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Abstract. The proliferation of electronic devices with geopositioning capabili-
ties has significantly increased trajectory data generation, thus opening up novel
opportunities in mobility analysis. Our work considers the problem of assess-
ing spatial similarity between trajectories, and focus on deep learning-based
approaches that discretize trajectories using a uniform grid to generate their
embeddings. In this context, t2vec is the reference approach. Large Language
Models (LLMs) show promise in capturing patterns in mobility data. In this pa-
per, we investigate whether an LLM can be repurposed to generate high-quality
trajectory embeddings for the considered task. Using two real-world trajectory
datasets, we consider repurposing three language models: Word2Vec, Doc2Vec,
and BERT. Our results show that BERT, trained on dense trajectory datasets,
can generate high-quality embeddings, thus highlighting the potential of LLMs.

1. Introduction
The surge in electronic devices with geopositioning capabilities has led to a notable in-
crease in trajectory data. This data plays a crucial role in various tasks where machine
learning is applied to mobility data, such as trajectory similarity, behavioral pattern recog-
nition [Cao et al. 2020], trajectory clustering [Hung et al. 2015], and next location predic-
tion [Cruz et al. 2022, Cruz et al. 2019]. In this work, we focus on the task of assessing
spatial similarity between trajectories, which involves assessing the similarity of two tra-
jectories based on their spatial features. Classic methods for this task include Dynamic
Time Warping (DTW), Longest Common Sub-Sequence (LCSS), and Edit Distance on
Real Sequences (EDR). These methods aim to align points between trajectories opti-
mally using dynamic programming, but they suffer from high computational costs, scaling
quadratically with the length of the longer trajectory.

Recent research [Wang et al. 2020, Li et al. 2018, Fang et al. 2022,
Fu and Lee 2020, Zhang et al. 2019] has delved into representation learning as a solution
to computational challenges. Representation learning involves extracting valuable and
low-dimensional features from high-dimensional data, using deep learning models.
These models transform trajectories into embeddings, i.e., small dense vectors, which
are then used to assess similarity: similar trajectories should ideally have embeddings
closely located in the latent space. Methods employing representation learning often use
sophisticated models like RNNs, transformers, or attention mechanisms. They require
initial trajectory discretization for model training, typically via grid or road-network
segment partitioning. We adopt uniform grid-based discretization due to its independence
from road networks, applicability to non-road entities like pedestrians, and avoidance of
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274



time-consuming preprocessing steps like map matching. Existing approaches focus on
various trajectory similarity types, necessitating specific loss functions during training.
Our work focuses on the task of spatial similarity assessment, with t2vec [Li et al. 2018]
as our reference approach due to its relevance, as discussed in the related work section.

Natural Language Processing (NLP) has made significant strides, particularly with
Large Language Models (LLMs) like BERT and GPT, showcasing human-like reason-
ing abilities. Drawing parallels between language sequences and trajectories, we can
leverage LLMs to generate trajectory embeddings, treating trajectory sequences as sen-
tences or words. Recent research explores this concept, with examples like Habit2vec
[Cao et al. 2020] modeling living habits from trajectories. Among the challenges one
faces when deciding to use LLMs for trajectory data is how to discretize trajectories into
tokens for LLM vocabulary and training large models like BERT from scratch. Grid-based
discretization simplifies vocabulary and learning complexity. Despite computational de-
mands, leveraging NLP models, especially LLMs, holds promise for learning trajectory
spatial features and generating high-quality embeddings. Accordingly, our research ques-
tions are:

• RQ1: Can language models generate high-quality embeddings that accurately
capture the spatial similarity between trajectories, whether they are dense or
sparse?

• RQ2: Do language models scale well as we increase the search space in which
trajectory embeddings are compared?

Our work aims to address the two research questions with the following contribu-
tions: (1) we repurposed selected language models, i.e., Word2Vec, Doc2Vec, and BERT,
originally intended for textual data, for the computation of trajectory embeddings; (2)
we use their embeddings to tackle the problem of assessing spatial similarity between
trajectories. All our experiments are conducted on two publicly accessible real-world
datasets, i.e., Porto1 and T-drive [Jing et al. 2018]. The code behind this work has been
made available on a GitHub repository2.

The rest of the paper is structured as follows: in Section 2, we provide the fun-
damental concepts used throughout the paper and the problem definition. In Section 3,
we present the related works and highlight the differences to our work. In Section 4, we
present the methodology used to repurpose NLP models for spatial trajectory similarity
assessment. In Section 5 we introduce the experimental setting. Section 6 presents the
experimental results. Finally, Section 7 draws the final conclusions.

2. Preliminaries and problem definition
In this section, we introduce some fundamental notions and introduce the problem ad-
dressed in this work. We begin by the notion of trajectory.
Definition 1 (Trajectory). We define a trajectory generated by a moving object to be T =
⟨p1, p2, . . . , pn⟩, i.e., a sequence of time-stamped geographical locations (or samples).
Each sample pi = (xi, yi, ti) represents the i-th object’s position in space (represented by
the coordinates xi and yi) and time (represented by the timestamp ti).

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
2https://github.com/InsightLab/LMTrajectorySimilarity
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This work focuses on transforming trajectories into embeddings using uniform
grid-based discretization of the area of interest. Importantly, one of the consequences of
such discretization is to transform a trajectory into a sequence of tokens processable by
NLP models. Moreover, the discretized trajectory might be shorter than the original one.
Indeed, in this work, consecutive samples falling within the same cell are collapsed into a
single cell identifier in T ′. Following, we formally introduce the grid-based discretization,
the notion of trajectory embedding, and finally, the problem being addressed.
Definition 2 (Uniform grid-based trajectory discretization). Given a trajectory T =
⟨p1, . . . , pj⟩ and a uniform grid C, its discretization involves converting each sample
p ∈ T into the identifier of the cell c ∈ C containing p’s location. The result is a dis-
cretized trajectory T ′ = ⟨c1, . . . , cm⟩, where m ≤ j.
Definition 3 (Trajectory Embedding Generation). The process of trajectory embedding
generation involves transforming a discretized trajectory T ′ = ⟨c1, . . . , cm⟩ into a vec-
tor representation (embedding) of the trajectory vT ∈ Rd, where Rd denotes the d-
dimensional vector (embedding) space. This transformation is achieved through a suit-
able function f : C∗ → Rd, where C∗ denotes the set of all possible sequences of cells
obtainable from the uniform grid C. The embedding vT should encapsulate the spatial
characteristics of the original trajectory T .
Definition 4 (Problem Definition). Let T be a set of trajectories, T ′ be the correspond-
ing set of discretized trajectories, and f a function generating embeddings for trajectories
in T ′. Then, for any trajectory T ∈ T , let T ′ be its corresponding discretized trajectory
in T ′ and vT = f(T ′) be its embedding generated by f . Ideally, the ranking produced
by measuring distances between vT and all the other embeddings in T ′ should be equiv-
alent or as close as possible to the ranking produced by measuring the spatial similarity
between T and all other trajectories in T via some ideal spatial trajectory similarity
function d.

In other words, we aim to validate that embeddings generated by f preserve the
spatial similarity relations inherent in the original trajectories, such that similarity assess-
ments based on embeddings align with those derived directly from the spatial properties
of the trajectories.

3. Related work
We explore the generation of trajectory embeddings for spatial similarity assessment using
language models, both on dense and sparse trajectory datasets, and assuming that trajecto-
ries are discretized by using some grid. This section therefore focuses on research works
limited to this scope. t2vec, introduced by [Li et al. 2018], is an autoencoder model with
GRU layers, encoding discretized trajectories into embeddings. It reconstructs trajecto-
ries from downsampled and perturbed versions, with the encoder generating embeddings
and the decoder reconstructing trajectories. Despite newer works reportedly surpassing
t2vec in embedding quality, we consider it a benchmark due to its reproducibility and
well-assessed quality in independent research [Taghizadeh et al. 2021].

Newer deep learning models, such as NeuTraj [Yao et al. 2019], instead of fo-
cusing on trajectory reconstruction, aim to approximate handcrafted trajectory similarity
functions while maintaining linear time complexity for similarity computations. T3S
[Yang et al. 2021] integrates structural and spatial information to generate trajectory em-
beddings. It employs a self-attention mechanism for structural insights and an LSTM-
based module for spatial details. T3S utilizes a loss function to minimize the difference
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Table 1. Overview of the main related works

Paper Approaches Sampling rate Discretization unit Task

[Li et al. 2018] GRU-based autoencoder +
custom loss

Sparse and dense Grid cell Spatial trajectory sim.

[Yao et al. 2019] Attention + LSTM + custom
loss

Sparse and dense Grid cell Spatial trajectory sim.

[Yang et al. 2021] Attention + LSTM + custom
loss

Sparse and dense Grid cell Spatial trajectory sim.

[Zhang et al. 2021] LSTM + custom loss Dense GPS locations Spatial trajectory sim.
[Cao et al. 2020] Word2Vec Sparse POI Semantic sim.
[Damiani et al. 2020] Word2Vec and Paragraph

Vector
Sparse CDR Semantic sim.

[Zhang et al. 2019] Word2Vec, GloVe, RNN Sparse Grid cell Semantic sim.
[Cruz et al. 2022] BERT, LSTM Sparse Traffic sensor Location prediction
[Crivellari et al. 2022] BERT Sparse CDR Missing data reconstruct
Our work BERT, Word2Vec, Doc2Vec Sparse and dense Grid cell Spatial trajectory sim.

between computed and known trajectory similarities. Traj2SimVec [Zhang et al. 2021]
efficiently generates triplet training samples from large datasets and uses an LSTM-based
Trajectory Encoder to produce trajectory embeddings. The encoder calculates distances
between sub-trajectories to capture overall and sub-trajectory similarities. It employs su-
pervised loss functions that leverage sub-trajectory distances and optimal point-matching
relationships under various metrics.

Other research explores semantic trajectory similarity using trajectory embed-
dings. Habit2vec [Cao et al. 2020] creates embeddings based on user paths to detect
behavioral patterns, integrating temporal features and spatial information from Points
of Interest (POI). mob2vec [Damiani et al. 2020] assesses behavioral similarity using
NLP techniques (Word2Vec and Paragraph Vector) on sparse trajectories from Call Detail
Records. At2vec [Zhang et al. 2019] generates embeddings from sparse check-in trajec-
tories, considering spatial, temporal, and semantic information, employing Word2Vec and
GloVe on a gridded space. Further studies employ LLMs for trajectory embeddings. EST
Prediction [Cruz et al. 2022] uses BERT to encode road network sensor data, predicting
the next traffic sensor in a trajectory. TraceBERT [Crivellari et al. 2022] uses trajectory
embeddings to address missing data reconstruction.

Table 1 summarizes the related works, highlighting the methods employed to
create embeddings (Approaches), the average sampling rate of the trajectory datasets
(Sampling rate), the trajectory discretization unit (Discretization unit), and the task be-
ing addressed (Task). Overall, none of the surveyed works consider language models
(including large ones) to generate embeddings, both for dense and sparse trajectory data,
for the task of assessing spatial trajectory similarity between trajectories.

4. Repurposing language models for spatial trajectory similarity assessment
In this section, we outline our methodology for repurposing language models for the task
of assessing spatial trajectory similarity. First, we discuss the data preparation pipeline
(Section 4.1), and then describe how we repurposed the training phase of selected lan-
guage models to use the augmented training data (Section 4.2).

4.1. Data preparation pipeline for language models
The data preparation pipeline operates on a preprocessed trajectory dataset D already
divided into training set Dtrain and test set Dtest. This pipeline generates augmented
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277



versions of these sets that are suitable for training and evaluating language models for the
task of spatial trajectory similarity assessment. Note that this pipeline is not in charge of
trajectory discretization. We leverage part of the data preparation pipeline from t2vec’s
paper [Li et al. 2018], which offers several benefits: (1) it facilitates the adaptation of
language models in our study, (2) it addresses sampling variability and noise common in
GPS data by simulating varied sampling rates and controlled Gaussian noise, and (3) it
enhances training data diversity to prevent overfitting and improve generalization.

4.1.1. Generating augmented training data
The approach involves augmenting the training set Dtrain to create Daug

train. For each tra-
jectory T ∈ Dtrain, the pipeline generates downsampled trajectories (while preserving
start and end samples) and adds Gaussian noise to some of these downsampled trajecto-
ries’ locations. This process results in Daug

train. To ensure compatibility with RNN-based
architectures like t2vec, cells in Daug

train that are not considered hot cells in the uniform grid
C, i.e., cells that occur less than a given threshold, are removed. This ensures that only
trajectories made up entirely of hot cells remain in Daug

train.

4.1.2. Generating augmented test data
Evaluating spatial trajectory similarity approaches is challenging without a ground truth.
Inspired by self-similarity and cross-similarity comparisons, t2vec introduced a method
called most similar search to assess embedding quality, which we adopt in our exper-
imental evaluation. This requires to select trajectories from the test set Dtest that are
guaranteed to be entirely made of hot cells. We randomly choose a fixed number of tra-
jectories, forming the set Q from Dtest. Additionally, we create a larger set B from Dtest,
with Q ∩ B = ∅. The size of B varies during evaluation to test scalability and resilience
to noise and trajectory diversity. For each TQ in Q, we generate two sub-trajectories, TQ′

and TQ′′ , by alternating points between odd and even indices. This divides Q into two
new subsets: the set of odd sub-trajectories Q′, and the set of even sub-trajectories Q′′.
The same transformation is applied to B, yielding B′ and B′′. Ultimately, Q′ is used as
the query trajectory set, while S = Q′′∪B′′ is used as the search space: ideally, for every
TQ′ ∈ Q′ an approach should recognize TQ′′ ∈ S as the most spatially similar trajectory.
We denote the augmented test data consisting of Q′ and S by Daug

test. Further details on
how Q′ and S are used to quantitatively assess the quality of embeddings generated by
the language models are provided in the experimental setting (see Section 5.5).

4.2. Training language models on augmented training data

Repurposing language models for trajectory data involves transforming trajectories into
sequences that these models can process. To address this, we implement the grid-based
discretization technique employed in the t2vec approach and other works. First, we par-
tition the geographical area where the trajectories from Daug

train move, considering the uni-
form grid C previously used to identify the hot cells (see also Section 4.1.2). Subse-
quently, every trajectory in Daug

train and Daug
test are converted from a sequence of samples

into a sequence of identifiers corresponding to the cells within this grid. This process
ultimately transforms the augmented trajectory data into discretized augmented trajectory
data, yielding the augmented and discretized training data D′aug

train and the augmented and
discretized D′aug

test test data. Next, we explain how we trained selected language models.
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Word2Vec. Word2Vec [Mikolov et al. 2013] is a model capable of projecting words to
an Rn space. We train the Word2Vec model from scratch using the augmented and dis-
cretized training data D′aug

train – as such, the training data acts as the corpus for Word2Vec,
while the grid cells traversed by the trajectories represent the vocabulary. As the model
trains, it employs the Continuous Bag of Words (CBOW) architecture to learn embed-
dings for each cell c ∈ C appearing in at least a discretized trajectory. This process
involves predicting a target cell identifier based on the context of surrounding cell identi-
fiers within a discretized trajectory. With the trained model, the embedding of a trajectory
T ′ can be computed as the mean of the embeddings of the cells that T ′ traverses, i.e.,
vT = 1

|WT ′ |
∑

w∈WT ′ w.

Doc2Vec. We also consider a model capable of learning from sentence-like structures, i.e.,
Doc2Vec using PV-DBOW [Le and Mikolov 2014]. Here, we detail how we repurposed
this model’s training. When using PV-DBOW, each discretized trajectory T ′ ∈ D′aug

train is
assigned a unique identifier or tag. The training objective under PV-DBOW is to predict
the cells of a trajectory from this unique identifier without the context tokens (i.e., cells).
The key output of PV-DBOW training is a set of trajectory embeddings, one per trajectory
in D′aug

train, that attempt to encapsulate the spatial patterns characterizing each trajectory in
the corpus. With a trained Doc2Vec model at hand, to generate embeddings for unseen
discretized trajectories, these must be first processed akin to those of the training corpus,
followed by an inference phase where a trajectory’s initial random vector is refined across
epochs to predict cells accurately, utilizing the model’s learned cell embeddings.

BERT. In our work, we repurposed the training of BERT [Devlin et al. 2019], an LLM, as
follows. We used the Masked Language Model (MLM) task to train BERT on cell embed-
dings, wherein 15% of the cell identifiers in each discretized trajectory T ′ ∈ D′aug

train were
randomly masked. The model was then trained to predict these masked identifiers based
on the surrounding context within the trajectory. Upon completing the training, trajec-
tory embeddings are computed by feeding a discretized trajectory as input to the trained
BERT model. The model’s last layer outputs a sequence of cell embeddings correspond-
ing to each cell identifier in the trajectory: similarly to Word2Vec, we generate the final
trajectory embedding by computing the average of the above-mentioned embeddings.

5. Experimental Setting

This section describes the experimental setup for the evaluation in Section 6, covering
the trajectory datasets and their preprocessing (Section 5.1), the evaluated approaches
(Section 5.2) and their training (Sections 5.3 and 5.4), and the evaluation process for the
task of spatial trajectory similarity assessment (Section 5.5).

5.1. Datasets and their preprocessing

We consider two publicly accessible real-world trajectory datasets: Porto and T-drive.
The Porto dataset, whose data have been collected in Porto, Portugal, from 2013 to 2014,
spans 19 months and includes 1.7 million trajectories from 442 taxis equipped with GPS
devices. The taxis reported their locations every 15 seconds on average, leading to an av-
erage distance of 130.4 meters between consecutive samples. Consequently, this dataset
prevalently contains dense trajectories. In contrast, the T-drive dataset, whose data was
gathered in Beijing, China, in February 2008, comprises 10,357 trajectories with a longer
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average interval of 187 seconds between samples. This results in a larger average distance
of 4.2 kilometers between samples, yielding considerably sparser trajectories compared to
Porto’s. Considering the diverse collection methodologies and characteristics of the Porto
and T-drive datasets, we customized the preprocessing steps for each. These steps were
essential to refine each dataset, ensuring the trajectories were representative and suitable
for accurate model training and evaluation. After preprocessing, both datasets were di-
vided into training (70%) and test sets (30%).
Porto preprocessing: the initial step involved removing trajectories with fewer than 30
samples to eliminate shorter, less informative trajectories. This action reduced the dataset
size to 1.2 million trajectories. We then remove noisy data, often caused by GPS signal
gaps in areas with challenging geography (e.g., urban canyons).
T-drive preprocessing: in the T-drive dataset, each vehicle produced a unique TAX ID
trajectory spanning an entire week, resulting in lengthy routes averaging 1,708 samples.
Our preprocessing segmented these long trajectories into daily paths, eliminating noise
and duplicates. To distinguish between consecutive rides by the same taxi, we split trajec-
tories where the vehicle was stationary for over 5 minutes. We also discarded trajectories
with fewer than 5 samples and limited the maximum length to 50 samples per trajectory
(5 < |T | ≤ 50). These steps expanded the dataset from 10,357 to 532,511 trajectories,
enriching its representation of real driving patterns.

5.2. Competitors

We compared a variety of methods spanning three distinct categories: classic approaches,
a reference deep learning-based architecture tailored for spatial trajectory similarity as-
sessment, and selected language models.
Classic approaches: we included three classic methods for assessing spatial trajec-
tory similarity, all based on dynamic programming. These methods, serving as our
baselines, include Dynamic Time Warping (DTW) [Kruskal 1983], Edit Distance on
Real Sequences (EDR) [Levenshtein 1966], and Longest Common Subsequence (LCSS)
[Shuncheng et al. 2019].
Reference deep learning-based architecture for spatial trajectory similarity assess-
ment: in the experimental evaluation, we consider t2vec [Li et al. 2018].
Language models: the models considered in the experimental evaluation are BERT,
Doc2Vec, and Word2Vec.

5.3. Preparation of the augmented training data

The classic methods do not need a training phase, hence what is explained below does not
apply to them. For the selected language models, recall that the initial training set Dtrain

is first augmented, yielding Daug
train (see also Section 4.1.1). The trajectories in Daug

train are
then discretized according to a uniform grid C (see also 5.4), and only those trajectories
made entirely of sequences of hot cells are kept: this yields the augmented and discretized
training data D′aug

train used to train the language models. Regarding t2vec, as detailed in
[Li et al. 2018] this GRU-based autoencoder aims to reconstruct an original trajectory
T ∈ Dtrain from its downsampled and distorted counterpart T aug

train ∈ Daug
train. Simi-

larly to the language models, t2vec operates on discretized trajectories (i.e., sequences
of tokens). As such, D′aug

train must undergo an additional transformation: each trajectory
T ′aug
train ∈ D′aug

train is paired with the discretized version of the trajectory T ∈ Dtrain from
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Table 2. Model training – hyperparameter settings

model hyperparameters

t2vec hidden size = 256; embedding size = 256; window size = 10; learning rate = 0.001; k-nearest cells = 20
Word2Vec embedding size = {16, 32, 64, 128, 256, 512}; window size = {4, 5, 6, 8, 10}; sg = CBOW; min count = 3;

epochs = {1, 2, 3, . . . , 1000}
Doc2Vec embedding size = {16, 32, 64, 128, 256, 512}; min count = 3; epochs = {1, . . . , 30, . . . , 1000}; n grams =

{4, 5, 6, 8, 10}; dm = {0 (PV-DBOW)}
BERT hidden size = {32, 64, 128, 256, 512, 1024, 2048}; epochs = {1, . . . , 10}; num hidden layers = {6, 12};

num attention heads = {8, 16}; max position embeddings = {512, 1024}

which has been derived. This pairing forms a new version of the augmented and dis-
cretized training data, where each example consists of a pair (T ′aug

train, T
′). t2vec can be

then trained on this data. Finally, for both t2vec and language models, Daug
train is generated

using several downsampling rates, i.e., {0, 0.2, 0.4, 0.6}. Subsequently, various fractions,
i.e., {0, 0.2, 0.4, 0.6}, of surviving samples undergo perturbation with Gaussian noise. In
the end, for each T ∈ Dtrain, 16 different downsampled and perturbed versions are cre-
ated in Daug

train. Finally, we report that we used uniform grids whose cell size was 100
meters, and a grid cell is deemed a hot one if at least 50 samples of the trajectories in
Daug

train fall in it.

5.4. Deep learning-based models training

In the following, we provide details on how the models have been trained. All the models
were trained on the augmented and discretized dataset D′aug

train according to the procedure
outlined in Section 4.2. Table 2 shows all the hyperparameters tried out, with the values
in bold representing the best hyperparameter configuration.
t2vec. We trained this model according to the authors’ guidelines in [Li et al. 2018] on
a slightly modified version of the augmented and discretized train data shown in Section
5.3. The model internally uses two three-layered GRUs, one in the encoder and the other
in the decoder part. The layers of the two GRUs have a number of internal hidden units
(i.e., hidden size) equal to 256. embedding size indicates the dimensionality of the trajec-
tory embeddings, and it is set to 256. Each cell’s representation learning uses a context
window window size of 10 cells. The learning rate parameter controls weight updates
during optimization.
Word2Vec. We experimented with various embedding size and window size values to
learn word vectors. We used the CBOW architecture (see the sg hyperparameter) for its
efficiency in predicting the target word from context words. The model excludes words
appearing less frequently than min count, thus improving training efficiency. Finally, we
trained the model using a number of epochs ranging from 1 to 1,000.
Doc2Vec. Doc2Vec is trained with a range of embedding sizes values. Moreover, we
trained the model with various n grams values: this hyperparameter determines the size of
the word sequences the model will consider as it learns the embeddings. We selected the
PV-DBOW architecture for its effectiveness in learning document context. The min count
hyperparameter sets a threshold for the minimum frequency of words in the corpus to be
included in the vocabulary. Finally, we trained the model using a number of epochs rang-
ing from 1 to 1,000.
BERT. We explore a variety of hidden size values and transformer configurations to
learn token embeddings. More precisely, num hidden layers determines how many of
these layers are stacked on top of each other, num attention heads determines how many
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distinct attention mechanisms operate in parallel within each transformer layer, and
max position embeddings determines the maximum length of input sequences that the
model can process. Finally, the training is conducted using a number of epochs ranging
from 1 to 10.

5.5. Evaluating the effectiveness of approaches for the task of spatial trajectory
similarity assessment

To evaluate the effectiveness of the various competitors, we proceed as follows: for each
query trajectory TQ′ ∈ Q′, we calculate its most spatially similar trajectories within
S = Q′′ ∪B′′: ideally, TQ′′ ∈ S should be identified as the most similar one, and as
such ranked first in the query results. The well-known mean rank measure is employed
to quantify this, i.e., mr(Q′, S) = 1

|Q′|
∑

TQ′∈Q′ rank(TQ′ , S), where rank determines the
position of the correct response for a query TQ′ ∈ Q′ in the ranked search space S. Im-
plementing the rank function depends on the considered approach. The classic methods
represent distance functions applied directly to trajectory pairs from Q′ and S: conse-
quently, rank will sort these computed distances. For approaches that generate trajectory
embeddings, trajectories from the augmented test set must first undergo discretization and
then conversion into embeddings. The rank function then sorts based on the Euclidean
distances between embeddings of trajectories in Q′ and the embeddings of those in S.

5.6. Code implementation and experimental setup

The code behind our work has been written in Python and has been made available and
documented on a GitHub repository3. The machine used to conduct the experimental
evaluation is a Dell XPS 8940 server, equipped with an Intel CPU Core i7-10700, 128GB
of RAM, and a NVIDIA GeForce RTX 3060 GPU (version with 12GB GDDR6 memory).

6. Experimental Evaluation

6.1. Addressing RQ1: most similar trajectory search in a dense dataset

Using the Porto dataset, we set the trajectory query set Q′ size to 1,000 trajectories. We
gradually expand the search space S from 20,000 to 100,000 trajectories. The effec-
tiveness of the embeddings produced by different methods in spatial trajectory similarity
assessment is evaluated using the mean rank metric. The evaluation follows the method-
ology outlined in Section 5.5. Table 3 presents the results – note that BERT <SIZE>
indicates a trained BERT model generating embeddings of a specific size.

From the results, we see that the performance of the competitors decreases as the
size of the search space S increases. However, we also observe that all the language mod-
els outperform the other competitors, including t2vec. This possibly indicates that lan-
guage models, especially the large ones such as BERT, have the potential to consistently
produce high-quality trajectory embeddings for the task of spatial trajectory similarity as-
sessment when trained on dense trajectories. Finally, observe that even when gradually
reducing the embedding size to 64, BERT still consistently outperforms t2vec.

3https://github.com/InsightLab/LMTrajectorySimilarity
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Table 3. Mean rank versus search space size, Porto and T-drive datasets

Dataset Porto T-drive

|S| 20K 40K 60K 80K 100K 10K 20K 30K 40K 50K

DTW 18.28 26.29 35.27 45.53 54.27 454.61 892.04 1327.98 1774.94 2214.63
EDR 23.52 43.04 71.01 91.09 120.04 587.55 1193.97 2089.50 2693.07 3472.31
LCSS 31.19 62.75 92.83 123.37 155.14 660.58 1355.62 2004.37 2677.75 3362.30
t2vec 2.44 3.68 5.08 6.84 8.30 21.29 37.28 52.50 67.92 85.49
Word2Vec 2.38 3.61 4.91 6.66 7.97 156.79 249.10 420.70 541.68 550.48
Doc2Vec 1.44 1.80 2.16 2.62 2.99 111.59 207.70 291.71 370.06 482.87
BERT 64 1.85 2.61 3.36 4.24 5.04 56.85 93.06 146.38 189.27 236.26
BERT 128 1.63 2.23 2.84 3.77 4.19 177.95 348.83 509.21 687.17 867.35
BERT 1024 1.40 1.78 2.17 2.62 2.96 94.95 162.23 280.19 310.17 402.55

6.2. Addressing RQ1: most similar trajectory search in a sparse dataset

In these experiments, we aim to assess whether language models can achieve similar re-
sults with sparse trajectory datasets. To this end, we consider the T-drive dataset and apply
the same evaluation methodology. Due to the smaller number of trajectories contained in
T-drive, we set the query set Q′ size to 500 trajectories and vary the number of trajectories
contained in the search space S from 10,000 to 50,000 (Table 3). From the results, we
observe that language models consistently achieve worse results than t2vec, suggesting
that these are sensitive to data with low sampling rates. We conjecture that sparse tra-
jectories might be analogous to the notion of sparse text, which refers to documents or
text datasets with limited content or sparse information, thus leading to less contextual
information. This, in turn, might explain the lower quality of the embeddings generated
by these models compared to those from t2vec.

6.3. Addressing RQ2: scalability analysis

Scalability plays a critical role in spatial trajectory similarity assessment. Classic meth-
ods, with their quadratic complexity relative to trajectory size, become impractical for
large datasets. In contrast, recent deep learning-based approaches such as t2vec exhibit
linear complexity with respect to trajectory and embedding size. This set of experiments
aims to gauge the scalability of language models against t2vec. In this batch of exper-
iments conducted on the Porto dataset (the largest dataset used), we consider a query
trajectory set Q′ of size 1,000 and incrementally enlarge the search space S from 20,000
to 100,000 trajectories. For each combination of Q′ and S, we compute the embeddings
of their trajectories and index them using a kd-tree. These steps can be done offline and
are not included in time measurements. We then calculate the k-nearest-neighbors (k-NN,
with k = 50) for each query trajectory’s embedding in Q′ against those in S. The results
in Figure 1 show the average computation time per query and confirm that the average
query time increases with the size of S, as expected. More interestingly, BERT shows
that its average query time varies with the embedding size (again, expected) but remains
consistently competitive with t2vec, despite BERT’s more complex architecture. Taking
into consideration also the results shown in Section 6.1, this strongly hints that BERT, at
least with dense trajectory datasets, has the potential to produce smaller, higher-quality
embeddings than competitors specifically designed for the task of spatial trajectory simi-
larity assessment while displaying strong scalability.
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Figure 1. Scalability analysis: computing k-nn queries versus search space size
(y-axis in log-scale).

7. Conclusions

In this study, we investigated the use of selected and repurposed language models to gen-
erate embeddings for the task of assessing spatial trajectory similarity. We adapted these
models to learn trajectory embeddings and found that while a large model like BERT
produced high-quality embeddings for dense datasets and scaled linearly with the query
search space, it fell short with sparse datasets. Overall, the results reveal new research op-
portunities. One potential improvement is adapting our data preparation pipeline, which
currently removes trajectories with gaps due to non-hot cells. Allowing such gaps might
leverage LLMs’ resilience to sequence discontinuities, potentially boosting performance
on sparse datasets. Further exploration could involve refining BERT-based architectures
or adopting different loss functions to better represent spatial features. Additionally, ex-
ploring more advanced open source LLMs like Llama, Mistral, Gemma, Phi, and others,
as suggested by [Gruver et al. 2023] for encoding time series, may offer insights given
the parallels with trajectories.
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