GetAssetsByIndexSet(I). However, this approach requires more computational
power from the network and the Inter-MOON middleware host to process and return all
necessary assets in one trip. Further optimization can be achieved by using batch-loading

Proceedings of the 38th Brazilian Symposium on Databases

121

to retrieve an X number of indexes per trip, maintaining lower latency while reducing
processing load. If a set or range of primary keys is specified in the query, another possible
avenue for optimization is to only retrieve the assets pertaining to those identifiers, rather
than all assets of each involved entity.

4. Experiments
A prototype of the Inter-MOON middleware was developed using Python 3.6.9. Three
experiments were prepared in order to test and compare Inter-MOON against MOON and
the BigDAWG polystore.

4.1. Comparing the performance of MOON & Inter-MOON
The goal of the first experiment was to compare the performance of MOON and Inter-
MOON. Response speed was chosen as the metric, calculated using the full round-trip
time taken from the moment the client sends the request to when it receives a response.
The data consisted of a synthetic dataset generated using the Mimesis1 library. The Pa-
tients entity was stored on the RDB and Lab Results, on the blockchain DB (Figure 5).
The testing environment was comprised of a series of Ubuntu 18.04.6 VMs running on a
local network (Figure 6). Table 1 describes each VM in detail. VM-1 contained instances
of both MOON and Inter-MOON, only one of which was running at any time. Postgres
10.23 was used for the SQL database in VM-2, while BigchainDB 2.2 was used for the
blockchain nodes in the network. Lastly, a machine running Ubuntu 22.04, 4 GB of RAM,
and an Intel i5-4300 2.60 GHz CPU was used to simulate the client.

Lab Results (100 rows)
varchar uid
integer patient_id
varchar content_base64
date datetime
varchar lab_name
integer lab_site
integer expired

Patients (100 rows)
integer id
varchar name
varchar email
varchar phone
date birth_date

Figure 5. Entity schema used for the first experiment.

Figure 6. Testing environment.

A set of four queries (Table 2) was executed on MOON first, and then on Inter-
MOON. The modified algorithm of Inter-MOON was expected to provide significantly
improved response speeds in queries involving many entities while maintaining similar
speeds in other kinds.

1https://mimesis.name/en/master/. Accessed: May 29, 2023

Proceedings of the 38th Brazilian Symposium on Databases

122

Name Role RAM Disk Read & Write Speed
VM-1 Middleware host 4 GB 7.5 GB/sec & 0.8 GB/sec
VM-2 SQL database host 2 GB 6 GB/sec & 0.8 GB/sec
VM-3 . . . VM-8 Blockchain network nodes 1 GB/each 5 GB/sec & 0.4 GB/sec

Table 1. Summary of the virtual machines used in the first experiment.

Query SQL
Q1 INSERT INTO lab_results (<...columns>) VALUES (<...values>);
Q2 SELECT * FROM lab_results;
Q3 SELECT * FROM lab_results JOIN patients ON lab_results.patient_id = patients.id;
Q4 UPDATE lab_results SET expired = 1 WHERE uid = <uid>;

Table 2. Set of queries used in the first experiment.

Results (Figure 7) show that Inter-MOON was generally much faster. In Q1, the
results were in the same ballpark. In Q2 and Q3, they were about 10 times higher. In
Q4, there was an improvement of about 5.5 times, instead. UPDATE-type transactions,
which is the case for Q4, are more computationally expensive and latency-inducing, as
they involve several trips to both database systems in order to read, update and write the
updated information.

Figure 7. Graphical comparison of the Avg. Response Speed of 100 query exe-
cutions between MOON and Inter-MOON.

4.2. SQL Syntax Support
In the second experiment, the goal was to evaluate Inter-MOON in regard to SQL syn-
tax support in read operations. The TPC-H2 decision support benchmark was used for
this experiment, as it is an industry-tested standard with a wide variety of queries that
showcase critical business needs. We also compared Inter-MOON against BigDAWG,
to show how a similar tool fares in this regard. Both systems were populated with a 1
GB scale factor workload of the benchmark data and then 20 of its 22 queries were exe-
cuted using a simple Python script. Execution results were compared against the expected

2https://www.tpc.org/tpch/. Accessed: May 29, 2023.

Proceedings of the 38th Brazilian Symposium on Databases

123

output, given by the benchmark. Q17 and Q20 were ignored due to having a long run-
time. The metric was simply the factor of successful queries over the total number tested:
SupportScore(S) = Qsuccess/20.

Inter-MOON was capable of running 18 queries, attaining a score of 0.9 while
BigDAWG successfully ran 6, scoring 0.3 (Table 3). Both systems failed to run Q15,
which created and then utilized a view. Inter-MOON additionally failed to run Q22, due
to its usage of the substring() SQL function. BigDAWG demonstrated problems executing
queries containing a mix of nested subqueries, aggregation, and sorting. Results indicate
that BigDAWG supports only a small subset of SQL, while Inter-MOON could understand
much of the standard syntax.

System Successful queries S Score
Inter-MOON 18 0.9
BigDAWG 6 0.3

Table 3. Support score for Inter-MOON and BigDAWG.

4.3. Cross-model Query Performance

The last experiment evaluated Inter-MOON’s cross-model querying performance. Once
again, the BigDAWG polystore was chosen for comparison. For the environment, the
Docker3 container setup provided by the BigDAWG project4 was used, alongside a
custom-built setup for Inter-MOON, with a container each for Inter-MOON, PostgreSQL
9.6, and BigchainDB 2.2. Both container setups were initialized in the same machine
used for the client in the first experiment (See Subsection 4.1), although only one would
be up at any time. A supermarket sales history dataset5 was inserted into both BigchainDB
(Inter-MOON) and Accumulo (BigDAWG). Synthetic data representing the customer of
each sale was generated and inserted into the SQL databases. JMeter 5.56 running on
a separate machine was used to monitor and execute the test plan, consisting of execut-
ing a simple JOIN query (Table 4) using data from both data models, with 1000 threads
and a ramp-up time of 1000 seconds, simulating a constant stream of transactions. The
evaluated metrics were average latency, standard deviation, and failure count.

SELECT c_name, s_unit_price
FROM customers c JOIN sales s ON c.c_id = s.c_id
ORDER BY s.s_unit_price DESC LIMIT 10;

Table 4. Query used in the third experiment.

Both Inter-MOON and BigDAWG demonstrated difficulty in reaching higher
throughput. Inter-MOON (Figure 9) provided an overall consistent latency of 800-890
ms, with zero errors. BigDAWG (Figure 10) provided lower average latency, but much
higher deviation as well as a total of 45% failure rate, slightly below half of all queries.

3https://www.docker.com/. Accessed: May 29, 2023.
4https://github.com/bigdawg-istc/bigdawg. Accessed: May 29, 2023.
5https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales. Accessed:

May 29, 2023.
6https://jmeter.apache.org/. Accessed: May 29, 2023.

Proceedings of the 38th Brazilian Symposium on Databases

124

Customers (1000 rows)
integer c_id
varchar c_name
varchar c_email
varchar c_gender
varchar c_phone
date c_birth_date
varchar c_type

Sales (1000 rows)
integer s_id
decimal s_unit_price
integer c_id
...

Figure 8. Entity schema used for the third experiment. Only the relevant at-
tributes from the Sales entity are being shown here.

Figure 9. Inter-MOON Avg. Latency
and Std. Deviation over time.

Figure 10. BigDAWG Avg. Latency,
Std. Deviation and Failure Count
over time.

As the flood continues, BigDAWG accumulates failures (Yellow line) in cascade, which
heavily impacts latency. After some additional testing with lower ramp-up time, both tools
show much worse performance, with BigDAWG increasing the failure rate even more and
Inter-MOON showing exponentially higher latency. This indicates the existence of con-
currency issues when obtaining data from separate data models simultaneously. However,
more testing needs to be done to confirm this issue.

5. Conclusion and Future Work
In this work, we detailed our approach to providing interoperability of relational databases
and blockchains by developing Inter-MOON, an extension of MOON. Inter-MOON pro-
vided average response times of 5 to 10 times faster than MOON in most tested queries,
which represent common SQL DML operations. Along with increased performance,
DELETE operations, as well as nested queries and aggregations, are now fully supported.
Data integrity is enhanced, alongside database support with the generic database driver.
Finally, while we cannot claim Inter-MOON offered better performance than BigDAWG,
it showed fewer errors and surpassed it in regards to SQL syntax support.

For future works, a heavier workload of parallel processing and throughput tests,
and tests with higher node counts, could provide more insight into Inter-MOON’s per-
formance and bottlenecks. Support for DDL statements could elevate Inter-MOON to a
fully-featured data manipulation tool, and allowing user-defined SQL-style transactions
(eg. COMMIT TRANSACTION and ROLLBACK) and stored procedures, possibly via
smart contracts, could also prove fruitful. There is still room for performance optimiza-

Proceedings of the 38th Brazilian Symposium on Databases

125

Figure 11. Histogram comparison of query latency from Inter-MOON and Big-
DAWG. This graph considers a bucket size of 20 and a 5% outlier rate.

tions, as mentioned briefly in Section 3.3. Concurrency and scalability issues, also dis-
cussed briefly in this work, would greatly increase interoperability if solved, but will also
prove a laborious task, as blockchains themselves share similar issues.

References

[Babcock et al. 2002] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. (2002).
Models and issues in data stream systems. In Proceedings of the Twenty-First ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’02, page 1–16, New York, NY, USA. Association for Computing Machinery.

[Bondiombouy et al. 2016] Bondiombouy, C., Kolev, B., Levchenko, O., and Valduriez,
P. (2016). Multistore big data integration with cloudmdsql. Transactions on Large-
Scale Data-and Knowledge-Centered Systems XXVIII: Special Issue on Database-and
Expert-Systems Applications, pages 48–74.

[Duggan et al. 2015] Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M., Howe, B.,
Kepner, J., Madden, S., Maier, D., Mattson, T., and Zdonik, S. (2015). The bigdawg
polystore system. ACM Sigmod Record, 44(2):11–16.

[Gadekallu et al. 2022] Gadekallu, T. R., Huynh-The, T., Wang, W., Yenduri, G.,
Ranaweera, P., Pham, Q.-V., da Costa, D. B., and Liyanage, M. (2022). Blockchain for
the metaverse: A review. arXiv preprint arXiv:2203.09738.

[Gervais et al. 2016] Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., and
Capkun, S. (2016). On the security and performance of proof of work blockchains. In
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 3–16, New York, NY, USA. Association for Computing Machinery.

[Hasselbring 2000] Hasselbring, W. (2000). Information system integration. Communica-
tions of the ACM, 43(6):32–38.

Proceedings of the 38th Brazilian Symposium on Databases

126

[Holovaty and Kaplan-Moss 2009] Holovaty, A. and Kaplan-Moss, J. (2009). The definitive
guide to Django: Web development done right. Apress.

[LeFevre et al. 2014] LeFevre, J., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Poly-
zotis, N., and Carey, M. J. (2014). Miso: Souping up big data query processing with
a multistore system. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’14, page 1591–1602, New York, NY, USA.
Association for Computing Machinery.

[Marinho et al. 2020] Marinho, S. C., Costa Filho, J. S., Moreira, L. O., and Machado,
J. C. (2020). Using a hybrid approach to data management in relational database
and blockchain: A case study on the e-health domain. In 2020 IEEE International
Conference on Software Architecture Companion (ICSA-C), pages 114–121. IEEE.

[Melton 2016] Melton, J. (2016). Iso/iec 9075-1 information technology-database
languages-sql-part 1: Framework (sql/framework). ISO/IEC, 2016(E):9075–1.

[Meyer and dos Santos Mello 2022] Meyer, J. V. and dos Santos Mello, R. (2022). An anal-
ysis of data modelling for blockchain. In Information Integration and Web Intelli-
gence: 24th International Conference, iiWAS 2022, Virtual Event, November 28–30,
2022, Proceedings, pages 31–44. Springer.

[Nakamoto 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Decentralized Business Review, page 21260.

[Politou et al. 2019] Politou, E., Casino, F., Alepis, E., and Patsakis, C. (2019). Blockchain
mutability: Challenges and proposed solutions. IEEE Transactions on Emerging Top-
ics in Computing, 9(4):1972–1986.

[Singhal et al. 2019] Singhal, R., Zhang, N., Nardi, L., Shahbaz, M., and Olukotun, K.
(2019). Polystore++: accelerated polystore system for heterogeneous workloads.
In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), pages 1641–1651. IEEE.

[Stauffer 2019] Stauffer, M. (2019). Laravel: Up & running: A framework for building
modern PHP apps. O’Reilly Media.

[Stonebraker and Çetintemel 2018] Stonebraker, M. and Çetintemel, U. (2018). "One Size
Fits All": An Idea Whose Time Has Come and Gone, page 441–462. Association for
Computing Machinery and Morgan & Claypool.

[Vogt et al. 2018] Vogt, M., Stiemer, A., and Schuldt, H. (2018). Polypheny-db: towards a
distributed and self-adaptive polystore. In 2018 IEEE International Conference on Big
Data (Big Data), pages 3364–3373. IEEE.

[Yuan and Wang 2018] Yuan, Y. and Wang, F.-Y. (2018). Blockchain and cryptocurrencies:
Model, techniques, and applications. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 48(9):1421–1428.

[Zheng et al. 2018] Zheng, Z., Xie, S., Dai, H.-N., Chen, X., and Wang, H. (2018).
Blockchain challenges and opportunities: A survey. International Journal of Web and
Grid Services, 14(4):352–375.

[Zhou et al. 2020] Zhou, Q., Huang, H., Zheng, Z., and Bian, J. (2020). Solutions to scala-
bility of blockchain: A survey. Ieee Access, 8:16440–16455.

Proceedings of the 38th Brazilian Symposium on Databases

127

