
Similarity Grouping by Influence: Exploring Result
Diversification in Similarity Group-by Operator

Willian D. Oliveira1, Anna J. C. Lauton2, Caetano Traina Jr.1, Lucio F. D. Santos2

1Institute of Mathematics and Computer Sciences - University of São Paulo (USP)

2Federal Institute of Technology North of Minas Gerais (IFNMG)

{willian,caetano}@icmc.usp.br, lucio.santos@ifnmg.edu.br

Abstract. The group-by operator groups the tuples sharing the same values in
specified attributes, then extracts summaries from each group. However, sev-
eral data stored by modern applications are best queried not by equality but
by similarity, giving rise to a number of questions, such as: ”How to obtain
groups, such that each one contains the k tuples most similar?” or ”How to
include diversity in the results?”. In this paper, we present a binary grouping
operator focused on diversified similarity comparisons, which is able to answer
such questions. We define the operator algebraically and show its applicability
to enable the execution of grouping operations over complex attributes, such
as multidimensional data. We provide an algorithm, called Similarity Group-
ing by Influence – SGIa — to implement the binary operator. An experimental
evaluation performed on real data shows the SGIa is able to timely meet real
application needs with significant results.

1. Introduction

Grouping and aggregation are the main operations provided by relational database
management systems (RDBMS) for decision support applications and data summariza-
tion [Silva et al. 2019]. The traditional Group-by command partitions a relation into sev-
eral groups (grouping), in such a way that a subset of the relation attributes has the same
(‘=’) values in every tuple of each group. Thereafter, each group is aggregated using any
attributes.

Modern applications store data that are best queried not by equality but by sim-
ilarity, that is, the attributes are compared regarding a measurement of the similarity of
their features. As example, suppose a crowdsourcing app used by smart cities1 where cit-
izens report problems such as fly-tipping, broken paving slabs, and/or street lighting. The
users can send information like photos, descriptions, and geo-coordinates. The images
combined with the extra data may help the local government prioritize reports with high
demands. Similarity grouping answers can focus on grouping by a range predicate over
the geo-coordinates (returning elements that are at most ξ apart from the predicate), and
summarizing the problem information such as maximal distance between the main report
images and the newly reported ones.

Although several works have studied similarity search regarding different do-
mains and operators, such as selection [Silva et al. 2019, Jasbick et al. 2020] and similar-

1FixMyStreet App: https://www.fixmystreet.com/

Proceedings of the 38th Brazilian Symposium on Databases

402



ity join [Santos et al. 2015, Yang et al. 2023], few of them have tackled similarity group-
ing and aggregation [Schallehn et al. 2004, Tang et al. 2016, Silva et al. 2019]. More-
over, none of them has been found useful when the data to be searched by similarity may
have many elements too much similar to each other. For instance, in a smart cities ap-
plication, as the same problem may be repeatedly registered by several citizens, many
photos become almost identical copies of others already reported. In such cases, applying
similarity grouping may find a problem to “seed” the groups, as too similar objects may
split a large “seed” group into several ones, increasing the effort of analysis to identify
distinct city problems.

A number of approaches have discussed the definition of result diversification
on similarity operators [Lopes et al. 2021, Drosou et al. 2017]. For instance, Jasbick et.
al (2020) explored k-nearest neighbors predicate on selections. Santos et. al (2015) pro-
posed a diversified join operator to the similarity range predicate. A first approach about
grouping is presented by Santos et. al (2016), but all of them focused on clustering op-
erations, and do not discuss how to define group-by operator with aggregation. Apart
from the search operator extended with diversity, the result diversification based on in-
fluence (RDI) [Lopes et al. 2021] has been explored to retrieve representatives elements
that are similar to a query element and diverse among result elements, using a dynamic
“separation distance” according to the data distribution around the elements, the so-called
influence criteria [Lopes et al. 2021].

This paper introduces the Similarity Grouping by Influence (SGI) for RDBMSs,
aiming at capturing a holistic and more diversified perspective of group “seeds”. We
present a formalization of similarity grouping that seamlessly integrates similarity with
diversity consideration by means of a binary operator. Furthermore, we present an algo-
rithm to ensure that the grouped elements are both similar to the seeds and dissimilar to
other group representatives.

The remainder of this paper is organized as follows. Section 2 provides the back-
ground and related work, while Section 3 describes our proposal for diversified similarity
grouping. Finally, Sections 4 and 5 provide the evaluation and conclude the study.

2. Background and Related Work
Similarity comparisons in RDBMS. A complex attribute S must be represented in a
space defined as M = ⟨S, d⟩, where S is the attribute domain (Dom(S) = S) and d is
a distance function. The attribute’s active domain S = D

∗
o m (S) is the subset of val-

ues t[S] ∈ S that occur in at least one tuple t of the relation. While scalar attributes are
compared by θ operators based on identity and order relationship (θ ∈ {=, ̸=, <, . . .}),
complex attributes are essentially compared by two similarity relationship comparison
operators: the similarity range and the k-nearest neighbor operators. Thus, given a com-
plex attribute S such that D

∗
om (S) = S, S ⊆ S, a query center sq ∈ S and a predicate

S θs sq: (a) The range operator θs = Rng(d, ξ) returns TRUE for each element si ∈ S iff
δsi, sq ≤ ξ; (b) The k-nearest neighbor operator θs = k-NN(d, k) returns TRUE for each
element si ∈ S iff si is one of the k elements closest to sq, according to the distance d.

Influence measures. Given two elements si, sj ∈ S, si ̸= sj , their mutual Influence
(inverse dissimilarity) is calculated by I(si, sj) = 1/d(si, sj). Given a query reference
sq ∈ S, a diversified (Influence-free) neighbor si ∈ S, and a dataset object sj ∈ S, then

Proceedings of the 38th Brazilian Symposium on Databases

403



their Influence measures define a ternary relationship that indicates sj as more influenced
by si than sq iff I(si, sj) > I(sj, sq). Thus, sj should not be considered for inclusion in
result as si is already a diversified neighbor.

Influence Set. The Influence Set of a diversified neighbor si regarding a query reference
sq ∈ S encompasses every entry sj ∈ S \ {si ∪ sq} that are (i) farther from sq than si
and (ii) more Influenced by si than sq, i.e., Ïsi,sq = {sj | sj ∈ S \ {si, sq}, I(si, sj) >
I(si, sq) ∧ I(si, sj) > I(sj, sq) ∧ I(si, sq) ̸= I(sj, sq)}.

Group-by operator. The group-by operator is employed to reduce large volumes of
data, and is often employed to aggregate data from several tuples into a single one. Thus,
it performs two operations: (i) first groups the tuples; then (ii) aggregates data from each
group. It is represented in the Relational Algebra as γ{LG,LA}T , where: T is the relation to
be processed; LG is a subset of scalar attributes Ei from T, that identify the groups. Each
attribute Ei ∈ LG is called a grouping attribute; LA is a list of aggregate functions, each
one applied to a scalar attribute Ei ∈ T. Each LA element has the form fAggreg (Ei) , where
fAggreg is an aggregation function that summarizes the values of Ei from every tuple in a
group into a single value. Ei is called an aggregated attribute. The result is a new relation
where the attributes LG are the primary key and the other attributes are the result of
applying each function fAggreg over the corresponding aggregated attribute (Ei) from the
original relation. As it processes just one input relation, group-by is a unary operator. It is
executed in three steps: (1) Identify the groups: Perform a duplicate removal operation
over attributes LG, creating a temporary relation Ttemp whose primary key is LG; (2)
Assign each tuple to the respective group: Join each tuple in the original relation to
a key in Ttemp, preparing the tuple subsets to be sent to the aggregation functions; (3)
Perform the aggregation: Evaluate the aggregation function over each group and fill
each tuple that summarizes the group.

Related Work. Extensions to the classic group-by operator have been proposed in the lit-
erature, including exploiting functionalities required by new domains [Silva et al. 2019].
In an early work on similarity-based grouping, Schallehn et al. (2004) extended SQL
to allow user-defined similarity functions in the GROUP BY clause and in similarity
grouping predicates, focusing on data integration based on string similarity predicates.
However, it is restricted to a specific data type, trading attribute identity comparisons by
similarity range. Other works are being developed aiming at supporting similarity op-
erations on RDBMSs. SimDB [Silva et al. 2010] is a PostgreSQL extension that also
supports similarity-based queries and is currently the only one that performs similarity-
based grouping, although it is limited to work with one-dimensional data. It was later
extended to multidimensional data and range similarity predicates [Tang et al. 2016].
3. Similarity Grouping by Influence
Although group-by γ{LG,LA}T is a unary operator that compares attributes only by iden-
tity, it assigns two distinct roles to the input relation: first, it extracts the seeds of groups,
and then, it groups the tuples comparing the seeds with the original relation, as if they
were distinct (as described in Section 2). Following this rationale, and aiming at extend-
ing the group-by operator to better suit the similarity with diversification grouping, we
define the Similarity Grouping by Influence operator (SGI) as a binary operator that re-
ceives a relation of seeds together with the relation to be grouped and allows representing
similarity-based predicates (θs), as presented in Definition 1.

Proceedings of the 38th Brazilian Symposium on Databases

404



Definition 1 Similarity Grouping by Influence operator (SGI): The SGI is represented

as a binary operator T1
(c(LG))
γ {LA} T2, where:

• c(LG) is the grouping predicate, expressed as a logic expression on terms of
AGi θ AGj , such that AGi ∈ T1 and AGj ∈ T2 are the grouping attributes,
Dom(AGi) = Dom(AGj), and θs is a comparison operator valid in that domain;

• LA is the list of aggregate functions. Each LA element has either the form
fAggreg (Ei) or fÄggreg(Si, Sj), where fAggreg is an aggregate function summariz-
ing the active domain of scalar attributes and fÄggreg is an aggregate function
summarizing by similarity the active domain of two complex attributes Si and Sj;

• T1 is the seed relation. It has a tuple for each group to be generated, and must
contain at least the grouping attributes LG;

• T2 is the grouping relation. It must contain at least the grouping attributes LG

plus the attributes employed in any of the aggregate functions in LA.

The result is a relation TR that has one tuple for each tuple of relation T1. Relation
TR has all attributes of T1 plus a new attribute for each element in LA. To ensure diversity,
the θs operator used in the grouping by influence predicate c is influence-based (section
2), which creates a ternary relationship involving the seed reference in T1, the grouping
relation T2, and the result set TR, to set a minimum distance that two elements must attend
to be considered diverse from each other, otherwise, they should be grouped as similar.
The influence criteria require only the seed reference element to group tuples.

We developed a Similarity Grouping by Influence algorithm (SGIa), that incremen-
tally splits the grouping relation by selecting (non-influenced) representatives to create
groups of elements influenced by the seed references sg ∈ T1. The algorithm is a nested
loop strategy, which incrementally evaluates each tuple in T2 ranked in Ag by sg, to assert
the influence set criteria. When T2 is not empty, SGIa selects the nearest element to the
group representative sg. At each iteration, the element si ∈ T2 nearest to the group rep-
resentative is chosen and used to retrieve the elements of the influenced set. Thus, SGIa
evaluates whether sj is within the influence set of element si. If I(si, sj) ≥ I(sj, sq) then
sj is assumed to be influenced by si and is included in the group of elements influenced
by si.

The traditional group-by can be expressed with SGI, requiring just that T1 and T2
are the same relation and the predicate c is a conjunction of terms compared by the =
operator. However, there are two benefits brought by the SGI operator. First, the θ in c
can be any comparison operator, including similarity-based (θs) ones. Second, it enables
defining new aggregate functions fÄggreg - similarity-based - on LA.

4. Experimental Evaluation

In this section, we compare our proposed SGIa algorithm with three other approaches: (i)
The baseline grouping, that is, the non-diversified k-nearest neighbor algorithm (k-NN),
and (ii) a grouping algorithm based on diversity with k-medoids clustering algorithm
(CLT) [van Leuken et al. 2009], (iii) a grouping algorithm based on diversification with
an optimization approach (GNE) [Vieira et al. 2011].

We evaluated our proposal measuring two query properties on three image

Proceedings of the 38th Brazilian Symposium on Databases

405



0.5

1

1.5

2

2.5

3

3.5

4

Aloi

SGIa
CLT
GNE

Colors Nasa

R
el

at
iv

e 
B

en
ef

it

0

6x103

8x103

10x103

Aloi Colors Nasa

3x108
2x108

4x108

1x108

2x103

4x103

6x10
8

5x108 SGIa
CLT
GNE
kNN

ru
nt

im
e 

(m
ic

ro
ss

ec
on

ds
)

(a) Performance Test (a) Quality Test

Figure 1. Experimental results.

datasets: Aloi2, with 72, 000 3D color model images and 144 dimensions; Colors3,
with 112, 000 low-level features from color photos with 111 dimensions; Nasa3, with
40, 150 low-level features from satellite images with 20 dimensions. First, we evaluated
the computational cost required to execute the grouping operator. Second, we evaluated
the grouping quality, measuring the relative benefit regarding the change of retrieving the
most similar answers to a group of representative elements.

For the Performance test, we measured the average wall-clock time required to
evaluate 500 queries that return different values of k groups. The seed relation T1 has
500 query elements that were randomly chosen among the grouping relation from each
dataset - The results are shown in Figure 1(a). As expected, the standard grouping using
k-NN is the fastest method, as it does not consider the diversity among the elements in the
result set. Therefore, our comparison employs the k-NN as the baseline to measure how
much a grouping with diversity method is closer to the minimum theoretical execution
time. SGIa was slower than k-NN by almost two orders of magnitude, but it was always
much faster than the other approaches. In fact, SGIa was consistently around five orders
of magnitude faster than GNE and CLT. These results show that our approach outperforms
all the competitors by a significant margin.

For the second property explored in the experiments, we compared the answer
quality obtained by SGIa and its competitors using the Relative Benefit (RB) factor, which
measures how much of the similarity is compromised when adding diversity to the re-
sult [Smyth and McClave 2001]. The rationale is that a good set of representatives should
have more diversified elements than only presented by the most similar elements. The
results are shown in Figure 1(b), where higher values indicate better algorithms. It shows
that SGIa achieves the best performance for every dataset, with an RB average of 2.83.
CLT performed poorly, with RB always less than 1 for all datasets (an average of 0.81).
This happens because the cluster centroid is obtained without taking into account the dis-
tances to the query element. GNE also presented RB factors better than one, but consis-
tently worse than SGIa, only drawing for Aloi. These gains are achieved because SGIa
builds the result set incrementally using the representatives’ influence to automatically
calculate the separation distance.

2Amsterdam Library of Object Images: https://aloi.science.uva.nl
3SISAP databases: https://www.sisap.org/dbs.html

Proceedings of the 38th Brazilian Symposium on Databases

406



5. Conclusions
In this paper, we presented the binary Similarity Grouping by Influence (SGI) operator,
based on the concept of “influence” to ensure diversity among the group elements. Be-
sides, we also detailed its algebra to fit into an RDBMS traditional group-by. The SGIa
algorithm selects the elements more dissimilar to the others to be separated under distinct
“group representatives”, ensuring a minimum distance separation. The results spotted
that SGIa performs the grouping operation with increasing diversity in results and costs
computationally less than its competitors. Future works include (i) performing an exten-
sive set of experiments with different data domains and quality metrics, and (ii) exploring
index strategies to enhance the SGIa algorithm.

Acknowledgments. The study was supported by CNPq, CAPES, and FAPESP (Grant
2016/17078− 0).

References
Drosou, M., Jagadish, H. V., Pitoura, E., and Stoyanovich, J. (2017). Diversity in big data:

A review. Big Data, 5(2):73–84.

Jasbick, D. L., Santos, L. F. D., de Oliveira, D., and Bedo, M. V. N. (2020). Some
branches may bear rotten fruits: Diversity browsing vp-trees. In SISAP 2020, volume
12440, pages 140–154. Springer.

Lopes, C. R., Santos, L. F. D., Jasbick, D. L., de Oliveira, D., and Bedo, M. V. N. (2021).
An empirical assessment of quality metrics for diversified similarity searching. J. Inf.
Data Manag., 12(3).

Santos, L. F. D., Carvalho, L. O., Oliveira, W. D., Traina, A. J. M., and Jr., C. T. (2015).
Diversity in similarity joins. In SISAP 2015, volume 9371, pages 42–53. Springer.

Schallehn, E., Sattler, K.-U., and Saake, G. (2004). Efficient similarity-based operations
for data integration. Data & Knowledge Engineering, 48(3):361–387.

Silva, Y. N., Aly, A. M., Aref, W. G., and Larson, P.-A. (2010). SimDB: a similarity-aware
database system. In ACM SIGMOD, pages 1243–1246. ACM.

Silva, Y. N., Sandoval, M., Prado, D., Wallace, X., and Rong, C. (2019). Similarity
grouping in big data systems. In Similarity Search and Applications, pages 212–220.

Smyth, B. and McClave, P. (2001). Similarity vs. diversity. In Proceedings of the ICCBR,
pages 347–361, Vancouver, Canada.

Tang, M., Tahboub, R., Aref, W., Atallah, M., Malluhi, Q., Ouzzani, M., and Silva, Y.
(2016). Similarity group-by operators for multi-dimensional relational data. Knowl-
edge and Data Engineering, IEEE Transactions on, 28(2):510–523.

van Leuken, R. H., Garcia, L., Olivares, X., and van Zwol, R. (2009). Visual diversifica-
tion of image search results. In Proceedings of the WWW, pages 341–350, Spain.

Vieira, M. R., Razente, H. L., Barioni, M. C. N., Hadjieleftheriou, M., Srivastava, D.,
Traina Jr., C., and Tsotras, V. J. (2011). On query result diversification. In Proceedings
of the IEEE ICDE, pages 1163–1174, Hannover, Germany.

Yang, C., Chen, L., Wang, H., Shang, S., Mao, R., and Zhang, X. (2023). Dynamic
set similarity join: An update log based approach. IEEE Trans. Knowl. Data Eng.,
35(4):3727–3741.

Proceedings of the 38th Brazilian Symposium on Databases

407


