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Abstract. Software systems that have machine learning (ML) components are
being used in a wide range of domains. Developers of such systems face chal-
lenges different from those of traditional systems because the performance of
ML systems is directly linked to their input data. This work shows that ML
systems can be improved over time by actively monitoring the data that passes
through them and retraining their models in case of drift detection. To this end,
we first assess some widely used statistical and distance-based methods for data
drift detection, discussing their pros and cons. Then, we present results from ex-
periments performed using these methods in real-world and synthetic datasets
to detect data drifts and improve the system’s robustness automatically.

1. Introduction

Software systems with machine learning components are being increasingly adopted
across various domains. Machine learning system developers face challenges that dif-
fer from traditional software systems in that their performance is directly linked to input
data. After a machine learning model has been deployed in a software system and is
being used in production, it is subject to input data that may differ to several degrees
from what was initially used to train the model [Gama and Castillo 2006]. At this stage,
machine learning systems can exhibit behaviors unforeseen by their developers, which
can lead to significant project failures. When developing software with machine learning
components, decisions related to operational requirements for offering, monitoring, and
retraining models are crucial for systems to function correctly [Sculley et al. 2015].

In many applications, machine learning models are deployed in environments
where they continuously process incoming data streams without receiving immediate
feedback on their performance. This lack of real-time feedback poses a significant chal-
lenge in maintaining the accuracy and robustness of the models. To address this challenge,
developers can implement data drift detection techniques to monitor the input data and en-
sure its consistency with the data used during the model’s training phase [Lu et al. 2018].

This paper explores the application of data drift detection techniques with the
primary objective of enhancing classifier performance. As an approach, we employed
nonparametric methods based on the Hellinger Distance (HD), the Janson-Shannon (JS)
Divergence, and the Kolmogorov-Smirnov (KS) Test. More specifically, we evaluated the
Hellinger Distance Drift Detection Method [Ditzler and Polikar 2011] and leveraged its
adaptative threshold approach to devise a new detection method based on the JS Diver-
gence.
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These techniques offer distinct advantages: the HD and JS methods quantify the
discrepancy between probability distributions, while the KS method provides a statistical
framework that can be used to assess changes in multivariate data. By integrating drift de-
tection methods into the classification pipeline, we aim to dynamically adapt to changing
data environments, thereby improving the model.

Through empirical evaluation of real-world and synthetic datasets exhibiting con-
cept and data drift under varied configuration scenarios, we demonstrate the effectiveness
of our approach in maintaining classification performance in evolving data landscapes.

2. Data Drift Detection

In machine learning systems, a common component is the classifier. In a classification
task, a model learns a function f that maps input variables (X ), representing the feature
space, to discrete output labels (Y). After the model is trained and the system is deployed,
it is subjected to two different types of deviations: data drifts and concept drifts.

Data drift occurs when the distribution of data input to the system in production
becomes distant from that of the data D used in model training, making it possible to
detect a significant difference between them. Concept drift occurs when the relationship
between the training attributes and the model classes changes [Webb et al. 2016]; that is,
the attributes that determined one class start to determine another. In a general way, a drift
occurs whenever one of the probability distributions P (X ), P (X|Y) or P (Y|X ) changes
over time. Moreover, drifts may occur with different velocities and patterns (e.g., abrupt,
gradual, incremental, reoccurring) [Souza et al. 2020].

To detect drifts, it is necessary to monitor the extent of the divergence between
the distributions of the sets. In this work, we focus on two categories of drift detection
techniques very commonly used in practice: statistical and distance-based methods.

2.1. Statistical Methods

Statistical methods typically use a formal statistical hypothesis test to compare the distri-
butions of two datasets (e.g., current data vs. reference data). They generate a statistical
measure (e.g., p-value) indicating the likelihood that the two distributions are the same.
A low p-value suggests that the distributions are significantly different, indicating drift.
They can be sensitive to sample size and assumptions about the underlying distributions.
When data scarcity is not a concern, nonparametric methods (which do not assume any
specific data distribution) are more often used [Dasu et al. 2006]. Common nonparamet-
ric tests include the Wilcoxon, Kolmogorov-Smirnov, and multinomial tests.

2.1.1. Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) statistical test can be used to test whether two sam-
ples came from the same distribution. Assuming F and G are the empirical distribu-
tion functions of the two samples and the sample’s sizes are n and m, respectively, the
Kolmogorov–Smirnov statistic KS(F,G) is defined as follows [Hodges Jr 1958]:

KS(F,G) = sup
x

|F (x)−G(x)| (1)
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The decision rule is to reject the hypothesis at the significance level α if
KS(F,G) > c(α)

√
n+m
n×m

, where c(α) is given in the Kolmogorov table [Hodges Jr 1958].

2.1.2. Multiple Univariate Kolmogorov-Smirnov Test

While the univariate KS Test assesses the difference between the empirical distribution of
two datasets in one dimension, the Multiple Univariate KS Test does this across multiple
dimensions simultaneously. However, when multiple hypotheses are tested, the proba-
bility of observing a rare event increases, increasing the likelihood of incorrectly reject-
ing a null hypothesis. According to [Rabanser et al. 2019], a conservative aggregation
method can be used to reduce the probability of this type of error, the Bonferroni correc-
tion [Bland and Altman 1995], to adjust the significance level for multiple comparisons.

Applying it to the Multiple Univariate KS Test for d distributions, the decision
rule is to reject the hypothesis at the significance level α if min

k=1,2,...,d
KS(Fk, Gk) >

c(α
d
)
√

n+m
n×m

, where KS(Fk, Gk) is the KS Test for the empirical distribution functions
F and G of the k-th dimension, whose respective sample sizes are n and m. Note that
Bonferroni correction is applied by testing the hypothesis at a significance level of α/d.

2.2. Distance-based Methods

Distance-based methods offer a more direct measure of the distance or dissimilarity be-
tween two probability distributions than statistical methods. Moreover, they do not rely on
specific distributional assumptions. They provide a numerical value indicating the degree
of difference: the larger the distance, the greater the difference, indicating drift.

2.2.1. Kullback–Leibler Divergence

For two discrete probability distributions P and Q, the Kullback–Leibler (KL) Divergence
(or relative entropy) KL(P ||Q) from Q to P is defined as [Dasu et al. 2006]:

KL(P ||Q) =
∑

x∈X
P (x)log(

P (x)

Q(x)
) (2)

2.2.2. Jensen–Shannon Divergence

The Jensen–Shannon (JS) Divergence is a method based on KL Divergence but with an
improvement: it is symmetric. For two discrete probability distributions P and Q, the
Jensen–Shannon Divergence JS(P ||Q) is defined as:

JS(P ||Q) =
1

2
KL(P ||(P +Q)

2
) +

1

2
KL(Q||(P +Q)

2
) (3)
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2.2.3. Hellinger Distance

For two discrete probability distributions P (p1, p2, . . . , pn) and Q(q1, q2, . . . , qn), the
Hellinger distance H(P,Q) is defined as:

H(P,Q) =
1√
2

√√√√
n∑

i=1

(
√
pi −

√
qi)2 (4)

2.3. Drift Detection Methods
Choosing a distance function to measure change is only one aspect of the drift detection
problem. Another crucial aspect is determining the statistical significance of the observed
change [Dasu et al. 2006]. This involves specifying a null hypothesis (i.e., that no change
has occurred) and assessing how likely it is that the observed measurement could occur
under this hypothesis. Some drift detection approaches, such as HDDDM, monitor the
magnitude of the change in some distance metric between a new distribution and a base-
line distribution, which can or cannot be updated every time a drift is detected. This way,
these methods can be used to detect changes in data distribution over time, which can help
maintain the performance of machine learning models in dynamic environments.

The following sections define some methods that use this approach and are eval-
uated in this work. The first one, HDDDM, was presented by [Ditzler and Polikar 2011].
The second and third methods, JSDDM and KSDDM, are the new methods proposed in
this work. All of these approaches assume an incremental learning setting, where new
datasets are presented in batches over time; they are not based on the classifier’s perfor-
mance (i.e., rely only on raw features); and they are classifier free.

It is important to note that, in terms of computational cost, these techniques are
comparable. Each method derives empirical distributions from the same input data. The
computation of drift is linear with respect to the number of bins, which is dictated by the
batch size.

2.3.1. Hellinger Distance Drift Detection Method (HDDDM)

The Hellinger Distance-based Drift Detection Method (HDDDM) proposed by
[Ditzler and Polikar 2011] assumes that data arrives in batches, with dataset Dt becoming
available at time t. The following steps summarize the method, assuming as initialization
λ = 1, Dλ = D1, and for t = 2, 3, . . . :

1. Generate histograms P from Dt and Q from Dλ, each one with b =
⌊√

|Dt|
⌋

bins.
2. Calculate the Hellinger distance δH(t) between P and Q and its difference from

δH(t− 1):

δH(t) =
1

d

d∑

k=1

√√√√
b∑

i=1

(
Pi,k∑b
j=1 Pj,k

− Qi,k∑b
j=1 Qj,k

)2 ϵ(t) = δH(t)− δH(t−1) (5)

where d is the dimensionality of the data, and Pi,k( Qi,k) is the frequency count in
bin i of the histogram corresponding to P (Q) of feature k.
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3. Update the adaptative threshold ϵ̂ and the standard deviation ρ̂:

ϵ̂ =
1

t− λ− 1

t−1∑

i=λ

|ϵ(i)| ρ̂ =

√∑t−1
i=λ(|ϵ(i)| − ϵ̂)2

t− λ− 1
(6)

4. Compute the actual threshold β(t) = ϵ̂ + γρ̂, where γ is some positive constant,
indicating how many standard deviations of change around the mean indicate drift.

5. Determine if drift occurred:
Drift is present if |ϵ(t)| > β(t). In this case, it is necessary reset Dλ by making
Dλ = Dt and λ = t.
When drift is not present, Dλ must be expanded to include Dt: Dλ = {Dλ,Dt}.

HDDDM signalizes a drift when the magnitude of the change (|ϵ(t)|) is signifi-
cantly greater than the average of the change since the last detected change (ϵ̂). The sig-
nificance is controlled by γ and the standard deviation of the divergence differences (ρ̂).

2.3.2. Jensen-Shannon Drift Detection Method (JSDDM)

To create a drift detection method based on the JS Divergence, we adapted the HDDDM
method by replacing the Hellinger Distance in Equation 5 in Step 2 of the method with
the JS Divergence defined in Equation 3, as shown in the following:

δJS(t) =
1

d

d∑

k=1

JS(Pk||Qk) ϵ(t) = δJS(t)− δJS(t− 1) (7)

where d is the data dimensionality, and Pk( Qk) is the distribution histogram of feature k.

2.3.3. Kolmogorov-Smirnov Drift Detection Method (KSDDM)

In order to detect data drifts using the Kolmogorov-Smirnov (KS) Test, we devised the
following simple algorithm, which assumes that data arrives in batches, with dataset Dt

becoming available at time t, λ = 1, Dλ = D1, and for t = 2, 3, . . . :

1. Generate the empirical distribution functions Fk from Dt and Gk from Dλ for each
feature k in data.

2. Obtain the minimum of the KS Test of all features’ empirical distributions:

δKS(t) = min
k=1,2,...,d

{KS(Fk, Gk)} (8)

where Fk (Gk) is the empirical distribution function of feature k in Dt (Dλ).
3. Determine if drift occurred:

Drift is present at the significance level α if δKS(t) is greater than c(α
d
)
√

n+m
n×m

,
where m = |Dt|, n = |Dλ|, d is the dimensionality of the data and c(α

d
) is given

in the Kolmogorov table.
If drift is detected, it is necessary to reset Dλ by making Dλ = Dt and λ = t.
When drift is not present, Dλ must be expanded to include Dt: Dλ = {Dλ,Dt}.
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3. Datasets Used in the Experiments
In our experiments, we used datasets cited by [Lu et al. 2018], a literature review on learn-
ing under concept drift. The objective of using them is to demonstrate how methods for
the detection of data drift react in a scenario of concept drift. In particular, we are using
two datasets that keep the distributions stable but just drifting in the concept.

3.1. Insects Datasets
The Insects Datasets [Souza et al. 2020] is derived from a real-world streaming applica-
tion that uses optical sensors to capture data and recognize flying insect species in real
time using a Smart Trap. The temperature is the main environmental factor influencing
the insect behavior in the trap and, consequently, the data captured. Observations were
ordered over time based on temperature patterns, and examples were uniformly sampled
within each temperature to isolate temperature-induced drifts. Then, data were split into
11 datasets with 33 features, showcasing different patterns of change (incremental, abrupt,
gradual, reoccurring), balanced and unbalanced classes, and class distribution changes.

3.2. SEA Datasets
The Streaming Ensemble Algorithm (SEA) synthetic dataset [Street and Kim 2001] sim-
ulates a data stream with abrupt drift. Each observation consists of three features, with
only the first two being relevant. The target is binary and positive if the sum of the rel-
evant features exceeds a specific threshold. Concept drift is introduced by switching the
threshold (i.e. changing the classification function).

We used an implementation of the SEA dataset provided by River, a library to
build online machine-learning models. In the library, there are four different variants to
be chosen as threshold configuration: (0) threshold = 8, (1) threshold = 9, (2) threshold =
7, and (3) threshold = 9.5. Using them, we built two different experimental setups:

1. SEA: a stream that starts with variant 0, has variant 3 in the middle, then returns
to variant 0, simulating a deviation in concept for a period;

2. MULTISEA: a scenario that has 12,500 items from each of the four variants.

3.3. STAGGER Datasets
The STAGGER synthetic datasets introduced by [Schlimmer and Granger 1986], like
SEA, simulate data with abrupt concept drift. In STAGGER, objects are described by
three features – size (small, medium, and large), shape (circle, square, and triangle), and
color (red, blue, and green) – and the target is a boolean value given by a function f . The
River library provides three variants for f : (0) True if the size is small and the color is red,
(1) True if the color is green or the shape is a circle, and (2) True if the size is medium or
large. Changing f causes concept drift. Using River, we built two experimental setups:

1. STAGGER: a stream that starts with variant 0, has variant 1 in the middle, then
returns to variant 0, simulating a deviation in concept for a period;

2. MULTISTAGGER: a scenario with 16,666 items from each of the three variants.

3.4. Electricity
The Electricity Pricing dataset from [Harries 1999] is used in our experiment to simulate
the concept drifting and class imbalance environment, which originally contains 45, 312
samples drawn from 7 May 1996 to 5 December 1998 with one sample for every half an
hour from the electricity market in New South Wales, Australia.
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45



3.5. Magic Gamma Telescope

The Magic Gamma Telescope dataset is Monte Carlo generated to simulate high-energy
gamma particle registration in a ground-based atmospheric Cherenkov gamma telescope
using the imaging technique. The images captured by the telescope allow the discrimi-
nation of primary gammas (signal) from hadronic showers caused by cosmic rays (back-
ground) [Bock 2007]. The original dataset has little drift; hence, it has been modified by
sorting the feature fConc1 in ascending order and generating incremental batches with
meaningful data drift, as described in [Ditzler and Polikar 2011].

4. Using Drift Detection to Improve ML System’s Performance
This study aims to provide an empirical demonstration of how statistical and distance-
based methods for detecting data drift in input streams can be used to improve the
performance metrics of a machine learning algorithm subjected to concept drifts. We
used the datasets in Section 3 to (re)train classifiers and get their performance metrics.
The experiments were implemented using the scikit-learn, scipy, river, and Menelaus li-
braries 1. The source code of the experiments is available at https://github.com/
lucashelfs/EmpiricalAnalysisOfDataDrift.

The following sections first present visualizations of the drifts detected and then
describe the approach we used for improving classifiers. The datasets were segmented
into batches of equal size, specifically 1000, 1500, 2000, and 2500 instances per batch.
We chose these batch sizes considering the different sizes of the datasets used. To have a
sufficient number of batches to evaluate the drift detection techniques in all datasets, we
could not increase the batch sizes too much. And for the larger datasets, having too many
batches makes the drift visualizations and interpretation more difficult. The segmentation
also aimed to demonstrate the sensitivity of each technique to varying batch sizes.

4.1. Visualization of the Detected Data Drifts

Figure 1 shows how the drift detection techniques behaved for the MULTISTAGGER and
MULTISEA datasets, while Figure 2 shows the behavior for the Insects’ abrupt balanced
and imbalanced datasets. In these figures, a point in the graph denotes a detected drift
in a given batch; the color differentiates the detection techniques. The vertical dashed
lines denote the location of the known concept drifts (annotated in the datasets). It is
interesting to point out that even though drifts are being detected, they are not being
detected specifically at the datasets’ concept-changing points.

To visualize the drifts of all the features individually, heatmap plots can be used, as
shown in Figure 3 for the Magic dataset. This type of plotting offers valuable insights into
the drift patterns detected from the batches and the reference set. In Figure 3, darker color
shades indicate a greater degree of divergence between specific batches and the reference
batch. In Figure 3(A), referent to the KSDDM technique, lower p-values indicate greater
divergence, consequently leading to darker hues on the heatmap. On the other hand, in
Figure 3(B), of the HDDDM technique, larger distances mean greater divergence.

We can see in Figure 3(A) that, for the ordered feature column in the heatmap
fourth row, the KS Tests used on KSDDM had p-values closer to zero. For the Helinger

1scikit-learn.org/, scipy.org/, riverml.xyz/, pypi.org/project/menelaus/
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(A) (B)

Figure 1. Detected drifts for the (A) MULTISTAGGER and (B) MULTISEA datasets

(A) (B)

Figure 2. Detected drifts for the Insects’ (A) Abrupt balanced and (B) Abrupt
imbalanced datasets

Distances used in HDDDM, the pattern was repeated, but with the values being closer to 1,
as we can see in Figure 3(B). Moreover, the KS-based technique was much more sensitive
to deviations in data, given the overall darker tones that can be observed in Figure 3(A).

4.2. An Approach for Using Detected Drifts to Improve a Classifier

The classifiers were evaluated using a prequential (test-then-train) approach, wherein a
classifier is reset upon the detection of a drift by the used technique, an approach similar
to the one used by [Souza et al. 2020]. We used the algorithm described in the following
for creating a Naive Bayes classifier and evolving it using a drift detection technique; the
algorithm also creates a baseline classifier to compare the performances:

1. Input: Labeled data batches and a drift detection technique.
2. Use batch 1 to train a Naive Bayes classifier CB – the baseline model.
3. Use batch 1 to train a Naive Bayes classifier CD – the model that benefits from

drift detection.
4. Set batch 1 as the reference batch.
5. From batch 2 onwards:

(a) Store the predictions of both classifiers CB and CD for the current batch.
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(A) (B)

Figure 3. Heatmaps for visualizing the drifts of the Magic dataset detected with
the techniques (A) Kolmogorov-Smirnov and (B) Hellinger Distance

(b) Check for drift between the reference set and the current batch using the
drift detection technique.

(c) Update CB classifier with the current batch.
(d) If no drift is detected:

• Update CD classifier with the current batch.
• Update the reference set by merging it with the current batch.

(e) If drift is detected:
• Set the reference set to the current batch.
• Reset classifier CD training only with the new reference set.

6. At the end of all batches: Compute the performance metrics.

4.3. Experimental Results and Discussion

The algorithm described in Section 4.2 was implemented to compare the follow-
ing drift detection techniques: Base (no drift detection), KS95 (KSDDM with α =
5%), KS90 (KSDDM with α = 10%), HDDDM (with γ = 1, as specified in
[Ditzler and Polikar 2011]), and JSDDM (with γ = 1). We evaluated the techniques
using the datasets described in Section 3 and measured different model metrics for all
classifiers. Given the diverse datasets used in this study, the metrics more suited to assess
the performance of the classifiers are the Area Under the Curve (AUC) and the F1 score.

Tables 1-4 show the performance metrics obtained. Values in bold are the best
F1 metrics for each dataset, while values in italics are the best AUC. Each dataset has a
different size and, hence, a specific number of batches. The column Drift has the number
of drifts that a technique has detected on that specific dataset scenario.

According to the experimental results, utilizing drift detection techniques to de-
termine the optimal times for retraining classifiers can significantly enhance overall per-
formance.

The use of smaller batches provided the best results in terms of the F1 and AUC
metrics. In terms of the number of detected drifts of each technique over the number of
batches of each experiment, the KS90 technique triggered more resets to the classifiers
than the other techniques, being closely followed by the KS95. The HDDDM and JSDDM
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48



Dataset(∗) Batches Base KS95 KS90 HDDDM JSDDM
Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC

MULTISTAGGER 50 0 0.502 0.555 1 0.557 0.587 1 0.557 0.587 11 0.841 0.837 11 0.841 0.837
MULTISEA 50 0 0.687 0.651 4 0.691 0.653 4 0.691 0.653 6 0.692 0.655 6 0.692 0.655
SEA 50 0 0.690 0.659 4 0.690 0.662 6 0.690 0.661 4 0.690 0.660 4 0.690 0.660
STAGGER 50 0 0.576 0.529 0 0.576 0.529 1 0.781 0.713 12 0.864 0.836 12 0.864 0.836
Electricity 45 0 0.452 0.508 45 0.559 0.556 45 0.559 0.556 5 0.481 0.518 7 0.485 0.520
Magic 19 0 0.518 0.505 19 0.964 0.950 19 0.964 0.950 3 0.907 0.873 3 0.907 0.873
Inc (Bal) 57 0 0.500 0.487 15 0.581 0.454 17 0.581 0.454 1 0.500 0.487 1 0.500 0.487
Inc (Imbal) 452 0 0.344 0.552 47 0.520 0.514 68 0.520 0.513 22 0.519 0.521 23 0.519 0.520
Abr (Bal) 79 0 0.458 0.564 43 0.522 0.571 46 0.527 0.558 19 0.464 0.593 19 0.464 0.593
Abr (Imbal) 452 0 0.383 0.585 93 0.501 0.530 102 0.501 0.528 50 0.493 0.532 51 0.492 0.533
Inc-Grad (Bal) 24 0 0.325 0.473 10 0.546 0.349 10 0.546 0.349 5 0.517 0.354 5 0.517 0.354
Inc-Grad (Imbal) 143 0 0.466 0.474 21 0.550 0.440 26 0.552 0.437 10 0.548 0.437 11 0.548 0.436
Inc-Abr-Rec (Bal) 52 0 0.498 0.438 19 0.581 0.404 21 0.579 0.406 9 0.525 0.442 10 0.512 0.464
Inc-Abr-Rec (Imbal) 355 0 0.522 0.544 41 0.548 0.513 53 0.547 0.512 19 0.552 0.512 19 0.552 0.511
Inc-Rec (Bal) 79 0 0.335 0.571 42 0.519 0.527 45 0.523 0.520 17 0.481 0.568 19 0.475 0.566
Inc-Rec (Imbal) 452 0 0.419 0.584 90 0.500 0.528 103 0.501 0.527 52 0.499 0.532 52 0.498 0.532

(*) In the dataset names, the following abbreviations were used: “Abr” – Abrupt, “Grad” – Gradual, “Inc”
– Incremental, “Rec” – Reoccurring, “Bal” – Balanced, “Imbal” – Imbalanced.

Table 1. F1 and AUC metrics for a batch size of 1000

Dataset Batches Base KS95 KS90 HDDDM JSDDM
Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC

MULTISTAGGER 33 0 0.502 0.555 0 0.502 0.555 0 0.502 0.555 4 0.767 0.758 4 0.767 0.758
MULTISEA 33 0 0.687 0.651 3 0.685 0.651 5 0.686 0.656 6 0.693 0.658 6 0.693 0.658
SEA 33 0 0.691 0.660 2 0.690 0.659 4 0.689 0.661 7 0.690 0.662 7 0.690 0.662
STAGGER 33 0 0.574 0.528 0 0.574 0.528 0 0.574 0.528 5 0.840 0.800 5 0.840 0.800
Electricity 30 0 0.438 0.508 30 0.526 0.536 30 0.526 0.536 4 0.450 0.510 10 0.462 0.512
Magic 12 0 0.517 0.504 12 0.937 0.913 12 0.937 0.913 1 0.860 0.814 1 0.860 0.814
Inc (Bal) 38 0 0.497 0.488 11 0.574 0.468 12 0.575 0.469 9 0.575 0.468 9 0.575 0.468
Inc (Imbal) 301 0 0.345 0.552 33 0.521 0.517 45 0.518 0.515 16 0.512 0.527 16 0.512 0.527
Abr (Bal) 53 0 0.445 0.570 38 0.464 0.591 39 0.464 0.591 13 0.402 0.608 13 0.402 0.608
Abr (Imbal) 301 0 0.382 0.585 89 0.490 0.534 103 0.490 0.533 46 0.487 0.544 46 0.482 0.542
Inc-Grad (Bal) 16 0 0.317 0.476 8 0.531 0.369 8 0.531 0.369 3 0.439 0.335 3 0.439 0.335
Inc-Grad (Imbal) 95 0 0.464 0.475 18 0.543 0.437 21 0.542 0.437 10 0.545 0.442 11 0.545 0.440
Inc-Abr-Rec (Bal) 35 0 0.492 0.440 17 0.550 0.439 21 0.554 0.437 6 0.496 0.466 6 0.496 0.466
Inc-Abr-Rec (Imbal) 236 0 0.521 0.545 36 0.546 0.512 46 0.543 0.513 16 0.543 0.515 14 0.543 0.513
Inc-Rec (Bal) 53 0 0.321 0.578 36 0.478 0.544 39 0.476 0.543 10 0.402 0.585 9 0.393 0.585
Inc-Rec (Imbal) 301 0 0.417 0.585 83 0.491 0.539 97 0.491 0.536 41 0.480 0.543 43 0.481 0.544

Table 2. F1 and AUC metrics for a batch size of 1500

techniques presented similar results between them, triggering way fewer resets for the
classifiers than KS techniques.

The KS Test is very sensitive to data shifts, as pointed out in Section 4.1. This
excessive detection of drifts by the KS techniques can result in an overfitted classifier,
which might have good F1 and AUC measures but with a low generalization for new data.
Conversely, the adaptative threshold of HDDDM and JSDDM techniques makes them
more sensitive to drifts over time, which is good for datasets with more stable distribu-
tions, like MULTISTAGGER. Their detected drifts and the consequent full retraining of
the model resulted in F1 and AUC metrics better than those of the KSDDM method in
this case. It is also worth noting that the replacement of the Hellinger Distance by the JS
Divergence in the HDDDM method, which resulted in the JSDDM framework, did not
provide improvements over the HDDDM performance.

Our experimental results demonstrate that the analyzed drift detection techniques
are capable of improving the system’s robustness, even in scenarios subjected to concept
drifts. Even with prequential evaluation, which uses all the data to train the classifier, the
approach of resetting the classifier improved the performance in case of drifts.

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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Dataset Batches Base KS95 KS90 HDDDM JSDDM
Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC

MULTISTAGGER 25 0 0.493 0.549 0 0.493 0.549 0 0.493 0.549 1 0.550 0.582 1 0.550 0.582
MULTISEA 25 0 0.687 0.651 1 0.687 0.651 7 0.693 0.658 1 0.686 0.651 1 0.686 0.651
SEA 25 0 0.690 0.659 1 0.690 0.659 5 0.689 0.661 1 0.690 0.661 1 0.690 0.661
STAGGER 25 0 0.573 0.528 0 0.573 0.528 0 0.573 0.528 3 0.795 0.731 3 0.795 0.731
Electricity 22 0 0.438 0.507 22 0.519 0.535 22 0.519 0.535 6 0.449 0.512 7 0.480 0.520
Magic 9 0 0.517 0.504 9 0.909 0.875 9 0.909 0.875 2 0.814 0.760 1 0.708 0.650
Inc (Bal) 28 0 0.496 0.489 12 0.574 0.468 13 0.575 0.468 2 0.502 0.491 7 0.571 0.472
Inc (Imbal) 226 0 0.344 0.553 41 0.515 0.522 53 0.516 0.521 18 0.508 0.525 17 0.508 0.529
Abr (Bal) 39 0 0.435 0.578 31 0.418 0.642 31 0.418 0.642 14 0.348 0.643 14 0.348 0.643
Abr (Imbal) 226 0 0.382 0.585 84 0.481 0.536 93 0.484 0.537 40 0.476 0.547 44 0.475 0.545
Inc-Grad (Bal) 12 0 0.296 0.484 8 0.454 0.355 8 0.454 0.355 3 0.425 0.328 3 0.425 0.328
Inc-Grad (Imbal) 71 0 0.463 0.476 19 0.541 0.437 21 0.546 0.441 11 0.528 0.446 11 0.528 0.446
Inc-Abr-Rec (Bal) 26 0 0.486 0.440 13 0.477 0.452 13 0.477 0.452 6 0.478 0.449 6 0.478 0.449
Inc-Abr-Rec (Imbal) 177 0 0.521 0.544 35 0.545 0.512 45 0.543 0.511 15 0.531 0.518 15 0.531 0.518
Inc-Rec (Bal) 39 0 0.312 0.588 33 0.469 0.560 35 0.471 0.547 10 0.391 0.606 15 0.412 0.615
Inc-Rec (Imbal) 226 0 0.417 0.585 85 0.484 0.541 89 0.484 0.540 47 0.479 0.545 47 0.479 0.546

Table 3. F1 and AUC metrics for a batch size of 2000

Dataset Batches Base KS95 KS90 HDDDM JSDDM
Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC Drifts F1 AUC

MULTISTAGGER 20 0 0.493 0.549 0 0.493 0.549 0 0.493 0.549 2 0.744 0.736 2 0.744 0.736
MULTISEA 20 0 0.687 0.651 0 0.687 0.651 8 0.693 0.659 4 0.690 0.655 4 0.690 0.655
SEA 20 0 0.690 0.659 2 0.689 0.661 4 0.689 0.660 3 0.689 0.661 3 0.689 0.661
STAGGER 20 0 0.574 0.529 0 0.574 0.529 0 0.574 0.529 3 0.829 0.785 3 0.829 0.785
Electricity 18 0 0.435 0.506 18 0.520 0.535 18 0.520 0.535 7 0.495 0.525 7 0.487 0.521
Magic 7 0 0.514 0.502 7 0.849 0.801 7 0.849 0.801 2 0.849 0.801 1 0.660 0.608
Inc (Bal) 22 0 0.494 0.486 13 0.572 0.470 13 0.572 0.470 0 0.494 0.486 0 0.494 0.486
Inc (Imbal) 180 0 0.343 0.553 41 0.509 0.523 47 0.509 0.520 19 0.498 0.534 19 0.498 0.534
Abr (Bal) 31 0 0.424 0.587 27 0.374 0.646 28 0.373 0.645 6 0.288 0.627 6 0.288 0.627
Abr (Imbal) 180 0 0.380 0.585 79 0.474 0.545 85 0.473 0.543 27 0.449 0.538 28 0.449 0.538
Inc-Grad (Bal) 9 0 0.286 0.489 6 0.463 0.347 6 0.463 0.347 3 0.442 0.410 3 0.442 0.410
Inc-Grad (Imbal) 57 0 0.461 0.477 15 0.540 0.441 18 0.545 0.434 8 0.529 0.463 8 0.529 0.463
Inc-Abr-Rec (Bal) 21 0 0.483 0.439 14 0.442 0.471 14 0.442 0.471 7 0.451 0.452 7 0.451 0.452
Inc-Abr-Rec (Imbal) 142 0 0.520 0.545 31 0.533 0.522 32 0.533 0.522 15 0.514 0.525 16 0.516 0.530
Inc-Rec (Bal) 31 0 0.309 0.596 26 0.429 0.594 26 0.429 0.594 6 0.375 0.580 6 0.375 0.580
Inc-Rec (Imbal) 180 0 0.415 0.585 79 0.471 0.546 85 0.474 0.546 36 0.467 0.552 36 0.467 0.552

Table 4. F1 and AUC metrics for a batch size of 2500

5. Related Work

Several works approached the use of statistical and distance-based methods to detect
drifts. For example, [Dasu et al. 2006] presented a method based on the KL Divergence
that uses a bootstrapping approach to establish the statistical significance of the distances
with demonstrated statistical guarantees. An empirical evaluation (on real and synthetic
data) was performed to show the accuracy of the approach. [Pérez-Cruz 2008] proposed
a method for estimating the KL Divergence between continuous densities. They showed
that the divergence can be either estimated using the empirical cdf or k-nearest-neighbors
density estimation. [Rabanser et al. 2019] investigated shift detection through the lens of
statistical two-sample testing. In particular, they presented an empirical investigation on
image datasets of how dimensionality reduction and two-sample testing might be com-
bined in a practical pipeline for detecting distribution shifts in real-life ML systems.

[Souza et al. 2020] discussed the challenges faced by the stream learning commu-
nity concerning the reduced number of real-world data and the lack of a benchmark to
evaluate adaptive classifiers and drift detectors. To mitigate these issues, the authors cre-
ated 11 new datasets based on data collected by an optical sensor that measures the flying
behavior of insects and evaluated several learning techniques on these datasets. They also
provided a new public repository with datasets from real problems.
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6. Conclusion

This work presented empirical results on using statistical and distance-based methods to
detect drift in the data inputs of classifiers and evolve their models based on that. We have
presented a variation (JSDDM) of a consolidated method (HDDDM) for drift detection
and proposed a new one, based on the Kolmogorov-Smirnov Test (KSDDM).

In the experiments, we used datasets from various fields and simulated concept
drift scenarios. While the detection methods did not immediately signal specific concept
drifts, they effectively identified data drifts that prompted necessary classifier resets. The
experimental results showed that having a concern about data drifts is good for increasing
the robustness of an ML system.

The effectiveness of each drift detection method can vary significantly across dif-
ferent datasets and their characteristics. We advise having a good understanding of the
datasets before comparing the methods’ results. On this matter, working with synthetic
datasets provides more control over the data and concept changes, which facilitates per-
forming comparison experiments and analyzing the results.

One of the controlled variables of our experiments, the batch size, showed that the
best results for the datasets used in the work were obtained with the smallest batch sizes
analyzed. This is an important finding since, in real-world streaming scenarios, working
with large batches can be computationally expensive and even prohibitive.
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