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Abstract. In this study, we address the challenges of managing authorship
nomenclature as dictated by the International Code of Nomenclature for al-
gae, fungi, and plants (ICN), within the Begoniaceae and Bignoniaceae families
databases. Our goal was to evaluate various text similarity algorithms for their
effectiveness in deduplicating botanical data, ensuring accuracy in authorship
and synonymy. Our results highlighted Smith-Waterman’s superior balance in
precision, recall, and F1 Score, suggesting its potential as a robust solution for
improving database integrity. The study also demonstrates the importance of
fine-tuning these algorithms to navigate the unique challenges of botanical data
management, emphasizing the necessity for specialized approaches in this field.

1. Introduction
Taxonomy in biology seeks to name and organize biological diversity, allowing universal
communication by assigning scientific names. This practice, initiated by Carl Linnaeus
in the 18th century, relies on an extensive community of researchers who update taxon
names and describe new species. With the rapid growth in the number of new species
described annually and the expansion of herbaria globally (Figure 1), effective data man-
agement strategies in botanical databases have become crucial. The International Code of
Nomenclature for algae, fungi, and plants (ICN) sets precise rules for indicating author-
ship in botanical nomenclature to ensure clarity, consistency, and traceability. Basically,
these rules define the differentiation between the original authors who first described a
species and those who later may reclassify the same species into a different genus, and
this nomenclature is then used in scientific papers that describe the botanical species.

Figure 1. Accepted species in Begonia between 1750 and 2020 [Cheek et al. 2020]

The need to accurately represent authorship, which indicates who first described
a species and any subsequent revisions or reclassifications, complicates data entry and re-
trieval in botanical databases. Issues of synonymy, where multiple names exist for a single
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406



taxonomic entity due to historical revisions or taxonomic differences, further complicate
database integrity. These challenges demand sophisticated similarity algorithms capable
of recognizing and reconciling nuanced differences to ensure the consistency and relia-
bility of botanical databases. Text similarity measurement algorithms play a fundamental
role in identifying duplicate or erroneously cataloged records. Algorithms such as Leven-
shtein, Jaccard, Jaro-Winkler, Metaphone, N-grams, Smith-Waterman, and Fingerprinting
have been widely explored for their effectiveness in detecting similarities between text
strings, even with spelling errors or orthographic variations. Studies have demonstrated
these algorithms’ applicability in various biological contexts, emphasizing specific adap-
tations to increase their effectiveness in specialized databases. For example, in botanical
collections of the Begoniaceae family, fine-tuning algorithms and similarity thresholds is
necessary to accurately identify duplicates.

This study investigates the challenges posed by the "Authors" attribute in dedu-
plicating data within botanical databases. Our research evaluates various similarity algo-
rithms and thresholds to address these deduplication challenges, aiming to enhance the
integrity and accuracy of biological databases. We conducted an empirical evaluation of
different similarity functions to identify the most effective approach for handling poten-
tial duplicates, imprecise data, and misspellings. The results show improvements in data
deduplication and standardization efforts, highlighting the effectiveness of tailored sim-
ilarity algorithms in managing botanical information. However, the specific challenges
presented by the databases in this study remain unsolved, indicating the need for further
research and differentiating our work from related studies.

This article is organized as follows: Section 1 provides an introduction to the
study, outlining the research problem and objectives. Section 2 discusses ICN rules for au-
thorship data structure. Section 3 reviews related works. Section 4 describes the method-
ology, divided into Overview, Preprocessing, Similarity Function, and Threshold Choice.
Section 5 covers the experimental evaluation, including Datasets, Evaluation Metrics, and
Results. Section 6 discusses the results and their implications. Section 8 concludes the ar-
ticle, summarizing the main findings and suggesting avenues for future research. Section
9 acknowledges contributions, followed by the Bibliography.

2. ICN rules to Authorship Data Structure
The example of authorship shown in the Figure 2 illustrates some of the ICN authorship
rules.

(Brade ex L. B. Sm. & R. C. Sm.) E. L. Jacques & Mamede
published by reclassified by

Initial identifier "pioneiro"
(unpublished)

Formal publishers
"validadores"

Reclassifiers
"revisores"

Figure 2. Authorship schema showing roles of different contributors as per ICN.

The ICN establishes intricate rules governing the attribution of scientific names.
Authors listed outside the parentheses are those who originally published the name of
the species, reflecting the original description and naming. When authors are mentioned
within parentheses, it indicates that the species was originally described under a different
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genus and later reclassified into a new genus, with the names inside the parentheses being
the original describers and the name(s) outside the parentheses being those who performed
the reclassification.

Central to these rules is the differentiation between the original authors who first
described a species and those who later may reclassify the same species into a different
genus. Authors whose names appear outside parentheses ("E.L. Jacques and Mamede"
in Figure2) are credited with the initial description and naming of the species, they are
labeled as "pioneiros" or "validadores". Conversely, when names are enclosed in paren-
theses, it signifies that the species was initially described under a different genus and has
since been reclassified, with the parenthesized names belonging to the original describers
and the names outside the parentheses to the reclassifiers, or "revisores". This nuanced
approach not only maintains the historical integrity of species classification but also in-
troduces a layer of complexity in the management and analysis of botanical data.

3. Related Works
This section reviews pivotal studies that leverage text similarity algorithms to address
these challenges, demonstrating how they enhance data integrity and reliability in botani-
cal databases.

Several studies focus on hybrid models and specific techniques for deduplication
tasks. [Gyawali et al. 2020] present a hybrid model combining locality-sensitive hashing
(LSH) and word embeddings to identify near and exact duplicates in scholarly documents,
achieving a macro F1-score of 0.90. This method is beneficial for botanical databases
where precise handling of minor variations in taxonomic descriptions and author names
is required. Similarly, [Glick et al. 2020] explore various information-based similarity
measures tailored for botanical databases, emphasizing the effectiveness of combining
multiple similarity metrics to handle challenges such as synonymy and authorship vari-
ations. These studies highlight the importance of hybrid approaches in improving data
accuracy and reliability in botanical data management.

Another group of studies provides comprehensive overviews and classifications
of text similarity methods. [Gomaa and Fahmy 2013] offer a survey categorizing text
similarity methods into string-based, corpus-based, and knowledge-based approaches,
highlighting their strengths and weaknesses. This survey aids in selecting effective al-
gorithms for botanical data management, with methods such as Jaccard, Levenshtein,
Jaro-Winkler, and N-grams being directly applicable to improving data deduplication and
standardization efforts. Complementing this, [Silva et al. 2019] discuss various text sim-
ilarity measurement techniques and provide a classification system, offering insights into
text distance and representation methods that refine algorithms used for deduplicating
botanical data.

Some studies emphasize the importance of context and semantic understanding in
text similarity measures. [Prakoso et al. 2021] focus on methods for measuring similar-
ity in short texts, crucial for managing concise botanical descriptions and author names.
Their review classifies these methods into string-based, corpus-based, knowledge-based,
and hybrid-based categories, supporting the refinement of text similarity algorithms for
more accurate deduplication of botanical data.

Additionally, tools designed for data quality and validation play a significant role

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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in improving botanical database management. [Silva et al. 2021] present a tool for vali-
dating and importing data into herbarium databases, addressing similar data quality issues
as this study. The tool’s implementation of filters and validations to check taxonomic and
geographic data accuracy aligns with our goal of improving database integrity through
rigorous data preprocessing and similarity checks.

These studies provide a robust foundation for applying text similarity and match-
ing algorithms in botanical databases, highlighting the broader implications for ensuring
data accuracy and reliability. By improving data deduplication and standardization, these
methodologies significantly enhance the integrity and utility of botanical information sys-
tems. Our research situates itself within this context, empirically evaluating various sim-
ilarity functions to identify the most effective approaches for handling potential dupli-
cates, imprecise data, and misspellings, thereby facilitating accurate botanical research.
Nonetheless, the challenge posed by the specific databases used in this study remains un-
resolved, indicating an area where further work is needed and differentiating our study
within the field of biological database management.

4. Author’s Name Similarity Method

Figure 3. Methodology Overview

In the outlined methodology, as shown in the Figure 3, an initial data cleansing
step is executed by discarding variables from the dataset that are comprised of 90% or
more missing values. This is followed by the standardization of data types, with date
columns converted to integers and all other columns to strings, which facilitates uniform
data handling. A "Missing Category" is then introduced to systematically categorize any
data that remains unaccounted for, ensuring comprehensive dataset integrity.

Subsequently, the approach involves filtering ’&’ and ’et al.’ in the author variable
to apply similarity functions. Authors are categorized based on text location, considering
ICN’s rules. Nine different similarity functions are then applied to quantify the likeness
between author names, and a customized threshold is established to determine the criteria
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for author name grouping by setting the threshold with the highest F1-Score. The final
step employs evaluation metrics to assess the efficacy of the data processing techniques.

4.1. Preprocessing

The preprocessing step aims to ensure the integrity and usability of the data for further
analysis. In this work, preprocessing involves cleaning the dataset and using a recursive
function to flag the authors. Variables exhibiting more than 90% NaN (Not a Number)
values were systematically removed from the dataset, as their high levels of missing data
would likely contribute little to meaningful analysis and could introduce bias or inaccura-
cies in the study’s findings.

A "missing value category" was additionally created to normalize other variables,
such as dates and coordinates. This approach streamlined the dataset by focusing on
variables that offer unique insights and contribute significantly to the biological data’s
diversity and specificity, ensuring a cleaner, more manageable dataset optimized for sub-
sequent data analysis stages. Authors were categorized based on text location, as shown
in Fig. 2, considering ICN’s rules, and specific author name, as "Collector Unspecified"
or "Taxononomia de grupo 2017/grupo verde" patterns, which don’t specify the authors,
were filtered and standardized to ensure consistency for applying similarity functions.

4.2. Threshold choice

The selection of thresholds for similarity algorithms is a critical step in text analysis and
information retrieval applications. Thresholds determine whether two entities are consid-
ered similar or not, affecting the sensitivity and specificity of the algorithm in identifying
matches. The optimal threshold often varies depending on the specific task, the nature of
the data, and the desired balance between false positives and false negatives. [Manning
2008] discuss the importance of empirical validation in information retrieval settings. Ad-
justments based on observations allow for fine-tuning the algorithm’s performance to the
peculiarities of the specific dataset or application domain.

The threshold values were chosen based on empirical analysis, where researchers
observed the algorithm’s performance across a range of values and select the value that
shows more matches made correctly. Building upon the critical importance of selecting
thresholds for similarity algorithms in text analysis and information retrieval, as high-
lighted by [Manning 2008], it is also essential to standardize this selection process to
facilitate comparative analysis across different algorithms and applications. To this end
and to make a threshold observations and comparison, a structured approach involving
the definition of a customized threshold approach were created. All thresholds were cal-
culated, and the one with the highest F1 score was selected. In the event of a tie in the F1
score with more than one threshold, the lowest threshold value was chosen.

5. Experimental evaluation
The main objective of the experiments is to evaluate different similarity functions to iden-
tify the most effective approach for handling potential duplicates for indicating authorship
in botanical nomenclature as dictated by the ICN. In this section, we present the dataset
we have used, the ground truth we have built, the similarity functions we have chosen to
test, the evaluation metrics, and the results.
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5.1. Setup
The experimental setup was conducted using a Lenovo Ideapad 310-15ISK notebook,
equipped with an Intel Core i5-6200U processor, 8GB of RAM, a 1TB HDD, running
Windows 10. The computational tasks were executed on Google Colab, an online plat-
form that provides access to cloud-based computing resources, allowing for the execu-
tion of Python code in a Jupyter Notebook environment. The Python libraries utilized
in the experiment included ‘pandas‘ for data manipulation, ‘os‘ for operating system in-
teractions, ‘google.colab.drive‘ for managing Google Drive connections, ‘random‘ for
generating random numbers, ‘re‘ for regular expression operations, ‘seaborn‘ and ‘mat-
plotlib.pyplot‘ for data visualization, and ‘itertools.combinations‘ for generating combi-
nations of data elements. Notably, only two similarity functions relied on external li-
braries: Metaphone, utilizing the ‘metaphone‘ function, and N-grams, using the NLTK
library. All other similarity functions were implemented from scratch.

5.2. The Datasets
SPLINK1 is a digital platform that consolidates botanical data from various herbaria and
collections across Brazil, enhancing research and conservation of Brazilian flora. It offers
access to detailed records, including images, taxonomic classifications, and geographic
distributions. By integrating data from multiple sources, SPLINK facilitates scientific
study and promotes the visibility of Brazil’s botanical diversity to a global audience. It
integrates data from various herbaria within Brazil, offering access to a wealth of in-
formation including specimen images, taxonomic classifications, geographic locations of
collections, collector details, and collection dates. From SPLINK, two botanical fam-
ilies were used: Begoniaceae and Bignoniaceae. The data for Begoniaceae comprises
approximately 16,900 collections, while the data for Bignoniaceae comprises approxi-
mately 34,900 collections. In the Begoniaceae dataset from SPLINK, 25% of the dataset
contained variables with 90% or more NaN values, while in the Bignoniaceae dataset,
47.70% of the data had 90% or more NaN values.

Brazil’s botanical data ecosystem is further enriched by the REFLORA database.
REFLORA2 is a robust initiative aimed at digitizing and disseminating historical and
contemporary botanical data pertinent to Brazil’s flora. It hosts a comprehensive repos-
itory of specimens gathered from both national and international herbaria. This project
plays a critical role in the recovery and digital archiving of Brazilian plant specimens,
originally housed overseas. The database offers access to high-quality digital images of
specimens, enhanced metadata, and vital taxonomic information. REFLORA’s platform
is instrumental in supporting research by providing a centralized resource that aids in the
identification and study of plant species, promoting the conservation of Brazil’s unique
botanical heritage. From REFLORA, only the botanical family Begoniaceae was used.
The data comprises approximately 1,900 collections, of which 25% of the dataset con-
tained variables with 90% or more NaN values. Additionally, the ICN prescribes the use
of specific designations such as "ex" (Figure 2 and Figure 4, item 14) and "&" to further
detail the contributions of various authors to the taxonomic history of a species.

The "ex" notation is used when an author, "validadores", formally publishes a
species name that was originally proposed by another, "pioneiros", often unpublished,

1http://www.splink.org.br/
2http://www.reflora.jbrj.gov.br/
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Figure 4. The 15 most frequent author names in our database and differents
applications of ICN’s rules

author, thereby recognizing the contribution of both parties. The ampersand ("&") is em-
ployed to link multiple authors who jointly published the name of a species. These rules
can be applied either jointly or individually. The presence of parentheses, "ex", "&", or
any other delimiter are not conditioned upon each other. This makes the process of iden-
tifying duplicates, or even text similarity, unique for this variable in this type of database.
These conventions, while facilitating a more precise attribution of authorship, pose sig-
nificant challenges in data deduplication efforts within botanical databases, particularly
when aligning records from diverse sources.

5.3. The Ground Truth
The ground truth was established based on the 114 unique author values identified within
the Begoniaceae speciesLink’s dataset, 48 unique author values in Begoniaceae RE-
FLORA’s dataset, and 151 unique values in Bignoniaceae speciesLink’s dataset. This
involved a manual process where, for each group of similar names, a single correct value
was chosen to represent all variants. For instance, variations such as ’A. DC’ (1 dot), ’A.
DC.’(2 dots), ’A.D.C.’(3 dots), and ’A.DC.’ (no space between letters) were consolidated
under a singular, correct equivalent, ’A. DC’. This decision was predicated on the under-
standing that the aforementioned variants were not distinct entities but rather the result
of typographical inconsistencies. By selecting one correct value for each set of similar
names, the ground truth effectively rectifies these errors, serving as a critical reference
for data cleaning and normalization efforts. This approach ensures that the dataset is both
accurate and reliable, facilitating more precise analyses and interpretations.

Additionally, the data analysis executed during the ground truth creation revealed
other challenges in the authors’ list of unique values. Names such as ’Aitch.’, ’Downs’,
’Klotz.’, ’Meisn.’, and ’Moric.’ do not appear as authors, reviewers, or validators in the
publications describing the species. They are referenced to the International Plant Names
Index (IPNI) website (https://www.ipni.org/), probably referencing plant names and in-
dicating potential recording errors in the datasets. The value ’Hort. Berol.’ was found
as the author name, but is actually a botanical garden and museum in Berlin, not an au-
thor. The authors ’G.’ and ’L. B.’ appear in the database after processing but were absent
before preprocessing, suggesting that the authors’ names were separated during database
preprocessing, highlighting the challenge of finding preprocessing solutions that do not
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result in such issues.

Lastly, two authors were mistakenly recorded under the same abbreviation ’Gomes
da Silva’: Ary Gomes da Silva, whom the abbreviation is ’Gomes da Silva’, and is the “pi-
oneiro” for the species Begonia mamedeana, and Sandra Jules Gomes da Silva, whom the
abbreviation is ’S. J. Gomes da Silva’, and is the “pioneiro” for species such as Begonia
salesopolensis and Begonia jureiensis. However, some records incorrectly use the same
abbreviation for both, an error since even authors sharing a surname should have distinct
abbreviations to accurately reflect their individual contributions. After these steps, to cre-
ate the ground truth, we applied the similarity functions to identify the possibilities of two
values representing the same real object among the unique values for authors names.

5.4. Similarity Functions

The following algorithms were incorporated into the methodology:

1. Jaccard Similarity: The Jaccard similarity measure assesses similarity and diver-
sity between sets by comparing the intersection of items to the union of items. It
finds application in scenarios where the presence or absence of features is more
pertinent than their frequency, particularly in evaluating similarity between botan-
ical species in databases.

2. Levenshtein Distance: The Levenshtein distance, or edit distance, quantifies dis-
similarity between two strings by calculating the minimum number of operations
needed for transformation. It encompasses insertions, deletions, or substitutions
of single characters, proving valuable for rectifying typographical errors and ac-
commodating minor variations in names.

3. Jaro-Winkler Similarity for Names: The Jaro-Winkler similarity algorithm spe-
cializes in comparing strings, particularly names, highlighting common prefixes.
It assigns higher similarity scores to strings with similar beginnings, thus improv-
ing matching and correction of name variations.

4. Metaphone or Double Metaphone: Metaphone or Double Metaphone are phonetic
algorithms encoding names based on pronunciation, facilitating comparison of
names with similar sounds. These algorithms handle cases where variations in
spelling result in similar or identical pronunciations.

5. N-grams: N-grams involve breaking names into sequences of contiguous letters
or sounds of length ’n’, capturing similarities in names by considering overlap-
ping subsequences. It enhances the matching process by identifying structural
similarities in names.

6. Smith-Waterman Similarity: The Smith-Waterman similarity algorithm, a local
sequence alignment method prevalent in bioinformatics, identifies and corrects
local similarities in names, accounting for sub-sequence variations.

7. Fingerprinting Algorithm: The Fingerprinting algorithm generates unique finger-
prints for names, aiding in efficient comparison and identification of similarities.
It employs binary vectors, known as molecular fingerprints, quantifying similarity
using the Tanimoto coefficient, which evaluates overlap between binary vectors.

The use of these diverse algorithms aimed to comprehensively address the intrica-
cies of variations in the representation of author’s names in the biological databases.
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5.5. Evaluation Metrics

To measure the effectiveness of our approach, we have used the classical metrics of
evaluation: accuracy, precision, recall, and F1-measure [Baeza-Yates and Ribeiro-Neto
2008]. These evaluation metrics play vital roles in assessing the performance of author
name deduplication algorithms. Ensuring accuracy and reliability in deduplication within
botanical databases, especially concerning author names following ICN rules, is crucial
for maintaining scientific record integrity.

Precision measures the proportion of accurately identified duplicates among all
instances classified as duplicates, indicating the true positives rate. High precision is
imperative to minimize false positives, particularly in botanical databases where merg-
ing distinct author names could result in significant information loss. Recall evaluates
the algorithm’s capability to detect all true duplicates within the dataset. In botanical
databases, high recall ensures the correct identification of all variations of an author’s
name, conforming to ICN rules, belonging to the same individual, notwithstanding chal-
lenges posed by diverse name formats and potential typographical errors. The F1 score
offers a harmonic mean of precision and recall, presenting a single metric that balances
both the accuracy and completeness of the deduplication process. Given the equal impor-
tance of minimizing false positives (to prevent incorrect merges) and false negatives (to
ensure comprehensive deduplication), the F1 score serves as a critical indicator of overall
algorithm efficacy.

6. Results

Figures 5 presents the results of comparing the text similarity methods using the three
botanical datasets: SPLINK for Bignoniaceae, SPLINK for Begoniaceae, and REFLORA
for Begoniaceae. It shows results for precision, recall, and F1-score for each method
across all three datasets: a) Bignoniaceae - SPLINK, b) Begoniaceae - SPLINK, and c)
Begoniaceae - REFLORA.

Figure 5. Comparison of text similarity methods applied to three botanical
datasets (Bignoniaceae - SPLINK, Begoniaceae SPLINK, and Begoniaceae
- REFLORA). The three graphs of subplots (a, b and c) presents bar charts
showing precision, recall, and F1 score for each method across the three
datasets.

The Levenshtein method achieved the highest precision among all methods, par-
ticularly in the Begoniaceae REFLORA database (Figure 5, c). However, its lower recall
indicated it missed certain genuine similarities. Conversely, the Smith-Waterman method
demonstrated a balanced performance with high scores in precision, recall, and F1 score
across all databases (Figure 5, a, b, c), indicating robust capability in identifying true
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similarities while maintaining low false positives and negatives. While the Metaphone
method displayed high recall across all databases, especially in Begoniaceae REFLORA
and SPLINK (Figure 5, b, c), but its lower precision suggested a higher incidence of false
positives. Similarly, the Jaccard index showed consistent performance with moderate pre-
cision and recall, leading to balanced F1 scores (Figure 5, a, b, c), while the Jaro-Winkler
method had high recall but lower precision, indicating more false positives (Figure 5, a,
b, c).

For Begoniaceae in the SPLINK database, the Fingerprinting method achieved
high precision and recall but performed lower in the REFLORA database, suggesting
variability based on dataset (Figure 5, b, c). The N-grams method demonstrated mod-
erate precision and recall, resulting in moderate F1 scores (Figure 5, a). Both Jaccard
and Smith-Waterman showed high precision for Bignoniaceae in SPLINK, with Smith-
Waterman achieving better balance (Figure 5, a). The Metaphone method’s highest recall
suggests it effectively identifies relevant similarities without false negatives, despite its
lower precision (Figure 5, b, c). On the other hand, the Levenshtein method provided bal-
anced performance, excelling in both precision and recall, and achieving a good F1 score
(Figure 5, a, b, c). The Jaccard index was robust in precision and recall for Bignoniaceae
in SPLINK (Figure 5, a), whereas Jaro-Winkler’s high precision but lower recall indicated
more false negatives (Figure 5, a, b, c).

A particular observation for the N-grams method in REFLORA (Figure 5, c) was
its moderate precision and recall, highlighting the importance of dataset size and thresh-
old settings. These results underscore the necessity of selecting appropriate text similarity
methods based on the specific requirements of precision, recall, and F1 score. The Meta-
phone and Smith-Waterman methods demonstrated superior performance in this compar-
ative analysis.

7. Discussion
The comparative analysis of text similarity methods underscores the criticality of selecting
appropriate techniques tailored to specific application needs, particularly regarding preci-
sion, recall, and F1 Score. The Metaphone method exhibited exceptional recall, achieving
perfect scores in both Begoniaceae and Bignoniaceae on the SPLINK database, as well
as in the REFLORA database for Begoniaceae. It’s high recall indicates its effectiveness
in capturing all potential matches, making it particularly suitable for applications where
minimizing false negatives is crucial. However, its lower precision suggests a higher
incidence of false positives, necessitating its combination with other methods to ensure
accurate duplicate identification.

Conversely, the Levenshtein method demonstrated a balanced performance, with
notable scores in precision, recall, and F1 Score, suggesting a robust capability to identify
true similarities while maintaining a lower rate of false positives and negatives. Lev-
enshtein’s high precision is possibly due to its sensitivity to small differences between
strings, making it particularly effective at identifying exact or near-exact matches. How-
ever, this same sensitivity can lead to lower recall, as the method may fail to capture
legitimate variations in strings that represent the same entity, especially when dealing
with spelling errors or alternative abbreviations.

The Jaccard index presented consistent performance across different datasets,
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with moderate precision and recall scores leading to balanced F1 Scores. The Jaro-
Winkler method also showed relatively high precision scores in most datasets, indicating
its strength in identifying accurate matches. However, its recall was lower, which may
point to a higher incidence of false negatives. In the assessment of Begoniaceae species
within the SPLINK database, the N-grams method demonstrated moderate performance
with lower precision and recall scores, leading to a lower F1 score. The Fingerprinting
method, while achieving high precision in both the SPLINK and REFLORA databases,
had a significantly lower recall, highlighting a tendency to miss genuine similarities. It’s
high recall is due to Fingerprinting’s ability to recognize and match a broad spectrum of
similar patterns across different names. However, like Metaphone, its broad approach can
result in lower precision because it may overgeneralize, grouping distinct names together
based on shared features that do not necessarily indicate identical entities.

Analyzing the Bignoniaceae species within the SPLINK database, the Smith-
Waterman method showed high precision and recall scores across all databases, achiev-
ing a harmonious balance as evidenced by its F1 score. This balance indicates its robust
capability in identifying true duplicates while minimizing false positives and negatives,
making it a versatile choice for various datasets and applications.

These results underscore the importance of selecting appropriate text similarity
methods based on the specific requirements of precision, recall, and F1 score. The su-
perior performance of the Metaphone and Smith-Waterman methods in our comparative
analysis highlights their potential as robust solutions for improving database integrity.

8. Conclusion and Future Works

This analysis of text similarity methods reveals performance variations based on preci-
sion, recall, and F1 Score metrics, underscoring the importance of selecting methods
that align with specific application needs. The Smith-Waterman method emerged as a
balanced and versatile choice, performing reliably across all metrics and highlighting
its applicability to diverse text similarity tasks, ensuring data integrity across botanical
datasets. Overall, these findings emphasize the necessity for tailored approaches in text
similarity assessments. Future work will focus on developing a technique to address these
challenges in the specific context of botanical databases using Large Language Model -
LMM.
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