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Abstract. This paper introduces an approach for discovering denial constraints
(DCs) to identify faults in transmission lines. However, the considerable vol-
ume of data in the studied scenario makes traditional DC discovery impracti-
cal due to lengthy execution times. We propose an alternative DC discovery
approach that uses streaming windows to address this issue. Our experiments
demonstrate that the DCs identified in pre-fault windows differ significantly from
those in post-fault windows. This valuable insight enables us to detect faults au-
tonomously, eliminating the need for human intervention (i.e., an unsupervised
method). The experimental evaluation featuring diverse fault events reveals that
our approach achieves fault detection with remarkable 100% accuracy.

1. Introduction
Electrical power systems rely on transmission lines to deliver electrical power to cus-
tomers. These lines usually travel long distances and are exposed to several elusive
glitches and transient events that can disturb electrical power transmission. These events
include, for example, storms and fire under the lines. Unfortunately, such disturbances
cause faults that end up interrupting the electrical supply. Generally speaking, a fault can
be defined as any abnormal condition in the components of a power system, such as an
increase in current flow to one or more phases [Prasad et al. 2018, Furse et al. 2021].

Electrical substations are the interface between the transmission lines and
the distribution grid. The substations contain a protection system to guaran-
tee the stability of the network and minimize any possible damage caused by
faults [Singh and Vishwakarma 2015]. The goal of the protection system is to accurately
and quickly detect the fault and enable the repair and restoration of the faulty line as soon
as possible [Aleem et al. 2015]. Such systems contain a protection relay or a digital fault
recorder that samples line signals to produce a data stream with sample points. Each point
represents information on the distribution of load into three phases (A, B, and C) for the
current and voltage signals in the circuit. The sample points are stored in a relational
database and can be queried to represent waveforms of changing currents. Figure 1 shows
an example of electric current signal waveforms with the incidence of a fault near 0.05
seconds. As can be observed, a failure affects the normal operating condition of the power
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system, which contains balanced and symmetrical loads, e.g., similar amplitudes of the
current signal among the phases during the pre-fault cycles.

Figure 1. Waveforms of a faulty transmission line, involving the phase A and the
ground (AG).

There are three essential tasks in fault diagnosis: detection, classification, and
location. Of course, an effective classification and location rely on accurate fault detec-
tion. So it is possible to segment the oscillography into pre-fault and post-fault cycles,
as represented in Figure 1. Such segmentation is required by several machine learning-
based approaches found in the specialized literature. Thus, detecting the fault inception
is crucial to allow the execution of the other two tasks since the segmentation, as men-
tioned above, is intrinsically dependent on this instant for a correct demarcation, which
can directly affect the methods’ performances for fault classification and location.

As highlighted by [Ferreira et al. 2016], some proposals for fault diagnosis as-
sume that the detection phase is accomplished by the protection system itself (e.g., pro-
tection relays). Although such an approach works well for online applications, it is not
valid for offline applications. It requires an approach to identify the failure inception
since a fault record presents pre-fault and post-fault signals, as demonstrated in Figure 1.
Developing an integrated tool including the three essential tasks in fault diagnosis is still
a challenge. However, treating each task individually enables some advantages, such as
high cohesion and independence among them, which can result in better generalization
and adaptability capabilities. Due to these advantages, we investigate the fault detection
task individually.

We present a novel unsupervised approach to detect faults based on denial con-
straints (DCs), acting as an offline application. Since DCs are ideal for representing the
complex data business rules in databases [Chu et al. 2013], we use the formalism to repre-
sent the expected behavior of a transmission line so that it is possible to detect faults when
there is a deviation from this behavior. For example, consider the following constraint,
often found in transmission lines: “The electric current and voltage among the phases in a
transmission line must be similar.” A DC capturing such constraint, denoted as φ1, can be
expressed as follows: “There are no two records in the database where the electric current
values differ between the phases A and B, and one of the records has a bigger phase A
voltage.” We defer the formal definition of DCs to Section 4.

Our method differs from traditional approaches based on machine learning algo-
rithms by eliminating the need for feature extraction, as we directly utilize the raw data.
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Additionally, our method is unique in that it is the first to detect faults based on an impor-
tant data management technique, i.e., denial constraint. Thus, our approach enables the
direct identification of fault inception from the database for the specific event of interest
without loading the entire time series into dedicated systems.

The computational costs of DC discovery are directly influenced by the size of the
dataset, specifically, the number of rows and columns it contains [Chu et al. 2013]. As a
result, in our context, the sheer amount of data generated by the protection system makes
traditional DC discovery impractical due to the long runtimes. In response, we contribute
with an approach for discovering DCs in streaming windows. We hypothesize that DCs
discovered in pre-fault windows greatly differ from those in post-fault windows and can
be used to detect faults. A fault in a transmission line is detected by comparing the ratio
of DC violations in each window to an expected threshold.

The main contributions of this work are summarised as follows:

• A DC discovery approach for streaming data;
• An application of DCs and DC discovery for fault detection in electric transmis-

sion lines;
• An unsupervised method for fault detection as an offline application;
• An empirical evaluation showing that our approach detects faults in transmission

lines for all fault events assessed (100% of accuracy).

This paper is organized as follows. Section 2 describes the related work. Section 3
describes the database used in this study. Section 4 reports the proposed method for fault
detection based on DC. Section 5 presents and discusses our results. Finally, Section 6
concludes this work.

2. Related Work
Several methods for fault detection can be found in the literature. Most are primarily
based on machine learning. The authors in [Ferreira et al. 2020] used six neural net-
works for fault detection using voltage and current representation for a single trans-
mission line terminal (bus). [Belagoune et al. 2021] proposed an LSTM-based method
for fault diagnosis, including the detection task. [Coban and Tezcan 2021] used Dis-
crete Wavelet Transform (DWT) on the measured single terminal current signals before
fault detection, in which the three-level wavelet energy values obtained for each of the
three-phase currents were used as input features for the detector based on the SVM al-
gorithm. [Chen et al. 2018] presented a method for fault detection in power transmission
lines based on a sparse convolutional autoencoder, automatically learning features from
a dataset of voltage and current signals. In turn, [Asadi Majd et al. 2017] used the kNN
algorithm with a sliding window with a length of a half cycle moved on the squared nor-
malized current waveform of each phase to detect the fault inception.

On the other hand, [Gilbert and Morrison 1997] discussed about statistical ap-
proaches for fault detection, such as calculating the median using a sliding window over
voltage or current oscillographies. Other approaches can be found in specialized surveys
and reviews [Yadav and Dash 2014, Mishra and Ray 2018, Raza et al. 2020].

The machine learning methods discussed earlier rely on supervised learning,
which presents a drawback since they depend on labeled data to train the algorithms. In
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contrast, our approach overcomes this limitation by operating without supervision, mean-
ing it does not require labeled data. Consequently, it can detect faults autonomously. This
paper introduces a novel approach based on denial constraints (DCs), typically employed
to represent intricate data relationships in databases. The proposed approach employs
DCs for fault detection without employing a traditional machine learning algorithm.

3. Fault Database

The Fault Analysis Database (FADb) is a public dataset with several fault simula-
tions [Ensina et al. 2022]. These events were based on the IEEE 9-bus power system
[Høidalen et al. 2019], which approximates a real power system. For this purpose, we
used the ATPDraw and ATP (Alternative Transient Program) to model the system and run
all simulations, providing representative time series of failures. These tools are widely
used in the research community for electrical circuit studies, particularly in power sys-
tems considering the investigation about fault analysis and their effects.

We use a transmission line with the following properties: 500 kV, 414 km, and
60 Hz. In special, this specification represents the longest transmission line in a network
of a public electric utility company in Brazil (Energy Company of Paraná – COPEL).
The available data represent voltage and current signals for each of the three phases at
both terminals for a sampling rate of 10 kHz. The oscillography of each simulation starts
without failure, which occurs in distinct instants inserted into the same cycle. Also, the
fault parameters used in the simulations are as follows:

• Type: AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, ABC;
• Location: 1 to 100% of line extension, with intervals of 1%;
• Resistance: 0.01 to 200 Ω, with intervals of 10 Ω;
• Inception time, in seconds (s): 0.091 s, 0.093 s, 0.095 s, 0.097 s, 0.099 s, 0.101 s,

0.103 s, and 0.105 s.

In particular, the letters A, B, and C represent each of the three phases of a trans-
mission line, while the letter G corresponds to the ground action in a fault. The combina-
tion of initials indicates faults involving multiple phases or the ground. For example, AG
indicates a fault involving the phase A and the ground, as well as AB represents a fault be-
tween the phases A and B without the action of the ground. For more technical details, see
the following references [Yadav and Dash 2014, Aleem et al. 2015, Grainger et al. 2016].

The FADb repository contains 168,000 fault events combining each of the previ-
ously mentioned parameters. The available archives ensure reproducibility of the results
and the generation of new fault events considering other values of the parameters. All
simulation data are available in our repository1.

4. Denial Constraint Approach

The goal of a DC is to identify conflicting relationships of combinations of column values
with sets of predicates. A DC specifies a conjunction of predicates that cannot be true
for any pair of tuples. We use the formalism of a predicate, as p : t.X θ t′.Y , where
X, Y are columns of a table r with schema R; t, t′ is a pair of distinct tuples of r; and

1https://1drv.ms/u/s!ArMEeMx4MYDNimHVxiDx3b4CI3iL?e=8GfXg7
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θ ∈ {=, ̸=, <,≤, >,≥} is a comparison operator, see [Chu et al. 2013] for additional DC
definitions. We can specify a DC φ as follows:

φ : ∀t, t′ ∈ r,¬(p1 ∧ . . . ∧ pm)

Using the above notation, we express our example rule, as φ1 : ∀t, t′ ∈ r,¬(t.IA <=
t′.IA ∧ t.IB <= t′.IB ∧ t.V A >= t′.V A), where IA is the current at phase A, IB is
the current at phase B and V A is the voltage at phase A.

Fault detection with the DC approach is divided into three parts: data streaming
and processing windows (Section 4.1), discovery of DCs (Section 4.2) and fault detection
using these DCs (Section 4.3).

4.1. Data Streaming and Processing Windows

We use data streaming notation to represent the signals of current and voltage converted
by an oscilloscope [Braverman and Ostrovsky 2010]. A data stream is a finite sequence
of n observations T = {x0, x1, . . . , xn−1} read in an increasing order of the index i, as
0 ≤ i < n. A single data observation xi contains information of electric current and
voltage from the three phases of the transmission line at the ith index.

The transmission line signal is humongous, generating gigabytes of data per sec-
ond. For example, the dataset used in our experiments stores about 96 GB of data. We
propose splitting the stream into small finite sets, called Wj windows, to facilitate DC
discovery. We use two different window types: a fixed-size tumbling window and a slid-
ing window. A tumbling window is a non-overlapping batch of the data stream, such as
Wy ∩ Wk = ∅ which enables DC discovery with small runtimes. A sliding window tra-
verses a number of tumbling windows to detect faults using the discovered DCs. Sliding
windows overlap data observations Wy ∩Wk = {x : x ∈ Wy ∧ x ∈ Wk}.

4.2. Denial Constraint Discovery

DC discovery is one of the most computationally expensive data profiling tasks, so care
must be taken with such processes [Chu et al. 2013, Abedjan et al. 2015]. Instead of dis-
covering the DCs using the entire dataset, we discover DCs in tumbling windows (batches
with 1,000 samples). We use the state-of-the-art DC discovery algorithm, DCFinder, as
provided in [Pena et al. 2019]. Our goal is to discover the DCs and capture the expected
behavior of a transmission line without and with faults in pre-fault and post-fault win-
dows, respectively. We selected a subset of fault events to use in discovering DCs. So, we
used a subset of 1,000 simulations from FADb dataset (Section 3) for this purpose with
the following diversified and representative fault parameters:

• Fault type: AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, ABC;
• Fault location: 1%, 25%, 50%, 75%, and 100% of line extension;
• Fault resistance: 0.01 Ω, 50 Ω, 100 Ω,150 Ω, and 200 Ω;
• Fault inception time: 0.095 s, 0.097 s, 0.103 s, and 0.105 s.
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4.3. Fault Detection

We use the term (t, t′) ̸|= φ to denote that the pair of tuples t, t′ violate the DC φ. Our
fault detection mechanism is based on the degree of approximation shown in Equation 1,
which measures the ratio of the number of tuple pairs violating a DC divided by all the
tuple pairs in a batch [Chu et al. 2013].

g(φ, r) =
|{(t, t′) ∈ r | (t, t′) ̸|= φ}|

|r| · (|r| − 1)
(1)

We calculate the degree of approximation of the batch samples with the DCs pre-
viously discovered for each sliding window in previous steps. Then, we compare the
degree of approximation with a threshold value to determine the occurrence or not of a
fault. A fault is detected if the degree of approximation of a window is higher than the
threshold value. In this scenario, there are two parameters to be considered: the window
length and the threshold of the degree of approximation. The values evaluated in this
work are presented as follows:

• Window length (w): 50, 100, 200, 400, and 800;
• Degree of approximation threshold (DAT ): 0, 1x10−5, 1x10−4, 5x10−4, 1x10−3,

5x10−3, 1x10−2, 2x10−2, 4x10−2, and 6x10−2.

To measure the effectiveness of our approach, we use the precision (Equation 2)
and F1-Score (Equation 3) as evaluation metrics. We calculated each of these metrics in
every window of every simulation.

Precision =
TP

TP + FP
(2)

F1− Score =
TP

TP + FN+FP
2

(3)

In the above equations, TP, FP, and FN represent, respectively, the values of True
Positive, False Positive, and False Negative. Figure 2 depicts an overview of the approach.
We observed the sliding window depicted in blue color when running across the batches
without faults in white color and purple color when running across the batches with faults
in orange color. We also observe the degree of approximation and the evaluation by batch
with DAT of 0.2.

5. Results and Discussion
We present in this section the results for the discovery of denial constraints and evaluation
of the performance of these DCs for fault detection, acting as an offline application.

5.1. Discovery of Denial Constraints

During the initial phase, we executed DCFinder on the simulations without employing
batching or partitioning techniques. This led to the identification of 140,879 unique DCs,
with an average of approximately 1,300 DCs per simulation. However, the substantial
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Figure 2. Fault detection with sliding windows and DC violations by batch.

number of DCs posed a challenge as it rendered subsequent stages of the process, such as
obtaining coverage metrics and evaluating the constraints, impractical due to the exten-
sive time required. Moreover, without data batching, it was not feasible to differentiate
constraints discovered in fault-free samples, which are crucial for fault detection.

By batching selected simulations in groups of 1,000 samples, 153,052 unique DCs
were discovered, resulting in an average of around 555 DCs per batch. This high number
of discovered DCs allowed for the distinction between constraints present in samples
without faults and those with faults, overcoming previous limitations.

Finally, the application of batching and partitioning (use of voltage and current
samples only from a single terminal of the transmission line) reverberates in a drastic
reduction in the number of DCs, finding 695 unique DCs and an average of approximately
18 DCs per batch, which demonstrates the relevance of the number of attributes, as it
determines the size of the predicate space. Even more important, the partitioning process
enables the discovery of constraints with predicates with attributes of a single bus. So,
fault detection with these DCs does not require synchronization of data collected on both
transmission line terminals, which is more consistent with a real operating environment.

From the 695 constraints found, 100 were found in batches with samples without
fault presence, and 694 were found in batches with failure samples, i.e., only one DC
was found exclusively in batches without failure, while the other 99 constraints of the
batches without fault also appeared in batches with failure samples. This proportion in
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the number of times a DC was found in batches with and without fault varied a lot; for
example, we obtained a constraint that was found in all 500 batches without fault and
which was also found in only 62 batches with failure, since another DC that was found in
all batches with no failure was also found in 3,386 batches with fault. The mean coverage
of each of the 100 DCs found in batches without fault also varied. Trivial constraints with
only one predicate obtained an average coverage of 1.0, other trivial ones with only two
predicates had an average coverage of approximately 0.5, while non-trivial constraints
varied between approximately 0.666 and 0.833.

The lengths of these 100 constraints ranged between two and six predicates, being
the vast majority (79%) with five or six predicates. Disregarding the most trivial con-
straints (with one and two predicates), the shortest length was four; thus, the majority
succinctness was 1 × 105, 0.666, and 0.833. Analyzing which types of dependency the
constraints found represented, we noticed that we obtained a large amount of bidirec-
tional order dependencies, such as: φe : ∀tx, ty ∈ r,¬(tx.IC <= ty.IC ∧ tx.IA <=
ty.IA ∧ tx.IB <= ty.IB)

which is coherent since the three phases have symmetric and balanced current values
during the normal operating state. So, the ordering by the current of one of the phases
must also order the values of another phase, even if in a different direction (ascending
or descending). We also had unique combinations of trivial columns: φf : ∀tx, ty ∈
r,¬(tx.V A = ty.V A ∧ tx.IC = ty.IC)

In turn, other dependencies did not fit any known definition, but presented a pattern
where there is a predicate with the equality operator and two others with the inequality
operators, such as: φg : ∀tx, ty ∈ r,¬(tx.IC <= ty.IC ∧ tx.V A <= ty.V A ∧ tx.IA =
ty.IA). The complete set with all DCs found is available as a supplementary material2.

5.2. Performance of the Proposed Approach

We used different simulations for the discovery of DCs and fault detection. The perfor-
mance of our approach, considering the F1-Score measure, is shown in Figure 3. The
performance of our approach increases for higher values of the window length together
with lower values of the degree of approximation threshold. This suggests that DCs dis-
covered at larger window sizes better capture the behavior of a transmission line and
perform better in detecting DC violations.

We did not present performance results for window sizes larger than 800 due to
the increase in the computational cost for larger windows, at the same time that there is no
significant performance gain compared to w = 800. We did some additional experiments
and observed that no performance gain was achieved for these cases. On the other hand,
smaller window sizes demonstrate worse results, which would be even lower for w < 50.
It is also possible to observe in Figure 3 that values higher than 6 × 10−2 for the DAT
indicate a considerable performance loss for all combinations with window sizes.

In general, the pair of parameters composed of w = 800 and DAT = 0 initially
seems to be the best configuration. However, if we analyze the precision measure (Fig-
ure 4), we identify that this pair is the only one that presented FP suggesting possible
overfitting. The occurrence of FPs is a problem in the fault detection context since it in-

2https://github.com/leandroensina/FaultDetection_DC_SBBD
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Figure 3. F1-Score for fault detection for each pair of parameters windows length
and degree of approximation.

dicates that a window without electric fault data contains an anomaly. Thus, the absence
of FP is essential to guarantee the accuracy of data for posterior fault classification and
location tasks by machine learning approaches. This can impact in a performance loss
for fault classification and location tasks, which these activities are directly related to the
instant of the fault inception, determined by the fault detection task in an oscillography.
Thus, it is essential the absence of FP in order to the data segmentation for a posterior
fault classification and location be as accurate as possible.

In response, we consider w = 800 and DAT = 1 × 10−5 as the best pair of
parameters for our approach. This pair of parameters does not present any FP and holds an
F1-Score of 98.41%. It is crucial to mention that our method identified the fault incidence
for all test cases (accuracy of 100%), but for some events our approach did not recognize
the initial batch that contained the first failure samples as faulty, which penalized the
performance and justifies the F1-Score of 98.41%. Thus, our method detected the fault
incidence for all test events, but not necessarily in the first batch that the failure began.

Also, this pair of parameters requires only about 20 samples to determine the fault
inception after its real beginning, as can be observed in Figure 5, where the smaller the
value, the better the performance. We discovered 695 DCs in all the simulation data,
where 100 were discovered in pre-fault windows and 694 in post-fault windows. DCs
discovered in pre-fault windows significantly differ from those in post-fault windows and
perform best in discovering faults.
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Figure 4. Precision for fault detection for each pair of parameters windows length
and degree of approximation.

Figure 5. Average of samples for fault detection after the real fault inception for
each pair of parameters.
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The degree of approximation takes into account the number of pairs of tuples that
violate a DC, but there are other possible metrics that we let for future work, such as the
amount of tuples involved in violations and the minimum amount of tuples that need to
be removed for the constraint not to be violated.

We also compared the performance of our method against two related works pre-
viously described in Section 1 [Asadi Majd et al. 2017, Coban and Tezcan 2021]. It is
worth mentioning that we replicated both methods using the same dataset used to eval-
uate our approach. The results demonstrate the both approaches based on supervised
machine learning algorithms also detected the fault for all test events (accuracy of 100%)
just like the proposed unsupervised approach.

However, our method does not require supervision (i.e., labeled data) to infer the
fault (anomaly) incidence, in other words, a human specialist delimiting if each sample or
data window represents a failure for the algorithm training. This aspect can also reverber-
ate in a better generalization of the proposed approach compared to supervised methods
for fault detection. The utilization of supervised machine learning methods might neces-
sitate separate training for each supervised transmission line. This is due to the variations
in voltage and current signal amplitudes observed during the operation of each transmis-
sion line, influenced by factors such as generator power fluctuations, transmission line
length, and voltage [Ensina et al. 2022]. Consequently, it is likely that these approaches
will require an individual model for each supervised line.

On the other hand, our approach can indiscriminately identify faults despite these
factors since the transmission lines present predominantly properties like symmetrical and
balanced voltages/currents until the inception of a fault. Thus, the DCs found in this work
are valid to use in other transmission lines (e.g., other datasets) for fault detection. The
DCs are based on the correlation among the behavior of the voltage and current wave-
forms, according to the properties previously mentioned, and not by features extracted
from the signals or predefined threshold values (e.g., constants).

Methods relying on feature extraction, such as those based on machine learning
algorithms, may encounter challenges when confronted with varying feature values from
other transmission lines exhibiting different amplitudes of voltage and current signals.
This can lead to a lack of generalization capacity, as mentioned in [Ensina et al. 2022].
Instead, the proposed approach aims to eliminate the need for feature extraction, seeking
to improve the method’s capacity to adapt effectively to new, previously unseen data orig-
inating from other power systems (different datasets). Further exploration of this analysis
is planned for future investigations.

The primary limitation of our approach lies in the computational expense associ-
ated with initially discovering the Denial Constraints (DCs). However, once these DCs are
identified, the average time required for the approach, using a window length of w = 800,
to calculate the degree of approximation and perform classification amounts to approxi-
mately 331.54 milliseconds (ms). It is noteworthy that the runtime cost exhibits a linear
pattern concerning the window length, with times ranging from 20.75 ms for w = 50,
40.39 ms for w = 100, 78.37 ms for w = 200, 159.17 ms for w = 400, up to 331.54 ms
for w = 800.
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6. Conclusion and Future Work

This paper presented a DC-based approach for accurate fault detection in electric trans-
mission lines. Since DCs capture complex rules in databases, we used them to represent
the behavior of transmission lines with and without faults. We showed that the DCs dis-
covered in pre-fault windows significantly differ from those in post-fault windows and
can be used to detect faults. The results demonstrated accuracy and precision of 100% for
this task, requiring only about 20 samples to determine the inception of the fault with a
window size of 800 and a degree of approximation of 1× 10−5.

Future works include (1) the evaluation of the method using more failure events
from the FADb dataset and examples of real fault data. Considering the DC algorithm
employed in our approach, future works also include (2) testing the C-FASTDC algo-
rithm [Chu et al. 2013] as it allows discovering DCs with constant values not covered by
the DCFinder; (3) applying our DC approach in other data streaming applications to de-
tect elusive events, like IoT and stock market; (4) assessing the predicates of the DCs for
the fault classification task.
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