Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

Enumeration, Tagged Unions, Tuples, and Collections: A
Novel Approach to Extracting JSON Schema

Natélia Banhara', Geomar A. Schreiner', Samuel da Silva Feitosa' Denio Duarte'

'Universidade da Fronteira Sul — Campus Chapecé
Chapec6 — SC — Brazil

natalia.banhara@outlook.com, {gschreiner, samuel.feitosa,duarte}@uffs.edu.br

Abstract. Recently, JSON became a trendy data format for representing
datasets. Its success is due to embodying structure and data in the same repre-
sentation. Moreover, it has a loose structure, i.e., the structure (aka schema) is
not rigid. While the absence of a rigid schema brings several advantages, it is
impossible to exploit some benefits of knowing the schema in advance, such as
query and storage optimization and improving data curation. In this paper, we
propose JFUSE, a tool to deal with the problem of discovering a schema from
JSON collections. Besides inferring basic types (e.g., atomic types, arrays, and
objects), JFUSE also discovers enumeration, tagged unions, metadata as data,
objects as collections, and arrays as tuples. We propose a metamodel that can
be easily transformed into any schema language (e.g., JSON Schema). Our ex-
periments show that the proposed approach infers concise and correct schemas
from (huge) JSON collections.

1. Introduction

Nowadays, JSON (JavaScript Object Notation) has become a standard for data inter-
change in the web environment, primarily due to its simplicity [Bourhis et al. 2017,
Peng et al. 2011]. Also, many NoSQL databases use JSON as an internal format to store
their data (e.g., MongoDB and HBase). Generally, JSON data are not associated with
a proper schema [Spoth et al. 2021, Maiwald et al. 2019]. This lack of schema is ad-
vantageous for rapid development and data exchange; however, a schema plays a cru-
cial role in validating the structure and content of JSON data [Baazizi et al. 2019]. A
schema can help mitigate data errors and it is beneficial for query and storage optimiza-
tions [Bouchou and Duarte 2007].

Extracting schemas from JSON data presents a challenge due to its inherently
flexible and dynamic nature [Canovas Izquierdo and Cabot 2013]. JSON allows nested
objects, arrays, and various structures with no enforced schema, making it difficult to
infer a consistent and accurate schema. These complexities and the advantages of using a
schema create a necessity for schema extraction approaches.

Many schema extraction approaches have been proposed based on the im-
portance of a schema [Frozza et al. 2018, Baazizi et al. 2019, Abdelhedi et al. 2021,
Klessinger et al. 2023]. Each one explores the schema extraction on different faces of
the JSON with distinct approaches. All approaches extract the basic JSON types (string,
number, boolean, object, and array) but differ on the other JSON features (e.g. tagged
union, and enumerations). The works of Frozza et al. (2018), Baazizi et al. (2019), and
Abdelhedi et al. (2021) focus only on the extraction of the basic types. Namba and Mior

234

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

(2021), and Spoth et al. (2021) propose complete tools; however, they cannot discover
tagged unions and enumerations. Although Klessinger et al. (2022) include tagged unions
in the target schema, other types are not considered. Despite schema extraction being ad-
dressed in the state of the art, we are unaware of any approach that deals with the JSON
structure complexity.

In this paper, we present JFUSE (Json FUIl Schema Extractor), a novel approach
for schema extraction. Our approach maps the JSON fields to vertices and uses edges to
map relationships between them (e.g., parenting or sibling). In the graph, we store infor-
mation about the occurrence of each field and their relationship to facilitate the inference
of the schema. Based on the graph, we generate a metamodel representing the schema
rules. Our approach can extract information about the basic JSON data types and features
like tagged unions, enumeration, data collections, and tuples encoded in arrays.

To validate our approach, we execute two sets of experiments. The first one is to
validate the approach against real-world datasets, evaluating the quality of the extracted
schema. The second experiment focuses on proving the approach’s concept, testing the
extraction against a synthetic dataset created based on the different facets of a JSON (basic
types, tagged union, tuple, array, metadata, object collection, and enumeration). The
results show a concise schema regarding the size of the input collections and a satisfactory
execution time. Moreover, the experiments also showed that our approach is scalable.

The rest of this paper is organized as follows: Section 2 reviews the JSON data
model and the main schema concepts. Section 3 presents the related work, highlighting
the limitations of the existing approaches. Section 4 details our graph-based methodol-
ogy, including the definitions of the meta-model. Section 5 presents the experimental
results and discussion. Finally, Section 6 concludes the paper.

2. JSON and JSON Schema

JSON (JavaScript Object Notation) is a lightweight data interchange format com-
monly used in modern web development and transmission protocols [Bourhis et al. 2017,
Pezoa et al. 2016, Peng et al. 2011]. A JSON is an unordered set of key-value pairs
peng2011using. Keys are strings; the values are weakly typed and may be primitive or
complex [Baazizi et al. 2019]. Figure 1 shows a JSON example.

A primitive JSON type is a Boolean (B), a number (R), a string (S), or a NULL
value [Bourhis et al. 2017]. In Figure 1, the key type (line 3) has an S (string) value
(‘cinematography’), another example, is the key year, which holds a R value.

A JSON value can also be from a complex type. A complex value type is either
an object or an array. A JSON array A = [r9, 7, ..., 7n] is a sequence of N JSON values
(primitive or complex) [Spoth et al. 2021]. In Figure 1, the key media (line 2) is an array
of complex elements, and the keys premiere_date (lines 8 and 19) and genres (lines 12
and 22) are arrays of primitive elements (i.e., R and S).

In schema extraction, arrays are extracted as data collections [Spoth et al. 2021]
since they are a sequence of values. However, in some cases, an array can represent an
encoded tuple. In the example, the key premiere_date has three R values in each occur-
rence representing a date (month, day, and year) encoded in an array. A naive schema
extraction approach will define the field as an ordinary array, losing information about its

235

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

1 {

2 "media": [{

3 "type": "cinematography",

4 "movie": {

5 "title": "Harry Potter and the Goblet of Fire",
6 "director": "Mike Newell",

7 "year": 2005,

8 "premiere_date": [11, 25, 2065],

9 “duration": "2h37min",

10 "price": "15,00",

11 "evaluation": [{"stars":5 }],

12 "genres": ["fantasy", "adventure"]}},
13 {

14 "type": "text",

15 "book": {

16 “title": "Harry Potter and the Goblet of Fire",
17 "author": "J.K. Rowling",

18 "year": 2000,

19 "premiere date": [6, 8, 2000],
20 "pages": 480,
21 "price": "25,00",
22 "genres": [
23 "fantasy",
24 "adventure"] } }1,
25 "characters": {
26 "Harry Potter": 14,
27 "Hermione Granger": 14,
28 "Ronald Weasley": 14,
29 "Sirius Black": 46,
30 "Albus Percival Wulfric Brian Dumbledore": 113
31 }
32}

Figure 1. An extract of JSON collection: running example

structure [Spoth et al. 2021].

The last complex type of JSON value is an object. A JSON object O = {k; :
Ti,...,ky @ Tn} is a set of keys k;...ky mapped to values 7, ..., 7y of JSON types
(primitive or complex) [Spoth et al. 2021]. The key movie in Figure 1 (lines 4 to 12) is an
example of a complex JSON object. A JSON object is commonly used to encode a tuple
since it has a tuple-like structure. For example, the key movie represents a movie object
(or tuple) with attributes title, year, director, and each object of type movie tends to have
a very similar structure. However, the key characters diverges from this traditional tuple-
like structure and encodes a data collection with some characters of the ‘Harry Potter’
universe; if we consider another movie, the list of characters tends to be very different.
Considering these two cases, on the one hand, we have a tuple that has a very predictable
structure (with a few optional fields), and on the other, we have a more flexible structure
that stores a metadata collection.

A JSON Schema is a set of rules that define the schema of a
JSON [Pezoa et al. 2016]. Hence, a JSON is a set of unordered keys organized hi-
erarchically. The schema defines the keys of a JSON and the kinds (types) of the values
from each key [Spothetal. 2021]. The schema generally allows the user to define
whether an attribute is optional or mandatory. Also, the schema allows the definition of
occurrences of enumerations and tagged unions.

236

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

We consider an enumeration of a field with multiple occurrences and a low vari-
ability of values. For example, in Figure 1, the key type (lines 3 and 14) stores the media
type, assuming just two possible values: ‘cinematography’ or ‘text’. Any other value can
not be accepted for the field rype.

A tagged union is a particular type of enumeration that allows conditional
occurrences of one or more fields based on the value of a previous key/element
[Spoth et al. 2021]. For example, in Figure 1, the key fype is followed by either the key
movie (line 4) or book (line 15), depending on whether the fype is ‘cinematography’ or
‘text’.

Our approach intends to consider all the facets presented here to discover a schema
from a JSON collection, as shown in following sections.

3. Related Work

In this section we present some works related to JSON Schema extraction, where each of
them deal with the problem using their own approach. By the end of this section, we list
their results in comparison to what is proposed in this paper.

On the works of Frozza et al. (2018) and Baazizi et al. (2019) both emphasize
JSON Schema extraction. The first consists of obtaining each key type, followed by
removing the duplicated ones after sorting them, and finally creating a tree-based data
structure called Raw Schema Unified Structure (RSUS), which is manipulated by Model
Driven Engineering (MDE), enabling the JSON Schema development. On the other hand,
the second focus on large datasets using the MapReduce framework, inferring types by
using the Map operation as a first phase, in the reduce phase equal types are merged
to become one. On these works, two approaches were proposed: the first refers to the
similarity between key types (kind equivalence), while the second restricts merging only
objects with the duplicate nested keys (label equivalence).

Abdelhedi et al. (2021) proposed the ToNoSQLSchema tool, which uses Model
Driven Architecture (MDA) to generate a NoSQL Schema from documents, instead of
extracting the JSON Schema. The authors propose six transformation rules: the first
creates a collection (DB_Schema) from a NOSQL database; the second groups each input
collection into a CollectionSchema; the third infers atomic types, replacing values with
types; The fourth traverses complex structures, applying the third rule when atomic keys
are found; and the last two rules are used to create the structure for mono and multivalued
keys.

Namba (2021) applies machine learning to enhance the JSON Schema extrac-
tion by distinguishing keys that represent data. The work proposes six attributes: (i) the
Intrinsic Characteristics Domain, (ii) the Central Tendency Domain, (iii) the Statistical
Dispersion Domain, (iv) the Distribution Shape Domain, (v) the Semantic and Contextual
Similarity Domain, and (vi) the Structural Similarity Domain. Those features are used to
build a labeled dataset to infer whether or not a pair (key, value) represents metadata or
data.

Klessinger et al. (2022) aim to discover tagged unions by detecting dependencies
between a value and specific structures. They generate a tree from the values in a JSON
collection so that a relational encoding can be created and dependencies between keys

237

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

Table 1. Table comparing the information inferred from each related work.

Reference BT | TU | Meta | Col | Tup | Enum
Frozza et al. (2018) Y N N N N N
Baazizi et al. (2019) Y | N N N N N

Abdelhedi et al. (2021) | Y N N N N N
Namba (2021) Y N Y Y Y N
Klessingeretal. (2022) | Y | Y N N N N
Spoth et al. (2021) Y | N Y Y Y N
JFUSE Y | Y Y Y Y Y

can be found.

Spoth et al. (2021) developed Jxplain, which uses heuristics to reduce schema
ambiguities. They mention that most tools do not consider objects can appear with the
structure of a collection, and arrays can have the structure of a tuple. For that, they
calculate Key-Space and Type Entropy. The first considers that keys tend to vary more
on collections, whether types have the opposite behavior. They also identify Multi-Entity
Collections using a bi-clustering technique.

To compare the related work with our proposal, we show Table 1, summarizing
the features listed on each of the previously presented paper. The columns BT, TU, Meta,
Col, Tup, and Enum, stand for Basic Types (e.g., atomic, objects, and arrays), Tagged
Unions, Metadata, Collections, Tuples, and Enumeration.

Note that all approaches, as expected, extract basic types (i.e., primitive and com-
plex). The work of Frozza et al. (2018), Baazizi et al. (2019) and Abdelhedi et al. (2021)
focus only on the extraction of this kind of type. Namba and Mior (2021) and Spoth
et al. (2021) propose very complete tools, however they lack discovering tagged unions
and enumerations. Although Klessinger et al. (2022) include tagged union in the target
schema, other types are not considered. JFUSE, on the other hand, can discover the main
JSON collections facets.

4. JSON-Extract

This section describes JFUSE, our approach to discovering schema in JSON collections.
Firstly, we show how to represent a schema collection as a data structure; we choose a
graph structure representation.

4.1. Graph Representation

JSON collections may be easily viewed as a graph, where fields are vertices and sub-
schema associated with a field are connected to the parent by edges. Furthermore, graphs
allow a straightforward and fast way of traversing between parents, siblings, and children,
which is highly valuable when building the proposed schema.

The following definitions formalize how a JSON collection is loaded to the main
memory.

Definition 1 JSON Graph. A JSON graph is a directed graph built from a JSON collec-
tion defined by tuple G = (V, E). o

238

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

Definition 2 Vertex. A vertex v € V is a tuple v=< 1, T, c,isEnum,isTU, A\> where
[is the vertex’s label and represents a field name, T is a tuple <ti:occy, ..., t,-o0cc,>
(possibly unitary) found in | instances (where t;:occ; is a key:value element that t; repre-
sents a type and occ; the number of occurrences of t; in 1), c is the number of occurrences
of l in the collection, is Enum indicates if | contents is an enumeration, i1sTU states if |
defines a tagged union, and A stores a set (possibly empty) of possible values for l in V. ¢

The following example illustrates how Definition 2 is applied to build the vertices
of our proposed graph.

Example 1 Given the JSON collection from Figure 1, the following vertices belong to
the graph built from the collection:

e yi=<media,<arr:1>,1, False, False, NULL>

o vy=<type,<str:2>,2, True, True, {cinematography, text}>
* v3=<movie,<obj:1>,1, False, False, NULL>

o yy=<title,<str:2>,2, False, False, NULL>

o ys=<director,<str:1>,1, False, False, NULL>

* yg=<year,<num:2>,2, False, False, NULL>

» vr=<genres,<arr:2>,2, True, False, {fantasy, adventure}>

Note that the field type, for example, appears twice in the collection, and in both cases, it
is a string. The same goes for title and year.

In the following, we define how a field becomes an enumeration and, if so, a
tagged union. We use three thresholds to help discovering enumeration and tagged unions:
(i) thry to identify whether or not the content of a field may be an enumeration, (ii) T'hr,
to indicate if the field content is dominated by a given type, and (¢iz) T'hrg, to check the
length of the string in the content of a given field.

Definition 3 Enumeration. A field from a JSON collection is set as an enumeration (i.e.,
isEnum is true) if and only if v € V is associated with a set of values A such that: (i) | A
< thry and (ii) let t' in T be a tuple with a key:value t;:occ;:

. t'.occ; > ThT’t,'

Z\TI t
k—1 tk-OCCk

o Ift; is a string type, let \' be the value with the maximum lengthin A, N < Thr,;
and

<

The intuition behind Definition 3 is as follows: (z) the number of unique values
of a given field cannot be greater than a threshold (7'hr,), (i7) the unique values must
have a dominant type (T'hr; >= n% where n is the value), (z:¢) if the predominant type
is a string, the length of the larger value cannot be greater than a threshold (T'hrg;.),
since string enumerate values tend to be small, and (¢v) float values tend not to compose
enumeration values. For example, given the set of genres values equals to A={fantasy,
adventure}, T'hry equals 10, T'hr; equals 0.8, and T'hrg,. equals 20, genres is considered
an enumeration.

Definition 4 Tagged Union. A field from a JSON collection is set as a tagged union (i.e.,
isTU is true) if and only if v € V' is an enumeration and its siblings respect the following:
(i) let \\ be a distinct value of vertex v, so v.A\; — v’ are ensured in G. o

239

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

The relationship @ — [(i.e, a functional dependency) from Definition 4 means
that o determines the value of 3. In our approach, we borrow the functional dependency
definition from the database theory to state that, given two vertices v,/ € V and A\; € A
in v, v.\; determines a sub-schema v/'.

The following example shows the use of enumeration and tagged union.

Example 2 Given the JSON collection from Figure 1, the field type is an enumeration
since it comprises two distinct values: cinematography and text. And, it is a tagged union
because when its value is cinematography, its right sibling is the field movie, otherwise,
it is the field book. The relationships are type.cinematography— movie and type.text—
book. On the other hand, the field genres is also an enumeration; however, it is not a
tagged union.

Definition 5 Edge. An edge € € E is a tuple e=<(vg, 1), 18, C., lv.> where (i) (vs, vy €
V') is a pair representing the source and target of the edge, respectively, (ii) ts is the
relationship between vy and v, and can assume p or s indicating that v is parent or
sibling of v, respectively, (iii) c. stores the number of occurrences of ts between v, and
vy, and (iv) lv. is a list (possibly empty) that stores the values appearing when v; is a
sibling of vs. o

The components of a tuple in an edge ¢ are used as follows: (z) rs is employed
in two flavors: first, to identify the sub-schema of a field when the relationship is p or to
determine if v, is a tagged union candidate, (i7) c. controls whether or not a relationship
rs is mandatory (5= o> Thr,,), i.e., the ratio of the number of occurrences of v, and

the number of occurrences of the relationship with v, is greater than a threshold, and (727)
lv. is used to build a tagged union type.

Example 3 Still using the JSON collection from Figure 1, the following edges belong to
the built graph:

* ¢1=<(book, genres),p,2, NULL>

* e9=<(movie, director) ,p,I, NULL>
e3=<(book, author),p,l, NULL>
e4=<(type, book),s, 1,('text')>

e5=<(type, movie),s, 1,('cinematography’)>

The above definitions state how we build a data structure to represent a JSON
collection and use it to extract enumerations and tagged unions. Note that we need to
set some thresholds (i.e., T'hrx, Thry, Thrg,., and T'hr,,) to allow our approach to work
correctly. We run some experiments to identify the best values for the thresholds. In
Section 5, we present the values used in the main experiments.

Finally, Figure 2 shows a graph representation from JSON collection in Figure 1.
We use ellipses to represent all vertices, except for tagged unions represented by diamonds
(field type), enumeration by houses (field genres), metadata as data by rectangles (vertices
string and numeric), and vertices affected by tagged unions are reached by dotted edges
(fields movie and book). Note that, for clarity, not all sibling edges appear in the graph,
and we do not show the content of the vertices and edges.

240

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

objectC

media > objectT

p - \
R o D ™
numeric
p

Figure 2. Graph representing the collection in Figure 1.

4.2. Tuples, Collections, and Metadata

Section 2 shows that it is common sense that array types are composed of collections,
and object types are composed of tuples. However, some JSON documents do not follow
that. If the content of a given array A is very similar. The similarity is calculated based
on the content type and a threshold (see Definition 6). .A’s content can be seen as a tuple.
The same reasoning can be applied to objects: if the content is dissimilar, it represents a
collection of other objects. Besides, a sub-schema may represent data instead of metadata.
For example, the content of field characters is not a list of field:value; it is a list of
names with ages, and, in this case, they are not metadata. We cannot extract a rule like
characters: {“harry potter”: integer “hermione granger”: integer} because the characters’
names and ages represent data. In the following, we formalize some definitions to identify
when content is a tuple or a collection. When it is a tuple, the content may be considered
data.

Definition 6 Array as Tuple. Given an array content C, C is seen as a tuple if and only if
C is composed of Thr ., of same elements. o

Note that, from the definition, when the content of an array is very similar, we can
consider it as a tuple. A threshold is used to take into account noise in the content.

Definition 7 Object as Collection. Given an object content C, C is seen as a collection if
and only if C contains Thry,; of dissimilar elements. o

Note that from the definition, when the content of an object contains some dis-
similarity, we can consider it as a collection. The threshold T'hr;; is used to take into
account noise in the content.

241

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

Finally, we define the problem of data being represented as metadata. This prob-
lem was raised in [Namba 2021, Spoth et al. 2021], and the goal is to find when a JSON
sub-schema represents data instead of metadata.

Definition 8 Metadata as data. Given a content C of an object seen as a collection, if C
is composed only of <key>:<value> and more than Thr4% are optional, C represents
data instead of metadata in the collection. o

Note that, from Definition 8, the threshold 1T'hr 4% plays an essential role in con-
sidering a pair <key>:<value> as data instead of metadata. For example, if a label L
occurs 50 times, its child Lc occurs 48 times, and Thry, % is set to 95, Lc would be
mandatory.

The content of the field characters (Line 23 in Figure 1) is a case of metadata as
data: the characters name and age are data. Representing them as metadata, we should
use another type of representation, for example, <name>:RR. Instead, the model is S:RR.
The optionality of the content leads our approach to consider it as data or metadata.

4.3. JSON Metamodel

We propose a metamodel to represent a conceptual schema for JSON collections. Our
metamodel is expressed using BNF-like metasyntax (Backus-Naur form). BNF is a for-
mal way to describe a language and, in our approach, a JSON schema. It consists of a
set of terminal and non-terminal symbols. The symbols derive a language using produc-
tion rules in the form left-hand-side::=right-hand-side, where LHS (Left-Hand-Side) is
a non-terminal symbol, and RHS (Right-Hand-Side) is a sequence of symbols (terminals
or non-terminals). The meaning of a production rule is the LHS (a non-terminal symbol)
may be replaced by the expression represented by RHS.

Accordingly, our meta JSON schema language is defined as follows:
(atm-type) = SIRIB | null
(field-name) ::= (S)*

(atm-field) = (field-name) *:’ (at-type)

(arr-type) == ‘[’ (arr-value), ..., {(arr-value) ‘1’
(arr-value) = ({atm-type) | (arr-type) | {obj-type))™
{array) = (field-name) *:’ {arr-type)

(obj-type) = {* ({atm-field) | {array) | {(object))* ‘}’
(object) = (field-name) *:’ (obj-type)

where (i) <atm-type> defines the atomic types S, R, B, and null represent a string, nu-
meric, boolean, and null value, respectively and (i7) <field-name> represents a valid field
name in JSON collections. The other constructors follow the same reasoning.

Finally, enumeration and tagged union production rules can be defined as follows:

(enum) = (field-name) ‘: [’ (atm-type), ..., (atm-type) ‘1’
(tagged-union) ::= ‘IF’ (enum-cond) ‘THEN’ ({(atm-field) | {(array) | (object))
(enum-cond) = (field-name) * .’ (atm-type)

The following example shows an instance of our metamodel representing the
JSON collection from our running example (Figure 1).

242

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

Example 4

root = {media: arr_m characters: str_ch}

arr_m ::=lobj_al]

obj_a = IF type.cinematography THEN obj_c

| IF type.text THEN obj_t

obj_c ::=movie: obj_m

obj_t ::=book: obj_b

obj_m :=title:S director:S year:R premiere_date:arr_date duration:R
price: N genres:arr_g

obj_ b :=title:S author:S year:R premiere_date:arr_date pages:R price:R
genres: arr_g

arr_g = [fantasy , adventure]

arr_date ::= [R, R, R]
str.ch ={(S:R)*}

Note that 0bj_a represents a tagged union, arr_g represents an enumeration, str_ch
is modeled as pairs string:string because the field characters is considered a collection
and not an object, and arr_date models a tuple encoded in an array representing a date
type (MM, DD, YYYY). A naive approach would extract arr_date as [R(, R)*], that is, a
sequence of numerical values.

5. Results and Discussion

To demonstrate the quality of JFUSE, we used both real and synthetic JSON collections
in our experiments. First, we specified the environment in which the experiments took
place, and then, we presented both real and synthetic experiment results.

Based on the definitions mentioned in Section 4, our approach was
developed using the C++ programming language. It can be found at
https://github.com/NathyBanhara/JFUSE. The experiments were performed on a
server machine with four Intel(R) Xeon(R) CPU E7- 4850 (2.00GHz) and 128 GB RAM,
running a Linux 4.15.0-50 kernel (Ubuntu 18.04.2 LTS distribution). We ran an empirical
experiment on various datasets and studied some JSON collections to find the suitable
values for all the thresholds, and they are: Thr,, > 0.9, Thr; > 0.5, Thrg, < 20,
Thrayr > 0.9, Thre,; < 0.1, and Thrg > 0.7.

5.1. Real Data Experiments

Two JSON document collections were used to test our tool with real data. The first one
was taken from [Spoth et al. 2021]. The study case refers to pharmaceutical data (PHC),
which allows testing on scenarios such as objects as collections and enumeration detec-
tion, besides basic types. The other one regards Russia’s 2018 election tweets user activity
(TWC). Obtained from Kaggle', the dataset contains tweet records and it is interesting due
to its many optional fields. We ran the experiments five times to ensure that there would
be no discrepancy in the execution time, and it was verified since the standard deviation
was less than 1%. We reported the execution time average.

Thttps://www.kaggle.com/datasets/borisch/russian-election-2018-twitter

243

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

As Table 2 shows, with a size of 165Mb and 7,226,980 keys, the pharmaceuti-
cal experiments had an average performance time of 1m59.947s. The TWC schema, a
much larger collection with 11,5GB and 420,022,871 keys, was generated after about
110m46.484s. Regarding the collection size, TWC is 8.7 times bigger than PHC, having
58 times more keys than PHC. However, concerning the execution time, TWC was 69
times slower than PHC. We believe that the number of keys impacts the computational
performance more than the size of collections, and because of that, we believe that our
approach scales well when facing huge collections. Moreover, the column Schema Keys
shows the number of keys in the resulting schema: PHC comprises 11 keys and TWC has
210 keys. It shows that the built schemas are concise.

Table 2. Table showing the results obtained from experiments with real data.

Collection Size Keys Time (s) | Schema Keys
Pharmaceutic | 165Mb 7,226,980 1m59.947s 11
Twitter 11,5GB | 420,022,871 | 110m46.484s 210

In the following, we present the schema extracted from PHC (based on the meta-
model described in Section 4).

root::= npi: S
provider_variables:provider_variables.object
cms_prescription_counts: cms_prescription_counts.object
cms_prescription_counts.object::= {S:R}+
provider_variables.object::= brand_name_rx_count: R
region: [Mortheast, West, South, Midwest]
gender: [F, M]
years_practicing: [3, 6, 7, 4, 2, 1, 5, 8]
specialty: S
generic_rx_count: R
settlement_type:[urban, non-urban]

As can be seen, cms_prescription_counts.object represents
an object as collection, and the metadata inside it is represented as data, which
means the optional fields in cms_prescription_counts.object are
greater than Thrg. On the other hand, region.string, gender.string,
years_practicing.integer, and settlement_type.string are all
enumerations.

5.2. Synthetic Experiments

We built five new synthetic collections from the Figure 1 template to produce collections
containing every type that JFUSE intends to discover (i.e., atomic types, tagged unions,
metadata, objects as collections, arrays as tuples, and enumeration). We ran the exper-
iments five times for the dataset, and we reported the execution time average and the
standard deviation. Table 3 shows some statistics from this experiment.

Note that the execution times follow the number of keys in the collections. For ex-
ample, the third collection contains 2,500K keys, and it took 91.85s to extract the schema;
the fourth collection, on the other hand, is 5 times greater than the second one and took
around 4.9 times longer. Looking at the standard deviation (Std (s)), we see that all five
execution had similar times since the variation is around 2%. Regarding the size of the

244

Proceedings of the 39t Brazilian Symposium on Data Bases

October 2024 — Florianépolis, SC, Brazil

schemas, our approach is stable, specially when collections follow a pattern (as our syn-

thetic collection does); see column Sch Keys in Table 3.

Table 3. Results obtained from experiments with synthetic data.

Objects | Size (Mb) Keys Avg Time (s) | Std (s) | Sch Keys
10,000 12.12 250,000 8,43 0,57 11
50,000 60.61 1,250,000 45,49 0,59 11
100,000 121.22 2,500,000 91,85 1,18 11

500,000 606.09 12,500,000 452,37 7,40 11

1,000,000 | 1,202.19 | 25,000,000 922,10 19,63 11

5.3. Final Remarks

We manually compared the extracted schemas to samples of the input collections, and we
confirmed that JFUSE could extract all the facets it intended to do: enumeration, tagged
union, metadata as data, collections, and tuples (see Section 4). Moreover, the resulting
schemas are concise regarding the size of the input collections, and the execution time is
satisfactory. We use a synthetic collection to provide a proof of concept for our definitions
stated in Section 4. The experiments also showed that our approach is scalable. Finally,
our metamodel can be used as a source to build any JSON schema-language-like.

6. Conclusion

We introduced a novel approach to extracting schema from JSON collections. The key
distinguishing features of our tool are:

* QOur tool has the unique capability to discover tagged unions, a feature that is not
straightforward to extract. This is particularly valuable as a value of an object’s
property (the tag) conditionally may imply subschemas for sibling properties.

* Based on a threshold, field values may be considered as enumeration. It allows the
tool to handle variations in data representation, enhancing the accuracy of schema
extraction.

* Our tool can distinguish between tuples and collections, thereby accurately identi-
fying the content of arrays and objects. This capability significantly improves the
reliability of the schema extraction process.

* We propose a metamodel that can be transformed into any schema language.

* It captures data encoded as metadata, i.e., although a field is encoded as an object,
it may represent collections where each element maps keys to values. For exam-
ple, the field characters from Figure 1 is encoded as character name and their
age.

Our experiments showed that our approach could extract all the JSON schema
facets proposed here, the execution time was satisfactory, and the extracted schema was
concise and correct. In future work, we intend to automatize the threshold values, i.e., the
tool discovers the best values for a given collection.

Acknowledgments: Natdlia Banhara was partially funded by Universidade Federal da
Fronteria Sul under process number PES-2021-0458.

245

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

References

Abdelhedi, F., Brahim, A. A., Rajhi, H., Ferhat, R. T., and Zurfluh, G. (2021). Automatic
extraction of a document-oriented nosql schema. In ICEIS (1), pages 192-199.

Baazizi, M.-A., Colazzo, D., Ghelli, G., and Sartiani, C. (2019). Parametric schema
inference for massive JSON datasets. The VLDB Journal, 28:497-521.

Bouchou, B. and Duarte, D. (2007). Assisting XML schema evolution that preserve va-
lidity. In Brazilian Database Symposium, pages 270-284.

Bourhis, P, Reutter, J. L., Sudrez, F., and Vrgo¢, D. (2017). JSON: data model, query lan-
guages and schema specification. In Proceedings of the 36th ACM SIGMOD-SIGACT.

Cénovas Izquierdo, J. L. and Cabot, J. (2013). Discovering implicit schemas in json data.
In Web Engineering: 13th International Conference, ICWE 2013, Aalborg, Denmark,
July 8-12, 2013. Proceedings 13, pages 68—83. Springer.

Frozza, A. A., dos Santos Mello, R., and da Costa, F. d. S. (2018). An approach for
schema extraction of JSON and extended JSON document collections. In /RI. IEEE.

Klessinger, S., Klettke, M., Storl, U., and Scherzinger, S. (2023). Extracting JSON
schemas with tagged unions. arXiv preprint arXiv:2306.07085.

Maiwald, B., Riedle, B., and Scherzinger, S. (2019). What are real json schemas like? In
International Conference on Conceptual Modeling, pages 95—-105. Springer.

Namba, J. (2021). Enhancing JSON schema discovery by uncovering hidden data. In
VLDB 2021 PhD Workshop.

Peng, D., Cao, L., and Xu, W. (2011). Using json for data exchanging in web service
applications. Journal of Computational Information Systems, 7(16):5883-5890.

Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., and Vrgoc¢, D. (2016). Foundations of
json schema. In International World Wide Web Conferences, WWW ’16.

Spoth, W., Kennedy, O., Lu, Y., Hammerschmidt, B., and Liu, Z. H. (2021). Reducing
ambiguity in JSON schema discovery. In Proceedings of the 2021 SIGMOD.

246

