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Abstract. The exploratory search approach recognizes that user queries can be
incomplete, inaccurate, and ambiguous. This occurs both because of incomplete
domain knowledge by the user or due to implicit assumptions about the con-
text. This ongoing research aims to enrich Knowledge Graphs (KG) to support
context-aware exploration through expanded queries. We propose a Contextual
KG (CKG) definition and schema that characterizes the necessary elements for
modeling contextual information and a query-answering approach that retrieves
all (contextualized) possible answers.

1. Introduction

The Internet is currently one of the primary sources of information for users and programs
to obtain data that will inform decisions and actions being carried out, for example, in
the medical and political domains, to name a few. Among the sources used, directly or
indirectly, we can identify Knowledge Graphs (KG) as one of the primary providers of
structured data (e.g., Wikidata1). The major platforms and service providers on the Web
(e.g. Google, Microsoft, Apple, Amazon, Facebook, Linked-In, Spotify, etc..) all use
KGs as back-ends to provide their services. KGs are Knowledge Bases (KBs) modeled as
a graph [Weikum 2021] since relationships are the focus of analysis.

The user information needs are frequently unclear and well-defined at the out-
set, and users often need to learn what is present in a publicly available KG on the
Internet. This entails employing exploratory search to acquire the desired knowledge
[Marchionini 2006] and discovering knowledge gaps relevant to the task at hand. KGs
are suitable for such complex searches [Weikum 2021]. Exploratory search approaches
over KGs ultimately result in graph sub-pattern queries [Lissandrini et al. 2020b].

KGs encompass different types of knowledge, including Factual knowledge (state-
ments representing claims of truth) and Contextual knowledge (statements claimed to be
true within specific contexts) [Groth et al. 2023]. A common way to contextualize claims
is by adding property-value pairs as qualifiers. We must distinguish between additive
qualifiers, which represent n-ary relationships and do not affect the assessment of the
fact’s truthfulness, and contextual qualifiers, which can restrict the contexts in which the
underlying fact is considered true and may modify the fact itself [Patel-Schneider 2018].

Given the abundance of multiple, distributed, and potentially contradictory
sources available on the Internet, their veracity becomes prominent. In this situation,
we adopt the Dual Open World Assumption (DOWA), a variant of the traditional Open

1https://www.wikidata.org/wiki/Wikidata:Main_Page
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World Assumption (OWA). Under DOWA, the presence of a claim in a KG does not au-
tomatically imply that it is true. Instead, the evaluation of truthfulness depends upon the
contexts of claims, represented by their contextual qualifiers, and on the tasks being car-
ried out or intended (purpose). Consequently, when addressing an information need, users
should always be mindful of whether the context of the information retrieved is consistent
with the one they are interested in.

This ongoing research aims to further structure and query KGs to support ex-
ploratory searches. To help explain the proposed approach, we present a use case focus-
ing on the Brazilian geopolitical History domain.2 Figure 1 shows a partial view. Notice
it has two disconnected components but they share implicit relationships associated with
the temporal context that will be revealed in the query answer, see section 3.

Figure 1. Temporal Contextualized Claims about Brazil

2. Contextual Knowledge Graphs

There are several proposals for KG data structures, some simpler, like RDF and LPG ,
and others more complex and abstract such as the multi-layer graph (graphs with higher-
arity relationships and with identifiers on the edges) [Angles et al. 2022]. Table 1 shows
a snippet of our KG modeled as a multi-layer graph H3, with unique identified (column
id) and qualified edges, using KGTK graph data model [Ilievski et al. 2020].

The model can be formally defined as follows (instances from the example follow
each definition): V is a finite set of vertices (or nodes) that represents entities or concepts,
V = {h4v1, h4v2, h4v3, h4v21}. R is a finite set of binary, directed or undirected relation
types represented by their labels, R = {h4r6, h4r7}. E is a finite set of edges representing
relationships based on a relation type R between two vertices from V , E = {e10, e20,

2KG was constructed based on various websites that provide educational content for students.
3For the entire dataset, see https://github.com/versant2612/CKG_UseCases/blob/

53bb930d2a86d4a74f36cbb77c5c6c2bd7088aad/H4/CKG-H4.tsv
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e30}. P is a finite set of property (or attribute) types, P = {h4q1, h4q2}, L is a finite set
of vertices (or nodes) that represents literals corresponding to property values. Finally,
pV is a finite set of edges representing relationships, based on a property P , between one
vertice from V and another from L, pV = {p10, p20} i.e. data values are in L. Key-value
pairs can be attached to each E or pV in the form of Q (qualifier key) and V (vertex
qualifier) or L (literal qualifier) as qualifications. These key-value qualifier pairs (qE and
qP ) allow differentiating instances of relationships. In table 1, q301, q302, q201 and q202
are examples of qualifications qE with h4q1 and h4q2 as Q and data values in L.

Such a definition can be used to represent any KG H which is composed by a KG
schema, if it exists, and their instances. For this research, we refer to statements in a KG
as claims instead of facts and adopt the DOWA. Based on the general definition of context
stated in [Hogan et al. 2021], “By context, we herein refer to the scope of truth, and thus
talk about the context in which some data are held to be true”, we define a CKG as:

Definition 2.1 (Contextual KG H) H = H∪C∪I , that is, a multi-layer KG H with a set
of entities, claims, and context information; the context mappings C between KG elements
and context information; and interpretations I as rules to extract implicit context.

Similarly to Contextualized Ontologies [Cafezeiro et al. 2008], in CKGs, map-
pings serve the purpose of establishing the role of each object, i.e., whether it functions
as an entity in the ”base KG” or as context information. The context specification C
functions as a layer (in the sense of [Angles et al. 2022]) over the KG containing meta-
information. All entities, claims, contexts, and mappings are components of the KG itself.

The KG engineer plays a crucial role to identify context information. When a
KG schema is absent, KG profiling should be employed to extract latent structures from
the KG instances. For each claim, he/she should identify if its R, P , and Q belong to
any context Ci, specifying the corresponding mappings and adding them to the KG. The
gray lines in table 1 correspond to a snippet of Temporal and Provenance mappings of
qualifiers h4q1 (inicio), h4q2 (fim), and h4q3 (fonte) for relation type h4r7.

These mappings are specified as instances of the blue and green entities in the
CKG conceptual schema (figure 2). The CKG H is enriched with explicit mappings that
connect claims, entities, and their respective context information, facilitating effective
contextualization and interpretation of the knowledge within the KG for decision making.

3. Possible Answers
User queries are typically incomplete, inaccurate, and/or ambiguous, often because cru-
cial information, such as the context, is implicit or because users may not fully compre-
hend their underlying information needs within a given domain. Keyword-based search
engines often assume that users are primarily interested in current or local information,
implicitly adopting a specific default temporal or geographical context, which neglects
so-called long tail scenarios. This highlights the importance of considering contextual
information in exploratory search approaches to address such challenges.

Definition 3.1 (Possible Answer A) A = {S1, S2, · · · , Si}|A ≃ Q , that is, A is com-
posed of a set of zero or more fully contextualized claims S that potentially meet the
user’s information need. The possible answers are the result of a graph query K over H
considering user’s knowledge gaps and also KG and query incompleteness.
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Figure 2. Contextual KG Schema

Table 1. Contextualized Claims & Context Mappings Sample

id node1 node1;label label label;label node2 node2;label
e1 h4v21 Brasil Colônia is a rdf:type h4v20 Perı́odo Histórico
p10 h4v21 Brasil Colônia h4q1 inı́cio ˆ1530
p11 h4v21 Brasil Colônia h4q2 fim ˆ1815
e30 h4v2 Salvador h4r7 capital de h4v1 Estado do Brasil

H q301 e30 h4q1 inicio ˆ1549
q302 e30 h4q2 fim ˆ1572
e20 h4v2 Salvador h4r7 capital de h4v1 Estado do Brasil
q201 e20 h4q1 inicio ˆ1625
q202 e20 h4q2 fim ˆ1763
ckg:c1 ckgT1 Temporal is a rdf:type ckg:KnowledgeContext
ckg:c2 ckgT1 Temporal ckgr1 ckg:Represented By h4q1 inı́cio

C ckg:c3 h4q1 inı́cio ckgr2 ckg:Contextualizes h4r7 capital de
ckg:c4 ckgT1 Temporal ckgr1 ckg:Represented By h4q2 fim
ckg:c5 h4q2 fim ckgr2 ckg:Contextualizes h4r7 capital de
ckg:c29 ckgP1 Provenance is a rdf:type ckg:KnowledgeContext
ckg:c30 ckgP1 Provenance ckgr1 ckg:Represented By h4q3 fonte
ckg:c34 h4q3 fonte ckgr2 ckg:Contextualizes h4r7 capital de

Consider a user who is interested in the capital cities of Brazil during the colonial
period. S/he issues a search query that is translated by the search interface into the graph
query K3 as illustrated in table 2 using graph query language Kypher, based on Cypher4

[Ilievski et al. 2020]. Graph queries formulated during exploration can be both complete
and incomplete with respect to context5. The degree of incompleteness can be assessed
by executing graph queries against the Context Layer C in the CKG.

In order to verify if K is incomplete the query engine (figure 3) must execute two
types of graph queries. In step B1, the query engine evaluates K3 completeness using
query ck1 over the predicate h4r7 (capital de) where ?C label can be Temporal, Location,
Provenance, Generic or any other context type that the KG engineer added. Predicates
ckgr1 and ckgr2 correspond to Contextualizes and Represented By relationships as in the
CKG schema. The relation type h4r7 has three context qualifiers, two temporal, h4q1 and
h4q2, and one for provenance, h4q3 (fonte). Query ck2, executed in step B2 for entity
type h4v20 (Periodo Historico), retrieves two Temporal properties, h4q1 (incio) and h4q2

4Cypher uses ASCII-art stile to represent sub-graph patterns: (node1)− [: connection] → (node2)
5More examples using Provenance and Location contexts, can be found at https://github.com/

versant2612/CKG_UseCases/blob/53bb930d2a86d4a74f36cbb77c5c6c2bd7088aad/
H4/script_kgtk_H4.sh
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Figure 3. Query Engine

Table 2. Contextual query expansion for incomplete query K3

ID Query {kgtk –debug query -i $GRAPH CKG H4 –as h4 \}
K3 –force –match ’h4: (v1)-[p1:h4r7]→(v2), (:h4v21)-[p2:is a]→(:h4v20)’
cK1 –match ’h4: (C {label: C label})-[p2:ckgr1]→(c1)-[p1:ckgr2]→(:h4r7)
cK2 –match ’h4: (C {label: C label})-[p2:ckgr1]→(c1)-[p1:ckgr2]→(:h4v20)

K3e

–match ’h4: (v1)-[p1:h4r7]→(v2), (p1)-[q1:h4q1]→(v3), (p1)-[q2:h4q2]→(v4),
(p1)-[q3:h4q3]→(v5), (:h4v21)-[p2:is a]→(:h4v20), (:h4v21)-[p3:h4q1]→(v6),
(:h4v21)-[p4:h4q2]→(v7), (p2)-[q4:h4q3]→(v8)’
–where ’v3 <v7 AND v6 <v4’

(fim), and a provenance qualifier, h4q3 (fonte).

The original K3 and its contextually expanded version specifies a pattern with
two disconnected sub-graphs. In such cases, any Codomain Algebra can be applied (B4)
to context values (e.g., Dates, Geometries, Integers, etc) to infer relationships not di-
rectly materialized in the KG, such as claims co-occurence in time or entities overlapping
in space or the ordering of information sources based on ranking. Considering that the
two parts of the sub-graph pattern have temporal context, the query expansion added the
time-overlap operation in the –WHERE clause. This enables additional insights and rela-
tionships in the analysis of context values, enriching the answer with implicit knowledge
and providing further context-aware capabilities for exploratory search.

The query engine generates Exact and Approximate answers. A new query K3e is
formulated in step B5 to retrieve connected and fully qualified claims S for an exact an-
swer. Another query can be formulated in step B6 to retrieve incomplete qualified claims
by using the –OPTIONAL parameter for context added. These queries aim to provide
flexibility in retrieving answers based on varying levels of query and KG completeness,
being more cooperative and less interactive and iterative.

4. Final Remarks
Regarding to exploratory search applications various solutions have been proposed, focus-
ing on approximate methods, query suggestion, and query refinement techniques. TriniT
is a exploratory querying system [Yahya et al. 2016] that addressed vocabulary mismatch
using rules for query relaxation and KG incompleteness treated through triples addition in
query time (eXtended KG). Another approach found in the literature involves interactive
query expansion [Lissandrini et al. 2020a]. This approach utilizes sample query results
as input and generates the k most relevant expansions to complement the original query,
based on element labels, similar to how language models expand keywords. The system
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collects user feedback to improve the accuracy of the expansions over time.

The main novelties of our approach are: first, we assume the KG supports a de-
cision process by the user where s/he will decide which information should be used for
its intended purposes. From this point of view, we seek to provide Possible Answers con-
sidering the available context information as a way to more fully support this process.
A second aspect is the handling of the incompleteness of the KG itself. We apply an
answer expansion approach taking into account all relevant context information to sup-
port the interpretation of the claims. Thus, the answers provided are comprehensive and
contextually relevant. Lastly, our approach does not rely on an interactive flow with the
user. Instead, it is designed as a stateless approach where the The Best Possible Answer
is determined based on the available context and query flexibility options. This approach
allows for efficient and flexible exploration without requiring constant user input.

Currently, we are evaluating our approach using Wikidata datasets and developing
use cases of Context Interpretations I . And as future work, in addition to Codomain
Algebra, we will evaluate how Context Algebra [Cafezeiro et al. 2008] can be used for
Knowledge Graph Engineering.
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