
Data-Centric AI for predicting non-contact injuries in
professional soccer players

Matheus Melo1, Matheus Maia1, Gabriel Padrão1, Diego Brandão1,
Eduardo Bezerra1, Juliano Spineti2, Lucas Giusti1, Jorge Soares1

1Computer Science Department – Federal Center of Technological Education
Celso Suckow da Fonseca (Cefet/RJ) – Rio de Janeiro, RJ – Brazil

2Physiology Department – Fluminense Football Club – Rio de Janeiro, RJ – Brazil

{matheus.melo,matheus.vieira.2,gabriel.padrao}@aluno.cefet-rj.br,

{diego.brandao,ebezerra}@cefet-rj.br,juliano.spineti@fluminense.com.br,

lucas.giusti@aluno.cefet-rj.br, jorge.soares@cefet-rj.br

Abstract. One big concern in soccer professional teams is to search for pre-
ventive measures to reduce the frequency of harmful episodes in their athletes
since these episodes greatly impact the sports industry and affect both the team’s
performance and the association’s economic situation. Thus, the present work
proposes a methodology to predict non-contact injury episodes that may affect
them in a microcycle through Data-centric AI concepts. The prediction model is
trained using a dataset related to professional soccer athletes. The most interest-
ing result were with AUC-ROC of 79,8%. About the performance improvement
strategies applied, the best undersampling ratio was 70/30, PCA with one or
two principal components did best, and the Decision Tree algorithm excelled.

1. Introduction

The existence of injuries in sports scenarios and their corresponding negative conse-
quences have attracted the growing interest of researchers, managers, and coaches in
studies and technologies aimed at appropriate actions to prevent them [Rossi et al. 2018].
These incidents have a significant impact on the sports industry, affecting both team per-
formance and the association’s economic situation [Rossi et al. 2022].

In general, the incidence of an injury in the sports environment results in mul-
tiple repercussions. Hägglund et al. [2013] monitored the impact of injuries on the
performance of UEFA Champions League teams for 11 years and pointed out that an
athlete, being out of the team, can have a significant negative influence on the team’s
performance [Hägglund et al. 2013]. In terms of financial impact, Cuevas et al. [2021]
demonstrated that injuries in Spain, for example, causes about 16% of absences in the
season of professional soccer players, corresponding to a cost of about 188 million eu-
ros per season [Fernández Cuevas et al. 2010]. Furthermore, the injury frequency and
recovery time are also relevant. Specifically, Pfirrmann et al. [2016] showed that
professional soccer players suffer between 2.5 to 9.4 injuries per 1000 hours of ef-
fort, while Fiscutean [2021] reported that most of them last around a week, with the
most recurrent ones (corresponding to 15% of the total) requiring a longer rest pe-
riod [Fiscutean 2021, Pfirrmann et al. 2016].
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On the other hand, preventive measures have been increasingly adopted in sports
medicine to provide automated support for coaches and medical teams in decision-making
to prevent untimely injuries [Kirkendall and Dvorak 2010]. In this context, a study span-
ning 18 years demonstrated a decline in injury incidence during matches and training, as
well as lower recurrence rates, which appear to be related to the gradual and effective
enhancement of injury prevention activities [Ekstrand et al. 2021].

In the current sports context, there are several researches (already completed or
ongoing) that use tools as a basis for data collection and analysis, such as wearable out-
fits with GPS technologies monitored by software [Rossi et al. 2018, Vallance et al. 2020,
Pilka et al. 2023, Rossi et al. 2022]. This type of technology has shown beneficial results
to sports teams, such as Toronto Raptors, which implemented wearable devices and soft
tissue monitoring to improve team performance [Studnicka 2020]. With the highest num-
ber of injuries in the 2012 NBA, the Raptors achieved, in conjunction with this technol-
ogy and better management of the collected data, a record of one of the lowest injury rates
among 2014 NBA teams [Studnicka 2020].

In the context of Artificial Intelligence, Data-Centric AI is an emerging concept
that emphasizes the importance of handling and adding value to the data considered in
models. This approach introduces a potential alternative to improving the performance
of predictive models, complementing the application of algorithms and their instantia-
tions [Jarrahi et al. 2023]. Thus, the main objective of this work is to evaluate different
modeling alternatives to predict non-contact traumatic injuries within a microcycle of
male professional soccer athletes from Fluminense Football Club. Our approach uses an
association of Data-Centric AI concepts [Jarrahi et al. 2023] and machine learning algo-
rithms. To enhance predictive performance, data management methods were applied to
the model from different perspectives, such as class balancing with subsampling, Princi-
pal Component Analysis (PCA), and concepts related to multicollinearity, as well as the
use of machine learning algorithms based on the systematic search conducted. The main
contributions of this work consists of developing a robust pre-processing stage (aligned
with the context of Data-Centric AI) and validating the best classification model alterna-
tives, based on a Regressive Multi-dimensional Model Selection (RMMS) approach.

This study is organized into six more sections, beside this introduction. Section 2
presents related work obtained through a systematic literature search. Section 3 details the
primary methodology, including the dataset used, feature engineering, feature selection,
and the model selection approach employed. A description of the computational envi-
ronment and how the experiments were conducted is presented in Section 4. Section 5
presents the results obtained by the applied techniques, followed by a discussion of the
findings in Section 6. Finally, Section 7 points out the final considerations of this work
and proposes directions for future research.

2. Related Work

To identify studies and research related to injury prediction in professional soccer,
a systematic search was conducted following some guidelines from the PRISMA
methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
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168



[Page et al. 2021] using the PubMed1 and Scopus Elsevier2 databases. Initially, 121 arti-
cles were identified. After applying inclusion and exclusion criteria, as well as removing
duplicates found in both databases, the number was reduced to 23 articles. These were
then prioritized, with the highest priority given to studies focusing on the prediction of
non-contact traumatic injuries using training and/or game data in conjunction with ma-
chine learning algorithms, resulting in a total of nine articles. A descriptive summary is
provided in Table 1.

Table 1. Descriptive characteristics of the models in the base studies.

Studies Attributes Algorithms
[Rossi et al. 2018] Body composition, GPS training load, play-

ing time, injury history
DT, RF, LR

[Pilka et al. 2023] Position, injury history, GPS training/game
load

XGB

[Vallance et al. 2020] Body composition, GPS training load, and in-
trinsic factors through questionnaires

KNN, LDA, LR,
Ridge, GNB, DT,
RF, SVM, MLP,
XGB

[Eetvelde et al. 2021] Injury history, training load, and body com-
position are the most repeated in the review
articles

Trees (mainly DT),
SVM, ANN

[Kolodziej et al. 2023] Neuromuscular and biomechanical LASSO
[Jauhiainen et al. 2022] Demographic, neuromuscular, biomechani-

cal, anatomical, and genetic
LR, RF, SVM

[Rossi et al. 2022] GPS training/game load and blood samples DT, XGB
[Martins et al. 2022] Body composition and physical fitness tests LASSO, SF, OLS,

Ridge, ENET
[Dandrieux et al. 2023] 30-Meter Sprint and injury history LR, RF, AdaBoost

Based on the search results and studies included in the systematic review by
Eetvelde et al. [2021], the literature on injury prediction using machine learning al-
gorithms appears to be expanding, with growing evidence supporting the accuracy of
these methods in predicting injury episodes [Eetvelde et al. 2021]. Machine learning
is particularly relevant in this context due to its ability to effectively and flexibly han-
dle large datasets with numerous attributes [Majumdar et al. 2022]. However, predicting
injuries remains challenging due to the diverse characteristics of players, including in-
dividual biological differences, physical predispositions, and psychophysical conditions
[Pilka et al. 2023].

Among the studies listed in Table 1, Decision Tree machine learning algorithms
were the most frequently used, appearing in the work of Rossi et al. [2018], Vallance et al.
[2020], Eetvelde et al. [2021] and Rossi et al. [2022]. These studies primarily focused on
common variables related to athlete training and/or game load, as well as some subjective
anthropometric characteristics.

1https://pubmed.ncbi.nlm.nih.gov
2https://www.scopus.com
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Rossi et al. [2018], Vallance et al. [2020], and Piłka et al. [2023] share some
notable similarities that served as inspiration for the present research. All three stud-
ies combined GPS data with machine learning algorithms, primarily Decision Trees, to
predict non-contact traumatic injuries among professional players. For model validation,
they employed cross-validation techniques. They also addressed the issue of imbalanced
target data using oversampling strategies such as SMOTE and ADASYN.

3. Methodology

The methodology of this work was described in four steps: 1) Data Collection and Clean-
ing, 2) Feature Engineering, 3) Potential Injury Risk Factors Selection and 4) Regressive
Multi-dimensional Model Selection (RMMS). Step 1 (Section 3.1) comprises informa-
tions about the datasets provided and how it was cleaned. Step 2 (Section 3.2) explains
the creation of the features to introduce within the prediction models. Step 3 (Section 3.3)
consists of strategies adopted to look for features or combinations of them that can be po-
tential injury risks. Finally, Step 4 (Section 3.4) shows how the models were developed,
trained and evaluated.

3.1. Data Collection and Cleaning

For this research, data were collected from 182 professional players of Fluminense Foot-
ball Club during the 2021 and 2022 seasons. The information was obtained from two
sources: (1) Workload data, automatically collected through GPS-integrated wearable
vests, and (2) Injury history provided by the club’s medical staff. By combining these
two sources, an initial dataset, ATHLETES_DATA was created, where each entry corre-
sponds to a period, defined as a subdivision of the data collected on a training or match
activity day for each athlete. For example, a match activity could be divided into three pe-
riods: (i) Warm-up, (ii) First half, and (iii) Second half. Consequently, ATHLETES_DATA
consisted of 44,354 rows and a set of 1,715 features, along with a binary injury label in-
dicating whether an injury had occurred. In total, 39 non-contact traumatic injuries were
recorded among 22 players, with five players sustaining three injuries, seven sustaining
two injuries, and ten sustaining one injury each.

To ensure the quality and relevance of the data, three cleaning steps were per-
formed: (i) removal of goalkeeper data as they had specific training metrics and patterns,
(ii) removal of data from athletes with less than 12 activities (two weeks and two rest
days) as they had few information, (iii) completely null or zero columns were removed,
while the columns with some nulls present were imputed by the average. With these steps,
ATHLETES_DATA reduced to 41,109 rows and 801 features among 79 athletes.

3.2. Feature Engineering

The MC_ATHLETES_DATA dataset was derived from ATHLETES_DATA, focusing on
specific features for model input. MC_ATHLETES_DATA was created by aggregating
certain ATHLETES_DATA variables into microcycles, defined as all training activities
and the subsequent match, resetting with the next training activity for each athlete. This
approach was intended to reduce class imbalance and concentrate on state-of-the-art fea-
tures, rather than utilizing all 1,715 columns from ATHLETES_DATA. The work of Val-
lance et al. [2020], Rossi et al. [2018] and Piłka et al. [2023], along with insights from
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expert club physiologists, guided this process. In addition to the aggregated features de-
rived from ATHLETES_DATA GPS variables, three new key features were created for the
model: two to account for injury recurrences derived from the target label and one to track
the duration of each microcycle in days, as suggested by the references mentioned. Ulti-
mately, MC_ATHLETES_DATA comprised 147 microcycles, 4,326 rows, 26 independent
variables, and one injury label with 39 injury cases, as shown in Table 2.

Table 2. MC_ATHLETES_DATA dataset variables to input the models.
Variables Description
mc_field_time Sum of field time
mc_tot_dist Sum of distance in meters covered
mc_tot_dist_min Sum of distance in meters covered divided by sum of field time
mc_vel1 Sum of distances covered between 0 and 1 km/h
mc_vel2 Sum of distances covered between 1.1 and 7 km/h
mc_vel3 Sum of distances covered between 7.2 and 14.4 km/h
mc_vel4 Sum of distances covered between 14.4 and 19.8 km/h
mc_vel5 Sum of distances covered between 19.8 and 25 km/h
mc_vel6 Sum of distances covered more than 19.8 km/h
mc_vel6_min Sum of distances covered more than 19.8 km/h divided by sum of

field time
mc_vel7 Sum of distances covered more than 25.2 km/h
mc_vel7_min Sum of distances covered more than 25.2 km/h divided by sum of

field time
mc_acel+desacel_high Sum of high intensity inertial motion analysis for acceleration and

deceleration
mc_acel+desacel_high_min Sum of high intensity inertial motion analysis for acceleration and

deceleration divided by sum of field time
mc_acel+desacel_>2ms Sum of accelerations and decelerations above 2m/s²
mc_acel+desacel_>3ms Sum of accelerations and decelerations above 3m/s²
mc_tot_load Sum of total player load
mc_rhies Sum of repeated high-intensity efforts
mc_rhies_min Sum of repeated high-intensity efforts divided by sum of field

time
mc_dir_changes Sum of total changes of direction
mc_jumps Sum of total number of jumps
mc_max_vel Maximum speed reached
mc_max_acel Maximum acceleration achieved
mc_duration Count of number of days present in microcycle
injury_target 1— Yes, 0— No, if the injury occurred within a microcycle
binary_reincidence 1— Yes, 0— No, for injury reincidences
accumulated_reincidence Cumulative sum of injury reincidences

3.3. Potential Injury Risk Factors Selection

Before creating multi-dimensional models, the Mann-Whitney U test was performed to
select potential injury risk factors through a bivariate analytical comparison. With the
obtained statistical calculations, the relevance of each of the 26 variables was seen by the
measured p-value according to the designated significance level (alpha).
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Afterward, with the 26 features created, different combinations of strategies were
considered for removing multicollinear variables (Table 3) in an attempt to improve the
performance of the created models from different perspectives. Thus, 30 different fea-
ture combinations were filled, divided by three different strategies. All combinations
consisted of using only one of the two reincidence variables (accumulated_reincidence
or binary_reincidence) at a time because using them together is redundant due to strong
correlation and using them together is also ambiguous.

Table 3. Multicollinearity between features with correlation above 95%.
Feature 1 Feature 2 Correlation
mc_vel6 mc_vel5 99.1%

mc_tot_load mc_tot_dist 98.9%
mc_tot_dist mc_vel2 96.8%

mc_vel2 mc_field_time 96.6%
mc_tot_load mc_vel2 95.7%
mc_tot_dist mc_field_time 95.7%
mc_tot_load mc_field_time 95.7%

• Strategy 1 (2 combinations): Keep all features from MC_ATHLETES_DATA,
without removal of multicollinear variables;

• Strategy 2 (12 combinations): Keep all features from MC_ATHLETES_DATA
except one of the six multicollinear variables;

• Strategy 3 (16 combinations): Keep all features from MC_ATHLETES_DATA
with only one of the four repeating multicollinear variables (mc_carga_tot,
mc_tot_dist, mc_field_time, and mc_vel2) along with one of the two non-
repeating ones (mc_vel6 or mc_vel5).

Table 4. Feature combinations divided for MC_ATHLETES_DATA by three dif-
ferent multicollinearity removal strategy. AR = With accumulated_reincidence
feature; BR = With binary_reincidence feature.

Combination Names Multicollinearity removal strategy
All_BR and All_AR Keep all features

mcr1_BR and mcr1_AR Keep all except mc_vel6
mcr2_BR and mcr2_AR Keep all except mc_carga_tot
mcr3_BR and mcr3_AR Keep all except mc_tot_dist
mcr4_BR and mcr4_AR Keep all except mc_vel2
mcr5_BR and mcr5_AR Keep all except mc_vel5
mcr6_BR and mcr6_AR Keep all except mc_field_time
mcr7_BR and mcr7_AR Keep all except mc_vel6, mc_carga_tot, mc_tot_dist, mc_vel2
mcr8_BR and mcr8_AR Keep all except mc_vel5, mc_carga_tot, mc_tot_dist, mc_vel2
mcr9_BR and mcr9_AR Keep all except mc_vel6, mc_field_time, mc_tot_dist, mc_vel2

mcr10_BR and mcr10_AR Keep all except mc_vel5, mc_field_time, mc_tot_dist, mc_vel2
mcr11_BR and mcr11_AR Keep all except mc_vel6, mc_field_time, mc_carga_tot, mc_vel2
mcr12_BR and mcr12_AR Keep all except mc_vel5, mc_field_time, mc_carga_tot, mc_vel2
mcr13_BR and mcr13_AR Keep all except mc_vel6, mc_field_time, mc_carga_tot, mc_tot_dist
mcr14_BR and mcr14_AR Keep all except mc_vel5, mc_field_time, mc_carga_tot, mc_tot_dist
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3.4. Regressive Multi-dimensional Model Selection (RMMS)

To objectively understand the impact of different modeling alternatives on predictive per-
formance, we implemented the RMMS technique [Giusti et al. 2022]. Accordingly, the
first step was to develop a function that creates and validates multi-dimensional predic-
tive models based on the values inserted as parameters (seven in total, as seen in Table 5).
Algorithm 1 shows its methodology.

Table 5. Description of the parameters used in Algorithm 1.
df Dataset to be used in the models

features df specific combinations of features selected
target df target label
ml Machine Learning algorithms chosen
n Proportion of negative and positive case samples for class balancing with undersampling

test_size Proportion of test data for stratified hold-out validation
pca Number of principal components with PCA

Algorithm 1: Methodology to Create and Validate the Predictive Model
1 function classification_predictions(df , features, target, ml, n, test_size, pca):
2 df_processed← copy(df, features, target)
3 train_X, test_X, train_y, test_y ← Hold-out(df_processed, test_size)
4 if pca > 0 then
5 train_X ← StandardScaler.fit_transform(train_X)
6 test_X ← StandardScaler.transform(test_X)
7 train_X ← PCA.fit_transform(train_X, pca)
8 test_X ← PCA.transform(test_X, pca)

9 end
10

11 train_X, train_y ← Undersampling(train_X, train_y, n)
12 ml.fit(train_X, train_y)
13 pred_y ← ml.predict(test_X)
14 methods← [accuracy, precision, f1, recall, AUC-ROC]
15 foreach method ∈ methods do
16 results← results ∪method(test_y, pred_y)
17 end
18 return results

The function begins with the processing of the df using specific features combi-
nations and the target variable, defined respectively by features and target parameters.
Next, validation was performed using the stratified hold-out method with the division of
test proportion setted by the parameter test_size. After the hold-out division, if there is
an intention to apply PCA to the features used (features embedding dimensionality is
considered if pca equals to zero), data normalization is performed for both training and
test data using StandardScaler, followed by the application of PCA into principal com-
ponents. Then, undersampling is applied only to the training data, reducing the amount
of data to the proportion defined in n. Finally, the model training and prediction stages
occur, which are done with the machine learning algorithms specified on ml. To evaluate
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the classifications, an iteration is performed through the methods list to evaluate the re-
sult with each performance metric and return them to the results variable. In the study,
five metrics were considered [Majumdar et al. 2022]. The formula for each metric was
showed on Table 6.

1. Accuracy: Proportion of correctly classified injuries and non-injuries to the total
number of observed injuries and non-injuries.

2. Precision: Proportion of correctly classified injuries to the total number of injuries
classified.

3. Recall: Proportion of correctly classified injuries to the total number of injuries.
4. F1-score: Harmonic mean between precision and recall.
5. AUC-ROC: Area under the ROC curve that evaluates the relationship between

true positive rates and false positive rates.

Table 6. Formula for each evaluation metric used on the classification models.
(1) (2) (3) (4) (5)

TP+TN
TP+TN+FP+FN

TP
TP+FP

TP
TP+FN 2 · Precision·Recall

Precision+Recall ROC = rate(TP
FP )

Due to the prevailing class imbalance in the test set, the main performance mea-
sure for the work was AUC-ROC, generating a more consistent analysis of the positive re-
sults obtained in the classification. Initially, the baseline results of the project consisted of
two raw models to be taken as a comparison after the application of multicollinearity fea-
tures removal strategies, PCA, undersampling and different machine learning algorithms.
Thus, the classification models were created with the intention of improving performance
through an iteration of the cross-product of the parameters of the classification function.
The cross-product occurred for each possibility of features, ml, n, and pca, referring to
F, M, N, P respectively.

After creating the classification models, a validation of all obtained results was
conducted simultaneously. With this, it is possible to observe the parameters that had the
greatest positive or negative impact on performance, which is the main goal of RMMS ap-
proach. The strategy consists of a Random Forest regression model, where the features are
all possibilities of the iterated parameters in classification (F, M, N, P ), and the target
variable is the obtained AUC-ROC. To enable regression, one-hot encoding was applied
due to the possibility of categorical values. The evaluation was done with the Mean Ab-
solute Percentage Error metric. With the regression model created, the analysis of the
classification parameters was interpreted in a graphical illustration with SHAP (SHapley
Additive exPlanations3) values. This allowed for a clear explanation of the positive or
negative impact of these parameters on the predictive outcome.

4. Experimental Setup

The computational environment used for the experiments consisted of a computer run-
ning Windows 10 Pro 64-bit version 22H2 with an Intel(R) Core(TM) i3-10100 processor
clocked at 3.60GHz and 12GB of installed RAM. The project was entirely implemented
in Python version 3.9.12.

3https://shap.readthedocs.io/en/latest/
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Firstly, for the configuration of baseline models B1 and B2, pca and n parameters
were not considered, and features consisted of all features from MC_ATHLETES_DATA
with only one reincidence variable for each (first two combinations from Table 4). Ad-
ditionally, the parameter ml was filled only by the Decision Tree, and test_size was
fixed at 20%. For the main classification modeling, Algorithm 2 shows the instantiation
of the parameters. Initially, among the seven parameters present, df and target were
fixed values, defined as MC_ATHLETES_DATA to be filtered by features parameter and
MC_ATHLETES_DATA target variable, respectively. Along with this, test_size also had
a fixed value of 20%, as in the baseline. The parameter ml consisted of Decision Tree
DT, Random Forest RF, and Logistic Regression LR, inspired from Rossi et al. [2018]
algorithms used for comparison. The pca parameter had 21 different values, varying the
possibility of the model being created with features embedding dimensionality or di-
mensionality reduction with 1 to 20 principal components. To mitigate class imbalance,
n consisted of three possibilities of proportions between data negative and positive case
samples: 70%/30%, 60%/40%, and 50%/50%. Finally, features was filled with 30 dif-
ferent combinations of features divided by three strategies of multicollinearity removal
(explained in Section 3.3).

Algorithm 2: Experimental Setup and Parâmeters Cross Product
1 df ← MC_ATHLETES_DATA
2 target← MC_ATHLETES_DATA[injury_target]
3 test_size← 0.2
4 F ← {All_BR,All_AR,mcr1_BR,mcr1_AR, ...,mcr14_BR,mcr14_AR}
5 M ← {DT,RF,LR}
6 N ← {70/30, 60/40, 50/50}
7 P ← {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
8 results← ∅
9 foreach features ∈ F,ml ∈M,n ∈ N, pca ∈ P do

10 results← results ∪
classification_predictions(df, features, target,ml, n, test_size, pca)

11 end

5. Results

The Mann-Whitney U test was calculated for each relationship between feature and tar-
get variables. The value defined for α was 0.05. Thus, among the 26 variables, only
mc_rhies_min proved to be relevant with the application of the test (p-value < α). This
suggests that because most of the variables do not have a statistically significant associa-
tion with the target label, the predictions of the models developed showed more difficulties
to perform effectively.

With the application of the methodology of Algorithms 1 and 2, 5670 different
models were obtained by the parameters combinations. Table 7 compares the test perfor-
mance of the baseline models and the best results for each of the three algorithms used,
based on the literature. Prioritizing the AUC-ROC metric, the best result was achieved
with the DT, showing a decent recall and AUC-ROC. This is a significant impact with
respect to the baselines B1 and B2, demonstrating the application of the techniques dis-
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Table 7. Classification results on test set for the baselines B1 and B2 and best
DT, RF and LR, sorted by AUC-ROC.

Model Accuracy Precision Recall F1-score AUC-ROC
DT 72,2% 2,8% 87,5% 5,5% 79,8%
RF 52,3% 1.9% 100% 3.7% 75,9%
LR 84,3% 2,2% 37.5% 4,2% 61,1%
B1 98,3% 0% 0% 0% 49,6%
B2 98,3% 0% 0% 0% 49,6%

cussed in the methodology through the parameters. RF showed a recall of 100% com-
pared to the DT and a similar AUC-ROC. However, both models exhibited much lower
precision compared to recall. This explains the trade-off reflected in the F1-score, which
resulted in low values. Finally, LR had a much inferior performance in terms of precision,
recall, and AUC-ROC, compared to DT and RF.

For the simultaneous analysis of the parameters used to develop the 5670 models,
SHAP values approach provided a clear explanation of the positive or negative impact
on the output, according to the indicated magnitude. The predictive regression modeling
with Random Forest Regressor had a 2.8% Mean Absolute Percentage Error, indicating
a low percentage of error in the predicted value. Due to the fact that the attribute values
are binary, the graph in Figure 1 shows only two colors, red indicating the use of the
variable in the model and blue indicating non-usage. Thus, red to the right indicates a
positive impact of its use, and to the left, a negative impact. Consequently, the blue color
to the right signifies a positive impact of not using the variable, while to the left, it is the
opposite.

6. Discussion
Firstly, considering the results in Table 7, accuracy is not a priority in this study due to
its deceptively high scores in cases of class imbalance. This is because accuracy accounts
for both correct classifications of the positive and negative classes among all predictions.
Since injury cases are extremely rare in the test set after stratified hold-out (858/8), the
accuracy remains high by correctly classifying most non-injury cases, while the primary
interest lies in the correct classification of the positive class.

In a real-world scenario of predicting non-contact traumatic injuries among pro-
fessional soccer players, it is crucial to avoid false alarms in both the positive and neg-
ative classes, which is reflected in high performance in both precision and recall. High
recall is essential to prevent players at true risk of injury from entering the field due to
a false-negative alarm, while high precision is crucial to avoid situations where athletes
are unnecessarily spared due to a false-positive alarm. Both scenarios are detrimental to
the team and/or the athletes involved. Despite this, the primary objective of the current
study is to establish a methodology that objectively assesses the impact of different mod-
eling parameters on predictive performance. Therefore, the AUC-ROC metric highlights
the model’s ability to robustly differentiate between positive and negative classes, even
in the presence of imbalance, and primarily serves the study’s purpose within the RMMS
methodology.

Results in Table 7 mainly serve to indicate the best performances achieved through
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176



Figure 1. Graph of the positive or negative impact of the 20 most relevant SHAP
values in relation to the parameters present in the regression model.

strategies that allowed potential performance improvements, highlighted for each algo-
rithm and baseline. However, since the models were developed based on a combination
of parameters, the SHAP values provided a comprehensive view of the parameters that
had the greatest impact on model performance. Figure 1 illustrates the 20 most relevant
parameters for the results, both positively and negatively, allowing for some observations.
Among the techniques applied, the most prominent factors influencing the models were
the different machine learning algorithms, undersampling proportions, and varying num-
bers of principal components with PCA. In contrast, strategies related to feature selection
had the least impact on the models.

According to the SHAP values, DT demonstrated a positive impact when applied.
In Rossi et al. [2018], it was possible to detect 80% of non-contact injuries with 50% pre-
cision using this algorithm, significantly reducing false alarms. The study demonstrated
the use of both nonlinear and linear classifiers in a multidimensional context, which also
inspired the present work to attempt the same. Despite the prominence of DT, using
LR showed an opposite effect on performance, suggesting a nonlinear relationship be-
tween features and the target. Other studies that used GPS and machine learning, such as
Vallance et al. [2020], also demonstrated the predictive power of tree-based algorithms,
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achieving good results with tree models, random forests, and especially XGBoost. XG-
Boost is particularly interesting in the context of football injuries, as it aims to improve
several small classification trees (also known as "weak learners") based on their errors.
This technique has also been used with good results in Piłka et al. [2023]. XGBoost
effectiveness on datasets with high class imbalance is noteworthy, as this is a common
issue in all these studies due to the rarity of injuries in professional soccer. Considering
class imbalance, this study employed undersampling to balance the classes in the training
set, unlike Rossi et al. [2018] and Piłka et al. [2023], who used oversampling to add
positive cases to the training set instead of removing negative cases. The effectiveness of
undersampling was most evident with a sample proportion of 70% non-injury cases and
30% injury cases.

One important application was PCA, which had a positive impact by reducing the
features into different principal components (mainly one or two), compared to using the
features in their embedded dimensionality. The challenge with using PCA in this sce-
nario lies in the inconclusiveness regarding the relevance of the features transformed and
reduced to principal components. However, focusing on predictive performance rather
than feature interpretability, PCA remains an interesting tool. Despite this, the advantage
of using RMMS in conjunction with SHAP is the ability to simultaneously observe the
set of features selected within the applied PCA. Thus, some combinations of features for
multicollinearity removal, such as mcr11_AR and mcr1_BR, proved to be relevant.

7. Final Thoughts

The purpose of the current study was to demonstrate the functionality of the Regressive
Multi-dimensional Model Selection (RMMS) methodology for predicting non-contact in-
juries in professional soccer players, by evaluating different modeling alternatives on pre-
dictive performance. In this context, considering Data-Centric AI principles to modify
the data through various strategies, 30 different feature combinations were explored, ac-
counting for multicollinearity removal, three different undersampling proportions, and 1
to 20 principal components, in addition to embedding dimensionality. Beyond prediction,
an important aspect of the methodology is the understanding and interpretation of the
parameters used for model construction, facilitated by SHAP values, which revealed the
positive or negative relevance of the top 20 parameters. Among all the models developed,
the best AUC-ROC metric achieved was 79.8% using DT, which also showed a major
positive impact in the SHAP analysis, as well as in other studies.

Regarding future work, several ideas could enhance the project. The RMMS ap-
proach employs various parameters to demonstrate the potential for building models from
different perspectives simultaneously. However, it would be beneficial to carefully se-
lect these parameters to avoid complicating processing time for larger datasets. For in-
stance, the number of principal components in PCA could be estimated using strategies
like Scree-Plot or Broken-Stick. Additionally, implementing a more robust grid search
strategy could help identify the best features for each model. To address class imbalance,
other techniques, such as oversampling or adjusting class weights, could be explored. Fi-
nally, incorporating new athlete features beyond GPS data, such as biochemical tests and
perceived exertion, would further enrich the models.
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