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Abstract. Local Differential Privacy (LDP) was developed as a Differential Pri-
vacy (DP) model that protects user data from the collector. However, tasks such
as frequency estimation over time are challenging to apply LDP guarantees to,
as privacy and utility goals are subjected to increasing privacy budget con-
sumption. Utility can be enhanced through post-processing techniques, but it’s
important to be aware that they may introduce unintended bias. In this paper,
we analyze the performance of a range of longitudinal LDP protocols coupled
with various post-processing techniques, of which we determined Norm Sub and
PowerNS to be the best-performing and warned against the use of Norm Mul.

1. Introduction
Differential Privacy (DP) has come to be accepted as the de facto standard for data privacy.
Nonetheless, as the originally proposed model of DP, central DP relies on a trusted curator
[Dwork et al., 2006], which is not a reliable assumption for real-life scenarios; research in
the field has recently pivoted towards pursuing more restrictive models in a local setting
to bypass the need for a trusted curator in the central model [Erlingsson et al., 2014].
Said pursuits have resulted in the growing popularity of Local Differential Privacy (LDP),
which aims to guarantee privacy in a local setting. In this setting, user data passes through
an automatized sanitization process immediately after sampling [Team, 2017; Ding et al.,
2017; Johnson et al., 2018]. Thus, once the data reaches the server, it has already been
processed in a way that guarantees the user’s anonymity, even in the scenario of a data
leak or a malicious curator. However, as the LDP model requires noise to be added to each
new user data sample, compliant protocols may add excessive amounts of noise, resulting
in data that diverges significantly from the raw counterpart, and subsequent analysis may
have inaccurate results. Said concerns become even more challenging when dealing with
longitudinal data, as with each new query over time, the mechanism consumes the privacy
budget so that anonymity can still be guaranteed, and the added noise leads to loss of data
utility [Wang et al., 2021; Ren et al., 2022]. Alternatively, a larger budget can be provided
at the cost of user privacy [Dwork et al., 2006].

There have been efforts to provide more flexible alternatives to achieve some form
of LDP in a streaming scenario, including longitudinal LDP protocols [Erlingsson et al.,
2014; Arcolezi et al., 2022a,b]. In previous research, L-LDP protocols have been applied
to frequency counting, which has been used in localization and census scenarios. One
difficulty in said application has been how to guarantee the consistency of the protocols’
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outputs, as it often requires some form of post-processing [Wang et al., 2019] that will
introduce different biases in the data, resulting in varying levels of utility.

Main contribution. This paper systematically analyzes the state-of-the-art post-
processing techniques applied to the leading Local Differential Privacy (LDP) protocols
for longitudinal data. Our research stands out by thoroughly and meticulously demonstrat-
ing which post-processing techniques are best suited, depending on the data characteris-
tics, protocol configurations, and protocols. This comprehensive analysis provides a clear
overview of current practices and valuable guidelines for selecting optimized techniques,
significantly advancing the efficient application of LDP in continuous and dynamic data
environments. We implemented and evaluated six longitudinal LDP protocols in combi-
nation with ten different post-processing techniques for each of the four real datasets. We
show that the post-processing methods that ensured greater utility are those that guarantee
non-negative results and a sum equal to 1. However, even for these methods, when ana-
lyzing different datasets with distinct domains, we observed that the effectiveness varied
significantly, as they can introduce unwarranted bias, affecting their utility.

Paper structure: The subsequent sections of this article are divided and presented
in the following order: In Section 2, we present the required theoretical background for
understanding the problem of interest to this paper. In Section 3, we describe our prob-
lem of interest in greater detail. In Section 4, we present basic LDP solutions that serve
as building blocks for the protocols presented in Section 5, developed for longitudinal
data and subjects of this paper’s evaluation. In Section 6, we detail the effects of post-
processing, and we list techniques to be evaluated in conjunction with the protocols pre-
sented in Section 5. In Section 7, we present the datasets and experimental setup used. In
Section 8, we first present a preliminary evaluation to determine the most promising LDP
protocols and post-processing methods and continue to discuss the results found through
an in-depth analysis of the most promising pairings and their utility across increasing
budgets. Section 9 briefly summarizes and highlights our most important and promising
findings.

2. Theoretical background

2.1. Longitudinal Data

We define longitudinal data as data that evolves over time, captured through repeated sam-
pling at increasing time intervals, which are represented as timestamps in the database. In
this context, different individuals send a sample to the server at each timestamp. There-
fore, the server aggregates the data where each row corresponds to all the data collected
from timestamp t0 to the current timestamp tc for a single user.

2.2. Local Differential Privacy

Under LDP, sensitive information v from each user is encoded by a randomized algorithm
Ψ, and its output Ψ(v) is sent to the aggregator responsible for collecting all users’
reports. Intuitively, LDP guarantees that, no matter what the value of Ψ(v) is, it is
approximately equally as likely to be a result of perturbing v as any other v′ differing
from v. Therefore, if Ψ(v), instead of v, is collected, the users never reveal their private
value v. The user’s degree of privacy is controlled by the privacy budget ϵ. More formally,
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Definition 1. (Local Differential Privacy [Erlingsson et al., 2014]) An algorithm Ψ(·)
satisfies ϵ-local differential privacy (ϵ-LDP), where ϵ ≥ 0, if and only if for any pair of
inputs (v, v′), and any possible output y of Ψ, we have Pr[Ψ(v) = y] ≤ eϵPr[Ψ(v′) = y]

For any pair of distinct inputs, an LDP mechanism has the probability to output
the same value limited by eϵ. In the same fashion as central DP, LDP is robust to
post-processing and sequential composition[Dwork et al., 2014].

Post-Processing: post-processing is any function that receives the output of a ϵ-
LDP mechanism as input, and regardless of which function it is, the output will remain
ϵ-Locally Differentially Private, i.e., if M is a ϵ-LDP mechanism, then f(M) is also ϵ-
LDP for any function f [Dwork et al., 2014].

Sequential composition: if Mt is a ϵt-LDP mechanism, for t ∈ [τ ]. Then, the se-
quence of outputs [M1(v), ...,Mτ (v)] is

∑τ
t=1 ϵt-LDP. Moreover, if M is an ϵ-LDP mech-

anism and v is a finite sequence of k values, then the sequence [M(v1), ...,M(vk)] of
outputs is kϵ-LDP [Dwork et al., 2014].

3. Problem
We consider a setting where there are many users and one aggregator. Each user has a
sequence s = [v1, v2, ..., vτ ] of values in a domain D, and the aggregator wants to learn the
frequency distribution of values among all users for τ timestamps in a way that protects
the privacy of individual users. More specifically, the aggregator wants to estimate, for
each value v ∈ D, the fraction of users having v in each timestamp t i.e., the number of
users having v divided by the population size. We measure utility using the MSE averaged
by the number of data collection τ , denoted by MSEavg. Thus, for each time t ∈ [1...τ ],
we compute for each value v ∈ D the estimated frequency f (v)t and the real one f̄ (v)t
and calculate their differences before averaging by τ . More formally,

MSEavg =
1

τ

τ∑

t=1

1

|D|
∑

v∈D

(
f̄ (v)t − f (v)t

)2
(1)

Goal. We want to understand how to leverage different post-processing techniques
with LDP longitudinal data collection algorithms in order to improve utility.

4. Frequency Oracle Protocols
A frequency oracle (FO) protocol can be used to estimate the frequency of any value
v ∈ D under LDP, where D is the domain. A FO consists of two algorithms. The first
one is Ψ, which users use locally to perturb their private data. The second one is Φ, which
the aggregator uses to estimate the frequencies regarding the perturbed data received. In
the literature, FOs have been employed in many different LDP tasks, including marginal
release [Liu et al., 2023], answering range queries [Filho and Machado, 2023], answering
queries on geospatial data [Hong et al., 2021] and identifying heavy hitters [Zhu et al.,
2024].

Traditional FOs do not account for budget consumption over time when process-
ing longitudinal data. Still, most state-of-the-art protocols designed to tackle longitudinal
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scenarios are adaptations of traditional ones, usually through two rounds of sanitization,
a technique accomplished by sequentially composing two traditional FOs and memoiza-
tion. Below, we present two traditional FOs, which serve as the basis for the ones with
two rounds of sanitization that interest this paper.

4.1. Generalized Randomized Response (GRR)

Randomized Response [Warner, 1965] was introduced for binary responses, but it can
easily be generalized to larger domains [Kairouz et al., 2016]. In GRR, users send their
true private value v ∈ D with probability p. Otherwise, with probability 1 − p, the users
send a randomly chosen value v′ ∈ D. Formally, the algorithm is

∀x∈D Pr
[
ΨGRR(ϵ)

(v) = x
]
=

{
p = eϵ

eϵ+|D|−1
if x = v

q = 1−p
|D|−1

= 1
eϵ+|D|−1

if x ̸= v

GRR satisfies ϵ-LDP since p/q = eϵ. From a population of n users, the aggregator
receives a vector x =

〈
x1, x2, ...xn

〉
of length |x| = n where xi ∈ D is the reported value

of the i-th user. Then, it estimates the frequency of v ∈ D, which consists of the ratio of
users with private value v among all n users. Considering C(n) as the number of times v
appears in vector x, the unbiased [Wang et al., 2017] estimator for the frequency of v ∈ D
is Φf(ϵ)(v) := (C(v)/n− q)/(p− q).

4.2. Unary Encoding (UE))

In Unary Encoding, a value v ∈ D with domain size k is encoded as a length-k binary
vector B = [0,···, 0, 1, 0,···, 0] where only the v-th position is 1. The private mechanism
returns a perturbed B′ as

Pr
[
ΨUE(ϵ)

B′[i] = 1] =

{
p, ifB[i] = 1

q, ifB[i] = 0

[Wang et al., 2017] show that UE satisfies ϵ-LDP for ϵ = ln
(p(1−q)
(1−p)q

)
. [Wang et al.,

2017] define two UE protocols: Symmetric Unary Encoding (SUE) and Optimized Unary
Encoding (OUE). SUE selects p = eϵ/2

eϵ/2+1
and q = 1

eϵ/2+1
. It is symmetric since p+ q = 1.

OUE sets p = 1/2 and q = 1
eϵ+1

. It is considered a better option than SUE.

5. FOs to longitudinal data
Traditional FOs are inadequate for longitudinal data due to increased budget consumption
and decreased user privacy. Many modern solutions use memoization, where a value
is first sanitized, memoized, and then sanitized again with a fraction of the original
budget for extra protection. Popularized by RAPPOR and adapted across various
protocols[Arcolezi et al., 2022a], the 2-round memoization approach is the most accepted
and will be the focus of our evaluation. However, as proven in Arcolezi et al. [2022b],
most influential works, such as RAPPOR, claim to be able to guarantee LDP by making
bold assumptions about the data[Erlingsson et al., 2014], which is not always realistic.
That is why we will be adhering to a relaxed definition of LDP:

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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Definition 2. (Longitudinal Local Differential Privacy [Arcolezi et al., 2022b]) For a
longitudinal memoizing mechanism M : Aτ −→ Bτ , in which A = [1..k], let M∗ denote a
mechanism that takes as input a permutation x of A and outputs M∗(x) := x′′ by shuffling
the k entries of x, yielding x′, and letting x′′

i := M∗(x′
i) for each i = 1..k, sequentially.

M is said to be ϵ-LDP on the users’ values iff M∗is ϵ-LDP.

All FOs in this paper comply with the above L-LDP definition. In L-LDP, the
sanitization parameters ϵ∞ and ϵ1, the original budget and the α fraction of it, can be
defined as the upper bound and the lower bound for ϵ-LDP, respectively. We have the
upper bound guarantee when τ , the number of timestamps, tends to infinity, and we have
the lower bound when τ = 1. All the L-LDP FOs presented in this paper use the same
unbiased estimator:

ΦfL(v) :=
C(v)− nq1(p2 − q2)− nq2

n(p1 − q1)(p2 − q2)
=

C(v)/n−q2
p2−q2

− q1

p1 − q1
(2)

5.1. L-GRR (Longitudinal Generalized Randomized Response)

L-GRR is an adaption of GRR to the longitudinal scenario, adding memoization with
2-round sanitization, using the full and a downsized alpha percentage of the budget for
it, which is executed by two instances of the traditional GRR protocol. The perturbation
algorithm is the same as GRR for the first round:

∀x∈D Pr
[
ΨL−GRR(ϵ∞)

(v) = x
]
=

{
p1 =

eϵ

eϵ+|D|−1
if x = v

q2 =
1−p
|D|−1

= 1
eϵ+|D|−1

if x ̸= v

followed by a second round that outputs a report x′:

∀x′∈D Pr
[
ΨL−GRR(ϵ1)

(x) = x′] =
{
p2 if x’ = x
q2 =

1−p2
|D|−1

if x’ ̸= x

where p2 =
q1−eϵ1p1

(−p1eϵ1 )+|D|q1eϵ1−q1eϵ1−p1(|D|−1)+q1
as ϵ1 = ln(p1p2+q1q2

p1q2+q1p2
) for L-GRR.

5.2. RAPPOR and L-SUE (Longitudinal Symmetric Unary Encoding)

RAPPOR was a pioneer of the 2-round sanitization approach. The utility-oriented imple-
mentation of it is equivalent to the L-SUE protocol. L-SUE follows the same structure
as L-GRR but uses SUE for the two rounds and consequentially requires the data to be
encoded before being processed by it. The perturbation algorithm for RAPPOR and all
other UE-based L-LDP FOs for the first round is

Pr
[
ΨUE(ϵ)

B′[i] = 1] =

{
p1, ifB[i] = 1

q1, ifB[i] = 0

for the second round is

Pr
[
ΨUE(ϵ)

B′[i] = 1] =

{
p2, ifB[i] = 1

q2, ifB[i] = 0
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In L-SUE p1 and q1 are the same as p and q for standard SUE presented in Section
4.2, and p2 + q2 = 1. To ensure privacy for all UE algorithms [Arcolezi et al., 2022a], the
following equation must be satisfied:

ϵ1 = ln(
(p1p2 − q2(p1 − 1))(p2q1 − q2(q1 − 1)− 1)

(p2q1 − q2(q1 − 1))(p1p2 − q2(p1 − 1)− 1)
) (3)

5.3. L-OUE (Longitudinal Optimized Unary Encoding)

Similar to L-SUE but built on top of the OUE protocol. OUE is generally regarded as
the preferred state-of-the-art solution for the traditional scenario, but L-OUE is prone to
adding excessive noise [Arcolezi et al., 2022a], leading to a significant loss of utility over
time. The algorithm follows the same structure, with p1 = p2 = 0.5, q1 = 1

eϵ∞+1
, and q2

may be calculated using the Equation (3), according the definition of OUE.

5.4. L-OSUE (Longitudinal Optimized-Symmetric Unary Encoding)

As proven by Arcolezi et al. [2022a], it is valid to chain both UE protocols and still achieve
L-LDP. L-OSUE is a hybrid solution that uses OUE for the first round and SUE for the
second, thus avoiding the excessive addition of noise over time as it happens with data
processed under L-OUE. The L-OSUE protocol in first round has p1 = 0.5, q1 = 1

eϵ∞+1
,

followed by SUE with p2 and q2 that satisfy p2 + q2 = 1, satisfying Equation (3).

5.5. LOLOHA

Proposed in Arcolezi et al. [2022b], LOLOHA builds on the GRR protocol and applies
the technique of Local Hashing to shrink the domain size k to g, up to g = 2, leading
to slower budget consumption. LOLOHA can define g as g = 2 (BiLOLOHA) for the
strongest longitudinal LDP guarantees or compute an optimal g (OLOLOHA) value by

g = 1 +max

(
1,

⌊
1− a2 +

√
a4 − 14a2 + 12ab(1− ab) + 12a3b+ 1

6(a− b)

⌉)
(4)

As it builds on the GRR protocol, it first uses a random hash function that maps
the user value to a domain of size g, and then follows the same perturbation algorithm,
but with |D| = g given our reduced domain size. The sanitization step outputs both the
report and the hash function seed, so it can be used for counting by the aggregator. When
it comes to the estimation step, it first updates the value of q1 to q1 = 1/g, and then it
counts all values which the output of the hash function matches the report given the user
seed and uses the same unbiased estimator (2) as other L-LDP FOs.

6. Post-processing and utility
The output of LDP FOs requires post-processing to improve the utility, ideally achieving
what Wang et al. [2019] defines as consistency: all values are non-negative, and the sum
of all frequencies must be 1. However, Wang et al. [2019] focused only on FOs with one
round of memoization (including RAPPOR, as only the simple one-time version of it was
considered), did not account for the unique properties of longitudinal data, and discussed
the results for only one FO. We aim to expand the analysis of post-processing techniques
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Method Description Non-neg Sum to 1
Base pos Round negative frequencies to 0 Yes No
Base Cut Round frequencies below k to 0. We fixed k=4 for most experiments Yes No
Norm Std Normalize by adding δ No Yes
Norm Mul Round negative frequencies to 0, and normalize by multiplying by ϕ Yes Yes
Norm Cut Find θ, round frequencies bellow θ to 0 Yes ≈ 1
Norm Sub Round negative frequencies to 0,normalize by adding δ Yes Yes
MLE Apx Compute Apx. MLE to recover values with consistency Yes Yes

Power Fit Power-Law dist. and minimize expected squared error Yes No
PowerNS Execute Power, and follow with Norm Sub Yes Yes

Table 1. Summary of post-processing methods

to a focus on FOs developed for longitudinal data via the 2-round memoization approach,
how they can benefit from it, and discuss our findings for a greater range of protocols.

The methods’ detailed definition and theoretical proof can be found in Wang et al.
[2019]. Table 1 presents a summary of the post-processing methods analyzed in this work,
indicating those that guarantee no negative values among the frequency distribution and
those that produce an output with a sum of all values equal to 1.

7. Experimental analysis
For our experiments, four distinct datasets were used to analyze the performance of the
protocols and the effects of post-processing in varying scenarios. We implemented our
framework in Python 3.10. All experiments were conducted on a server with Ubuntu
20.04, Intel Core i7-7820X, and 128GB memory.

7.1. Datasets
The datasets used, their specific features, and how pre-processing was done for each are
described as follows:

• GeoLife 1: We used a sample of 100 users from the GeoLife Trajectories dataset,
with 10 timestamps each. We pre-processed the locations as labels in a grid di-
vided into cells with 1km² of area each.

• Adult 2: We selected the attribute of hours per week and interpolated values to
achieve 260 timestamps (simulating varying work hours by each user for five
years)

• Loan 3: Randomly sampling a fifth of the lending club dataset and selecting one
attribute, we interpolated values to achieve 5 timestamps.

• Bfive4: A dataset representing personality test results. We selected an attribute
and interpolated its values to achieve 20 timestamps.

As a result of pre-processing, GeoLife has a large domain size, and given a small
sample size, its resulting frequency distribution can be considered sparse. Adult and
Loan both have skewed frequency distributions, a more realistic scenario to apply LDP
[Erlingsson et al., 2014; Wang et al., 2019]. Bfive has a small domain, a large sample
size, and a smooth underlying frequency distribution.

1https://www.microsoft.com/en-us/download/details.aspx?id=52367
2http://archive.ics.uci.edu/ml/datasets/Adult
3https://www.kaggle.com/datasets/wordsforthewise/lending-club
4https://www.kaggle.com/datasets/tunguz/big-five-personality-test
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7.2. Setup for experiments

We selected a privacy budget range starting in 0.5, up to 5 in incremental steps of 0.5, for
a total of 10 distinct values for ϵ∞, with α = 0.4 for a lower bound of ϵ1 = 0.4ϵ∞.

8. Results
This section presents the findings from our comprehensive analysis of post-processing
methods applied to the FOs protocols. First, we decided to determine which protocols
and methods are the most promising and if post-processing is a high requirement for
useful results. As a means to do so, we built tables for each dataset in Table 2 that
showcase the MSE between the real frequency distribution and the L-LDP output, with
and without post-processing. We fixed ϵ∞ = 2.5 as the midpoint of our budget range
for the sake of legibility, and so we do not differentiate between protocols that perform
best under greater and lower budgets for now. Instead, we aim to first identify general
trends, propose hypotheses, and determine which are the most promising FOs and post-
processing techniques through a preliminary analysis, before proceeding with more in-
depth evaluation.

From Table 2a, we find L-OSUE to be the best-performing FO, and Norm Mul as
the best post-processing method. L-GRR performed poorly without post-processing, as it
is unsuited to large domain sizes [Arcolezi et al., 2022a]. However, its performance gap
was greatly diminished via post-processing methods that guarantee both requirements of
consistency, mentioned in Section 6.

Results found in Table 2b point to L-GRR being by far the best performing FO
when coupled with Norm Mul. Other protocols and methods present a very similar per-
formance. Thus, we can classify the best result in this table as an outlier, which may point
to unexpected behavior resulting from the interaction between the dataset features and
post-processing bias.

Table 2c, despite its corresponding dataset having similar features to that of 2b,
does not replicate its results. OLOLOHA was the best among FOs, and again Norm Mul
has a lead over other methods, performing best coupled with BiLOLOHA, unexpectedly
even better than with OLOLOHA. All these findings reinforce an unexpected behavior
hypothesis. Lastly, Table 2d presents L-OSUE as the consistently best performing FO
and Norm Mul with a close lead over Norm Sub.

In summary, it is possible to infer that the best-performing post-processing meth-
ods will output results in which all values are non-negative and sum to 1. Thus, our
evaluation will not focus on the Base Pos, Base Cut, Power, and Norm methods since
these methods do not meet the aforementioned guarantees, as observed in Table 1. Base
Cut performed poorly when processing results for the bfive dataset, likely due to a positive
bias when processing a dataset with a smooth distribution and small domain.

As for the FOs, L-GRR was generally the worst performing; however, it presented
the best performance for Table 2b, so we will analyze it further. The performance among
UE-based protocols was close at times, but the best performance was L-OSUE, as show-
cased by the highlighted results in Tables 2a and 2d. Therefore, we plan to discuss its
results in greater detail. In most cases, OLOLOHA presented a matching or better perfor-
mance than BiLOLOHA, as expected, given that it is the optimal setting of the LOLOHA
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Table 2. MSE

Method L-GRR RAPPOR L-OUE L-OSUE OLOLOHA BiLOLOHA
None 9.1 · 104 0.0265 0.0294 0.0248 0.0277 0.0316

Base Pos 8.51 · 104 0.013 0.0155 0.0128 0.0141 0.0159
Base Cut 8.51 · 104 0.0016 0.0028 0.0015 0.0018 0.0028
Norm Std 9.1 · 104 0.0264 0.0293 0.0248 0.0277 0.0316
Norm Mul 2.5e-05 2.2e-05 2.2e-05 2.19e-05 2.2e-05 2.2e-05
Norm Cut 4.93e-04 2.52e-04 2.57e-04 2.46e-04 2.52e-04 2.55e-04
Norm Sub 1.84e-04 6.73e-05 7.31e-05 6.68e-05 6.75e-05 6.83e-05
MLE Apx 4.87e-05 9.85e-05 6.17e-05 5.98e-05 0.0001 0.0001

Power 0.999 0.999 0.999 0.999 0.999 0.999
PowerNS 2.17e-05 2.17e-05 2.17e-05 2.17e-05 2.17e-05 2.17e-05

(a) geolife dataset

Method L-GRR RAPPOR L-OUE L-OSUE OLOLOHA BiLOLOHA
None 0.0138 0.0035 0.0035 0.0034 0.0035 0.0035

Base Pos 0.0082 0.0034 0.0034 0.0034 0.0034 0.0034
Base Cut 0.0034 0.0036 0.0036 0.0036 0.0036 0.0036
Norm Std 0.0138 0.0035 0.0035 0.0034 0.0035 0.0035
Norm Mul 7.27e-04 0.0026 0.0026 0.0027 0.0026 0.0026
Norm Cut 0.0047 0.0034 0.0034 0.0034 0.0034 0.0034
Norm Sub 0.0030 0.0034 0.0034 0.0034 0.0034 0.0033
MLE Apx 0.0031 0.0099 0.0144 0.0144 0.0072 0.0072

Power 0.968 0.968 0.968 0.968 0.968 0.968
PowerNS 1.59e-04 1.59e-04 1.59e-04 1.59e-04 1.59e-04 1.59e-04

(b) adult dataset

Method L-GRR RAPPOR L-OUE L-OSUE OLOLOHA BiLOLOHA
None 0.0037 2.35e-04 2.38e-04 2.35e-04 2.36e-04 2.38e-04

Base Pos 0.002 2.31e-04 2.33e-04 2.31e-04 2.32e-04 2.33e-04
Base Cut 0.0015 0.0012 0.0012 0.0012 0.0012 0.0012
Norm Std 0.0037 2.35e-04 2.38e-04 2.38e-04 2.36e-04 2.38e-04
Norm Mul 9.64e-04 1.65e-04 1.65e-04 1.66e-04 1.63e-04 1.62e-04
Norm Cut 9.15e-04 2.26e-04 2.27e-04 2.26e-04 2.25e-04 2.27e-04
Norm Sub 6.82e-04 2.29e-04 2.3e-04 2.29e-04 2.29e-04 2.3e-04
MLE Apx 8.65e-04 0.0015 0.0022 0.0022 9.93e-04 6.4e-04

Power 0.981 0.981 0.981 0.981 0.981 0.981
PowerNS 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018

(c) loan dataset

LGRR RAPPOR L-OUE L-OSUE OLOLOHA BILOLOHA
None 2.43e-05 1.83e-05 2.38e-05 1.81e-05 1.97e-05 2.18e-05

Base post 2.17e-05 1.65e-05 2.12e-05 1.58e-05 1.69e-05 1.86e-05
Base cut 0.032 0.032 0.032 0.032 0.032 0.032
Norm std 2.43e-05 1.62e-05 2.05e-05 1.54e-05 1.72e-05 1.9e-05
Norm mul 2.13e-05 1.54e-05 1.9e-05 1.42e-05 1.56e-05 1.68e-05
Norm cut 2.14e-05 1.61e-05 1.98e-05 1.51e-05 1.66e-05 1.84e-05
Norm sub 2.12e-05 1.54e-05 1.94e-05 1.43e-05 1.53e-05 1.69e-05
MLE Apx 6.88e-04 8.33e-04 0.001 0.001 7.59e-04 3.31e-04

Power 0.747 0.747 0.747 0.747 0.747 0.747
PowerNS 0.012 0.012 0.012 0.012 0.012 0.012

(d) bfive dataset

protocol [Arcolezi et al., 2022b]. There were instances of BiLOLOHA taking a lead in
Tables 2c and 2d, but these were either very close or as a result of post-processing by MLE
Apx, which at no point achieved the best results. Given these results, and with it being the
best performing protocol for Table 2c, we decided to select OLOLOHA for more in-depth
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analysis.

Now, we measure the MSE across budgets. We can see that most protocols and
post-processing techniques have the expected result of lowering MSE as the budget in-
creases, except for Norm Mul, which shows unexpected and unstable behavior in ex-
periments using the Adult and Loan datasets. Analysis of the datasets shows that the
frequency distribution of the domain for both datasets is very skewed (to values above 20
for Adult, and lower than 60 for Loan), which results in many negative frequencies in the
aggregator’s output when the budget is small.

Figure 1. Geolife dataset: MSE

In GeoLife, due to a comparatively small sample for a large domain resulting
in a sparse distribution, L-LDP FOs will output many negative values among frequency
estimates without post-processing. From Figure 1, we can see that Norm Mul has the best
performance, making it an outlier in comparison to results from other datasets. However,
in Figures 2 and 3, we can see unexpected behavior: increasing MSE for larger budgets.
This is the reverse of what is expected of L-LDP and presented by most other methods,
and thus can only be caused by the bias of Norm Mul.

As a technique, Norm Mul has negative bias for high frequencies items and posi-
tive bias for low frequencies items [Wang et al., 2019], meaning that the high frequencies
present in the raw FO output are lowered, and the low frequencies are increased. This
leads us to the conclusion that the exceptional performance of Norm Mul is the result of
its positive bias nullifying utility loss caused by a large number of negative values among
frequency estimates. The unexpected behavior in Figures 2 and 3 can also be explained
by positive bias: for smaller budgets, the skewed frequency distributions of the Adult and
Loan datasets, resulting in a raw FO output with a great number of negative values, but
unlike for a sparse dataset like our Geolife sample, as the budget increases the number of
negative estimates decreases drastically, and Norm Mul positive bias for low frequencies
no longer improves utility; instead it contributes to greater loss.

Budget consumption tends to increase over time in the real world, and data
changes can make the dataset no longer sparse. It is likely that even in scenarios fa-
vored by Norm Mul, such as the results for our GeoLife sample, it may output worse
and present unstable behavior as time goes on, making it inadequate for use in longitudi-
nal data. This is concerning as Norm Mul follows a simple algorithm: remove negative
frequencies and divide the result by the sum of all values. Therefore, developers might
intuitively converge on it as a technique.

MLE Apx performed best only for the larger budgets in Figure 1. One explanation
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Figure 2. adult dataset: MSE

Figure 3. loan dataset: MSE

is that due to the two rounds of sanitization: the additional noise makes it harder to find a
MLE (Maximum Likelihood Estimation) that is as close to the real distribution as in the
case of a single round. It may also contribute to the unexpected behavior when coupled
with L-GRR observed in Figure 2: as it follows a similar trend of increasing error for
larger budgets, a case of positive bias for low frequencies interacting with negative values
may be the cause, which explains the good performance observed in Figure 1 as well, even
if the effect of said bias is not as strong as in the case of Norm Mul. L-GRR makes it easier
to perceive said bias effect due to its sensibility to the domain size [Arcolezi et al., 2022a]
resulting in a noisier output, as evident given its consistently lower utility of unprocessed
results in comparison to other FOs as shown in Table 2. In previous works, MLE Apx
did not show a positive bias for low frequencies, however, the additional sanitization
round may be impacting the method’s output. Given these findings and subpar overall
performance, it is not recommended.

Figure 4. bfive dataset: MSE

Norm Sub and Norm Cut presented the most consistent results, most very close
and generally among the best. However, Norm Sub outperformed Norm Cut by a large
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margin in Figure 1. Also, as Norm Cut does not always guarantee that its output will
sum to 1, we regard Norm Sub as the best approach. We note that Norm Sub has the same
biases as Norm Mul, however, their distribution is more even [Wang et al., 2019], and thus
have a lesser impact on its output.

PowerNS resulted in a constant value across FOs and budgets, likely due to com-
parable FO performance, and (2) approximate variance not being heavily affected by the
privacy budget [Arcolezi et al., 2022b]. It outperformed all other methods aside from
Norm Mul in Figure 1, and all in Figure 2, but performed worst in Figures 3 and 4. It
performed best when the MSE for the unprocessed output was larger, as in Table 2.

Among the FOs L-GRR presented the most inconsistent behavior, as the MSE
stayed near constant for decreasing budgets in Figure 1 most likely the result of its sen-
sitivity to a large domain size. L-OSUE and OLOLOHA presented comparable results,
however, L-OSUE did present the most stable behavior across our experiments. This can
partially be explained as a result of OLOLOHA being built on the GRR protocol with
local hashing as a means to shrink the domain size, thus not being as sensitive to it as
L-GRR but still more than L-OSUE. Still, there are benefits to OLOLOHA over L-OSUE
such as lower budget consumption Arcolezi et al. [2022b], so only L-GRR is not recom-
mended.

In summary, we do not recommend Norm Mul as its bias affects the FOs output
unexpectedly when dealing with longitudinal data. MLE Apx would need a revised version
to process data sanitized through two rounds. Norm Cut has no clear advantages over
Norm Sub. We conclude that L-GRR is not ideal due to its sensitivity to large domain
sizes, highlighting L-OSUE and OLOLOHA as the best-performing L-LDP FOs. Lastly,
we recommend Norm Sub as a reliable solution for most use cases, and PowerNS performs
best when the raw FO output has low utility.

9. Conclusion

In this paper, we conducted an exhaustive evaluation of the behavior and performance
of nine post-processing techniques applied to six frequency oracle protocols focused on
longitudinal data through experimentation in four real datasets. We found L-OSUE and
OLOLOHA as the best FOs for longitudinal data. Our results also showed that only a
few post-processing methods produced consistent and good results, namely Norm Cut,
Norm Sub, and PowerNS. We also discovered that, among them, only the latter two have
practical use cases. We warn against using Norm Mul, which can lead to unexpected
behavior.

For future work, we aim to investigate more FOs and post-processing methods ap-
plied to specific tasks with longitudinal data, such as identifying heavy hitters, answering
range queries, building graph models, and itemset mining.

ACKNOWLEDGMENTS

This work was funded by Lenovo Brasil as part of its R&D investment under Brazil’s
Informatics Law.

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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379



T. Wang, J. Q. Chen, Z. Zhang, D. Su, Y. Cheng, Z. Li, N. Li, and S. Jha. Continu-
ous release of data streams under both centralized and local differential privacy. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’21, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450384544.

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

Y. Zhu, Y. Cao, Q. Xue, Q. Wu, and Y. Zhang. Heavy hitter identification over large-
domain set-valued data with local differential privacy. IEEE Transactions on Informa-
tion Forensics and Security, 19:414–426, 2024. doi: 10.1109/TIFS.2023.3324726.

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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