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Abstract. Deploying scientific workflows in high-performance computing (HPC)
environments is increasingly challenging due to diverse computational settings.
Containers help deploy and reproduce workflows, but both require more than just
accessing container images. Container provenance provides essential information
about image usage, origins, and recipes, crucial for deployment on various archi-
tectures or engines. Current support is limited to container actions and processes
without workflow traceability. We propose extending workflow provenance to in-
clude container data using ProvDeploy, which supports workflow deployment
with various container compositions in HPC, using W3C-PROV for container rep-
resentation. We evaluated this with a real scientific machine learning workflow.

1. Introduction

Scientific workflows are chained activities with a data flow in between
[de Oliveira et al. 2019]. The workflow activities comprise multiple programs, soft-
ware libraries, and software dependencies [Orzechowski et al. 2018]. These workflows are
usually deployed in various environments due to their resource requirements and scientific
nature [Orzechowski et al. 2018]. Their design and initial development are performed on
personal computers and later are migrated to High Performance Computing (HPC) envi-
ronments where they can be properly executed. So, their execution demands a deployment
process to be performed multiple times in heterogeneous environments. Current machine
learning experiments share this same profile of scientific workflow deployment.

Containerization can assist in deploying applications in multiple and heteroge-
neous environments [Merkel et al. 2014]. Containers are a lightweight form of virtual-
ization that packages an application and its software dependencies into a single, self-
contained unit [Merkel et al. 2014]. This executable unit is called a container image. Us-
ing containers to deploy scientific workflows requires a careful containerization design
[Kunstmann et al. 2024]. This design includes deciding which container images to use
for the workflow activities and how to group these images in containers, known as con-
tainer composition. There are three alternatives to compose the workflow container. In the
fine-grained composition, each workflow activity is containerized in independent contain-
ers. The other extreme is the coarse-grained composition that uses a single container to
group all workflow activities. In the hybrid composition, workflow activities are grouped
in a few containers to avoid one single container or managing the many containers of the
fine-grained. This containerization design is implicit and yet needs to be known for repro-
ducibility. Provenance data is often associated with workflow execution to add trust and
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reproducibility [Costa et al. 2013]. The workflow provenance is not aware of the container-
ization design. It is important to make a workflow provenance container-aware to represent
how the container images are chosen and grouped to workflow activities, with the necessary
ports to access those images, etc.

Current approaches to container provenance focus on capturing I/O operations and
tracking container behavior through low level function calls. They do not relate container
provenance to workflow provenance traceability. Analyzing these provenance data is further
complicated because related work does not comply with standard representations like W3C
PROV [Moreau and Groth 2013] and the Open Container Initiative (OCI) annotations1.

We present a workflow provenance approach that is container-aware to represent
globally the traceability of the workflow execution. We argue that both workflow and con-
tainer provenance are essential for the analysis and reproducibility of the workflow, as they
are complementary. Our approach aims at providing workflow analysis like “which con-
tainer images were used for a specific activity of the workflow”, and traceability on the base
images of the workflow execution path.

We use ProvDeploy2 [Kunstmann et al. 2022] to evaluate our container-aware
workflow provenance approach. ProvDeploy is a framework that deploys containerized
workflows in HPC environments, supporting different container compositions. We con-
tribute with a provenance data model based on the W3C PROV and the OCI annotations
to represent container descriptions, requirements, recipes, and files [Campagna et al. 2020,
Paranhos et al. 2023]. We explore our container-aware workflow provenance with analyt-
ical queries submitted to the execution of DenseED [Freitas et al. 2021], a real scientific
machine learning workflow. We show how the provenance of multiple containers can be
used to help analyze and reproduce the workflow.

The remainder of this paper is structured as follows. Section 2 presents container
provenance related work. Section 3 presents ProvDeploy extended with the proposed
provenance data model. Section 4 shows the use of provenance through ProvDeploy
to evaluate different container compositions with DenseED in an HPC environment, and
Section 5 concludes this paper.

2. Workflow Containerization and Current Provenance Support
This section presents challenges in containerizing workflows and container provenance.
Current approaches for container provenance are limited to representing container actions
and processes without workflow traceability. We did not find related work for workflow
provenance traceability that is container-aware. Capturing and relating container with work-
flow provenance for analysis is an open problem, particularly in HPC.

Provenance support for workflows is not new [Silva et al. 2020], however, many so-
lutions that claim to support provenance, do not represent the typical relationships that define
the derivation paths for traceability [Pina et al. 2024] or cannot capture provenance in HPC.
PROV-IO+[Han et al. 2024] is an exception designed to capture workflow provenance for
HPC environments. It shares similarities with ProvDeploy like using an extensible W3C
PROV-compliant data model and providing relationships through prospective provenance

1https://opencontainers.org/
2https://bitbucket.org/lilianeKunstmann/provdeploy/
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(p-prov), where steps of the workflow are represented before execution like a recipe to be
followed, in addition to retrospective provenance (r-prov), which is captured during exe-
cution [Freire et al. 2008]. Despite a rich workflow provenance, PROV-IO+ is unaware of
container provenance.

Containerizing applications is almost straightforward, whereas composing work-
flow activities into containers is challenging [Lampa et al. 2019, Novella et al. 2019]. The
coarse-grained composition helps deployment, however, replacing and reusing workflow ac-
tivities is easier with a fine-grained composition. Reproducing a workflow execution with-
out container composition awareness can be challenging. In HPC workflows there are often
restrictions on image building [Priedhorsky et al. 2021]. Containers are not isolated like
virtual machines, they rely on the host OS to execute their isolated processes and can be
affected by other containers, their configurations [Straesser et al. 2023], and the execution
environment [Straesser et al. 2023, Wofford et al. 2022].

All those issues increase workflow containerization challenges. Like scientific work-
flows, ML often adopts containers through ML studios and other cloud hosted services that
provide access to computing resources. In the ML context, users face challenges in container
compositions and limited provenance support [Schlegel and Sattler 2023, Pina et al. 2024].

Capturing container provenance is addressed by a few approaches, with variations
in what data is collected and how it is stored, depending on their goals. Most of these
approaches [Shaffer et al. 2023, Chen et al. 2021, Abbas et al. 2022, Ahmad et al. 2020,
Han et al. 2024] automatically collect metadata from containers of single applications or
microservices. However, this metadata does not relate the application artifacts, has low-
level traces, lacks workflow support, and, is available only for post-mortem analysis, i.e.
only after execution. Our analysis finds that current related work limits workflow traceabil-
ity analyses and reproducibility of container images.

We discuss and compare some of these approaches with ProvDeploy in Table
1. The column Container & Workflow specifies if the provenance captured can represent
container provenance related to workflow. Provenance Awareness level details the level of
container provenance representation if it represents single applications, microservices, or
workflows. Provenance graph specifies if the approach allows the derivation of a prove-
nance graph. Data Model describes whether provenance is represented following a standard
such as W3C PROV or in an ad-hoc way. Access Availability indicates whether the prove-
nance data are available for analysis at runtime or post-mortem. Query Support indicates
the query support for analyzing provenance data.

Chen et al. (2021) discuss the challenges of sound and clear provenance tracking for
microservices proposing CLARION, a namespace and container-aware provenance tracking
solution. Similarly, ALASTOR enables tracking of suspicious events in serverless applica-
tions. PACED [Abbas et al. 2022] is designed to detect container escape attacks through the
isolation of cross-namespace events. Satapaphy et al. (2023) discuss the lack of provenance
data capture for microservice applications and propose DisProTrack[Satapathy et al. 2023]
for capturing provenance from microservices in an integrated way, handling parallel calls
inherent to microservices.

Modi et al. (2023) discuss the challenges of capturing container provenance for
3Universal Provenance Graph
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Table 1. Comparison of provenance support for containerized workflows.

Container
Provenance Solution

Container
& Workflow

Provenance
Awareness

Level

Provenance
Graph

Data
Model

Access
Availability

Query
Support

CLARION
[Chen et al. 2021] No Microservice No N/A

Post-
mortem N/A

ALASTOR
[Datta et al. 2022] No Microservice Yes Ad-hoc

Post-
mortem

Provenance
graph

PACED
[Abbas et al. 2022] No Microservice No N/A Runtime N/A

DisProTrack
[Satapathy et al. 2023] No Microservice Yes UPG 3 Post-

mortem RegEx

[Modi et al. 2023] No
Single

Application Yes Ad-hoc
Post-

mortem Hypergraph

[Wofford et al. 2022] No
Single

Application Yes Ad-hoc Runtime SQLite

PROV-CRT
[Ahmad et al. 2020] No

Single
Application Yes W3C PROV Runtime N/A

[Olaya et al. 2022] Yes Workflow No Ad-hoc
Post-

mortem Jupyter Interface

ProvDeploy
extended Yes Workflow Yes

W3C PROV
OCI Runtime MonetDB

standalone applications using container namespaces. They examine post-mortem container
provenance from auditing tools like PROV-CRT and introduce a hypergraph-based model
for tracking provenance in single containerized applications. Their model is limited to post-
mortem analysis of single applications.

Wofford et al. (2022) propose the definition of requirements for capturing the prove-
nance of HPC applications and the issues related to hardware metadata capture. They pro-
pose the design and implementation of a container-based provenance capture system that is
limited to a single application.

PROV-CRT [Ahmad et al. 2020] is a provenance module integrated into container
runtimes such as LXC and Docker. It tracks and audits provenance during container creation
and execution. PROV-CRT captures provenance at the granularity of system calls, which,
although difficult to analyze, enables verification and validation of computations during
container replay by comparing audited provenance data.

Olaya et al. (2022) propose a tool that automatically generates a record trail for each
data container of the workflow. They represent this record trail inside each data container
separately. Their approach provides a Jupyter interface to process these data containers to
join the traces into a workflow graph. There is no independent provenance graph to be traced
by third-party tools. Since their provenance is attached to Singularity containers, they rely
on Singularity/Apptainer compatibility and availability. Their record trail is not based on
W3C PROV relationships, which forces the user to learn a new representation, and it is only
available for post-mortem analysis that also relies on data container availability.

Our approach, implemented in ProvDeploy is inline with, Wofford et al. (2022)
and Canon (2020) highlighting the importance of documenting container characteristics for
analysis, explanation, and reproducibility, given that containers can employ different drivers
to execute the same task. ProvDeploy [Kunstmann et al. 2022, Kunstmann et al. 2024] is
a framework that eases the deployment of scientific workflows in HPC environments with in-
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tegrated provenance capture. ProvDeploy was first developed as a framework to support
provenance data capture in scientific applications, as it allowed using provenance services
through containers. In its initial version, ProvDeploy included a catalog that stored meta-
data on container images available for execution. This catalog was later expanded to provide
more detailed information about the container images. When we extended ProvDeploy
to execute workflows, we identified the need for container provenance that also registers the
workflow. To the best of our knowledge, Olaya et al. (2022) and ProvDeploy are the only
approaches that offer container provenance at the workflow level.

3. Container-aware Provenance with ProvDeploy

In this section, we present a comprehensive workflow provenance data model implemented
in ProvDeploy to become container-aware. This model extends the previous provenance
data of ProvDeploy with container provenance. Using the data model presented in Figure
1, we aim to represent container provenance and provide meaningful analysis with work-
flow provenance without tying the user to a specific provenance service. This data model is
based on OCI and Common HPC Container Conformance Initiative4, and relevant data pre-
sented in [Priedhorsky et al. 2021, Canon 2020, Straesser et al. 2023, Gruening et al. 2018,
Wofford et al. 2022].
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Figure 1. PROV-DM diagram of container aware provenance data model.

4https://github.com/container-in-hpc/container-hpc-conformance
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The model presented in Figure 1 follows the W3C PROV-DM recommendation,
where provenance is represented in terms of entities (the data objects), activities (data trans-
formations), and agents (users and systems) with their W3C PROV-DM relationships. In the
proposed model, the yellow classes represent Entities, the green classes represent Agents,
and the blue classes represent Activities. The colors of our class diagram are represented as
stereotypes in compliance with the W3C PROV classes. This data model aims to provide
information about container image origins and features, improving its findability and relia-
bility for the rebuild process. ProvDeploy implements this data model using MonetDB, a
column-oriented RDBMS, that as a DBMS solution, allows for querying provenance graphs
and easy integration with other libraries for analysis and visualization.

The entity that allows the connection between container and workflow provenance is
the entity workflow that has as an attribute workflow name (wf key name) that identifies it on
the provenance database of the provenance capture service (e.g. dataflow tag in DfAnalyzer
[Silva et al. 2020] or hashID in noWorkflow [Murta et al. 2015]). The activity execution
associates the container composition, which can be coarse-grained (one container for the
whole workflow), fine-grained (one container for each workflow activity), or hybrid (mul-
tiple, but not all, activities executed by the same container). This entity also stores job id,
from schedulers in HPC environments, which can be used later for tuning and debugging.

The entity container image represents the container image details, enabling it to be
rebuilt. A container image is specialized by the entity configuration, which includes lists of
entrypoints, labels, environment variables (env), network information (networks), required
volumes (rootFS), and commands (cmd). This information is also stored in the container
image configuration file or recipe (config file), and in the container image. Still, there is no
guarantee that recompiling the container image using the configuration file will produce an
identical image [Canon 2020], or that the configuration file is up-to-date with the image.

Additionally, container images are linked to the build environment
(build environment id) in which they were created. This build environment defines
the container’s compatible kernel architectures. A container image can be the source for
other container images, either as a primary source (base image) for a new container image
or by generating alternative versions with different container engines (original image)
through container image conversion. For instance, a container image built on Docker might
be converted to Singularity. In such cases, it is no longer associated with the config file but
references the original container image.

The entity container describes the isolated process that runs using a container image
and specifies the environment in which it is executed. A container relies on a container im-
age to be executed. One single image can be used to execute multiple containers. This entity
is used during execution activity and documents what occurred during the workflow execu-
tion. Both execution and workflow execution activities capture the expected behavior of the
containerized workflow, referred to as prospective provenance. The container entity records
the activities that were carried out, referred to as retrospective provenance. If an activity fails
to start, it is not recorded. The entity container is specialized by entity start command that
stores the commands, arguments, and environment variables used at container start because
the user can start a container image with arguments that are different from what is stored in
the container image.
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The environment agent describes the environment associated with an execution, in-
cluding its kernel architecture and scheduler. HPC and cloud environments can have het-
erogeneous resources, so the env partition was designed to detail the characteristics of the
specific environment used. This partition contains the hardware specifications of the envi-
ronment and is where the containers are executed.

The execution activity, along with workflow execution activity, describes the con-
tainerized execution. This includes the composition of containers, workflow activities, and
the containers they used, along with the expected execution commands and parameters
needed to start each activity. These activities enhance user execution management, espe-
cially in the case of provenance services, like DfAnalyzer [Silva et al. 2020], that do not
natively distinguish multiple concurrent workflow executions.

This model aims to support a comprehensive analysis of the entire workflow ex-
ecution in a containerized environment. Table 2 showcases a series of queries that the
container-aware provenance data model can address when connected to the workflow prove-
nance model. These queries are inspired by the First Provenance Challenge5 and are cate-
gorized into information concerning container reuse, workflow reproducibility, and insights
for workflow traceability analysis.

Table 2. Container and Workflow Provenance Queries inspired by the First Prove-
nance Challenge

# Query Type

Q1
Retrieve job id, containers, and host environments involved in a
workflow execution.

Reuse
Reproducibility

Q2
Retrieve the container images associated with the workflow with the
job id and activities they performed.

Reuse
Reproducibility

Q3 Retrieve all workflows that were executed with a given container image. Reuse

Q4
Retrieve all workflow activities that were run with a given container
image Reuse

Q5 Retrieve all images that are created by a specific user. Reuse

Q6
Retrieve all workflows where a given variable satisfied a certain
condition and was deployed with a specific composition.

Analysis
Reproducibility

Q7
A user has run the workflow with different compositions and in distinct
environments, increasing the number of containers. Retrieve the
differences in the compositions in the distinct environments

Analysis

Q8
Which environment (host and container) executed the workflow with
its best results?

Analysis
Reproducibility

Query Q1 retrieves data that is usually available only during execution, most im-
portantly, the register of the containers that were effectively used for workflow execution,
since registering only the images provides limited information from execution. This query
can be answered by joining entities execution, workflow execution, container image and
env partition and setting the target workflow.

Query Q2 presents information about container images used for workflow execu-
tion, and that can help users in future workflow executions with a similar software stack.
Using the associated job id we can also find more useful information about the batch job

5https://openprovenance.org/provenance-challenge/FirstProvenanceChallenge.html
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executed, such as possible tasks that were executed before or after the workflow and are not
modeled by workflow provenance. Query Q2 joins entities workflow, workflow execution,
container image and workflow, setting the target workflow using attribute wf key name.

Query Q3 shows the possibilities of reusing container images across multiple work-
flows with common software requirements, and Q4 operates similarly to Q3 but provides
more detailed information on the activities executed by the container images. Query Q4
joins container image, workflow, and workflow execution entities.

Query Q5 explores the container image entity attributes. This query helps to identify
shared base images and execution architectures (arch). If a user plans to execute any of these
container images in a different environment, the first step would be to check if the base image
has a compatible version with the target kernel architecture.

Queries Q6, Q7, and Q8, are more complex queries that rely on both container and
workflow provenance. These queries allow the user to understand the provenance model
of the workflow, which is extended by the container-aware provenance data model. These
queries join container entities execution, workflow execution with entities of the workflow
provenance model, starting with the entity that identifies the workflow with the same iden-
tifier that the entity workflow has. For DfAnalyzer’s provenance model, this identifier is
stored on an entity called dataflow. Once joined with the workflow provenance, the user can
explore data through an interval starting from the execution start and ending on the added
elapsed time. Those queries help to understand the impact of the container composition on
overall workflow performance in different environments.

Queries Q1, Q2, and Q7 cannot be answered using only workflow provenance. Dur-
ing the development of a scientific workflow, users often explore multiple algorithms and
software libraries, resulting in numerous containers and container images combined with
different sources and environments. In current approaches, containers are not linked with
their associated container images, environments, libraries, or workflows. This information
may be scattered across logs, files, and scripts. Without a predefined structure to represent
this information, analyzing it becomes increasingly difficult and may not be possible, even
though it is essential for reproducibility.

Queries Q3, Q4, Q5, and Q7 can improve container image reuse and reduce the exe-
cution and storage of unnecessary container images to execute a workflow since a container
image can be used to execute multiple workflow activities and generate new container im-
ages. In addition, with the data model of ProvDeploy we can track a container image
derivation path to rebuild it.

4. Evaluation of the Container Provenance Model with the DenseED Workflow

In this section, we evaluate the container provenance model to support queries during and
after the execution of the DenseED workflow.

4.1. DenseED workflow

DenseED is a scientific Machine Learning (ML) workflow proposed by Freitas et al. (2021),
based on a Physics-guided Physics-guided Convolutional Neural Networks (CNN) as de-
fined by Zhu and Zabaras (2018). DenseED uses the Physics-guided CNN as a surrogate
model for Reverse Time Migration (RTM) calculations to quantify uncertainties. Solving
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RTM equations is a CPU-intensive and time-consuming task. To quantify uncertainties,
RTM has to be calculated many times. The architecture, presented in Figure 2, shows con-
volutional layers and dense blocks in an Encoder-Decoder arrangement to manage high-
dimensional inputs and outputs.

C
on
v Dense

Block

En
co
di
ng

D
ec
od
in
g

Dense
Block

En
co
di
ng

Dense
Block

Dense
Block

D
ec
od
in
g

Dense
Block

D
ec
od
in
g

L

L

Figure 2. DenseED architecture [Freitas et al. 2021].

DenseED provenance was previously modeled in the provenance database of DfAn-
alyzer, which captures workflow provenance during execution for runtime hyperparameter
tuning [Silva et al. 2020]. This provenance includes hyperparameters and training/test met-
rics like R2 and RMSE. Specifically, K determines the DenseED growth rate, and L the
number of layers in the dense block, both stored by the model. The system relies on Ten-
sorFlow, which requires specific compatibility with Python, the C compiler, Bazel, CUDA,
and cuDNN when using GPUs. TensorFlow is available through containers, simplifying this
process by enabling GPU usage with specific flags. Users can explore alternative container
images from public registries like NGC (NVIDIA GPU Cloud), Docker, and Binder if a
workflow’s container image is incompatible with the available GPU or the kernel architec-
ture.

Additionally, containers ease the exploration of heterogeneous CPU hardware with
minimal effort. Public registries like NGC provide users with optimized TensorFlow con-
tainer images for different NVIDIA GPU series, allowing users to explore multiple Tensor-
Flow versions and features on different GPU devices. This exploration is not simple, and
container provenance helps to identify the best version for reusing the container images, in
addition to tracking performance changes. To ensure the reproducibility of these executions
over time, container provenance provides relevant information about the original images
and, if necessary, helps identify suitable replacement images or rebuild new ones.

4.2. Environment setup

DenseED was deployed with ProvDeploy in Santos Dumont (SDumont)6 Supercomputer.
SDumont has an installed processing capacity of around 5.1 Petaflop/s (5.1 x 1015 float-
point operations per second), presenting a hybrid configuration of computational nodes, in
terms of the available parallel processing architecture. We used two different computational
nodes a CPU node and a GPU node. The CPU node has two CPUs with an Intel Xeon
E5-2695v2 Ivy Bridge 2.4GHZ processor, 24 cores (12 per CPU), and 64GB DDR3 RAM.
The GPU node is part of SDumont expanded partition BullSequana X that has two CPUs
with Intel Xeon Skylake 2.1 GHz processor, 48 cores (24 per CPU), 384GB RAM, and
four GPUs NVIDIA Volta V100. In both, we used Linux RedHat 7.6 operating system, and
Singularity 3.8 for the container engine. We have used a personal computer (CPU Intel Core

6https://sdumont.lncc.br/
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i7-10700K processor, 3.80GHz, 16 cores, and 15,5 GiB) to execute DenseED and generate
the container images to be deployed in SDumont. Its operating system is Ubuntu 20.04.6
LTS.

4.3. Analyzing container aware workflow provenance in DenseED

To find the best container composition for DenseED, the workflow was executed with three
containerization compositions as shown in Table 3. Querying container provenance helps to
choose the best composition and fine-tune containerization decisions according to the target
execution environment. ProvDeploy supports all the queries listed in Table 2 and this
section discusses some of these queries in the context of DenseED.

Table 3. Exploring different containerization compositions with DenseED.
Compositions Description

Coarse-grained
A single container encompassing all dependencies for provenance data capture, and
running DenseED.

Partial modular
Two containers: A container with DenseED and a second container with the DBMS
and provenance data, and the provenance service.

Provenance modular
Three containers: the first with DenseED, the second with the provenance service,
and the third with the DBMS and provenance data.

Table 4 shows how query Q5 explores container images created by the user ‘Liliane’.
In this scenario, Liliane has a database with container images from various workflows. The
images tagged dfanalyzer, py-readseq-modelGenerator, and java-readseq-modelGenerator
are all based on a Java image that was not created by Liliane and share the amd64 kernel
architecture. When reproducing this workflow with any of these container images, it is ben-
eficial to check if the base image has a version compatible with the new target architecture.

Table 4. Q5 - Container images generated by user ‘Liliane’;
id author arch vendor image tags description Env name image

type
Base
Image

8 Liliane amd64 Singularity denseed
DenseED with DfAnalyzer
and MonetDB liliane-imac20 application tensorflow

9 Liliane amd64 Singularity provData DfAnalyzer and MonetDB liliane-imac20 provenance dfanalyzer

1 Liliane amd64 Docker icc
Intel compiler with
dfa-lib-cpp liliane-ubuntu application N/A

3 Liliane amd64 Singularity dfanalyzer Container of dfanalyzer liliane-ubuntu provCollector java

4 Liliane amd64 Singularity monetdb
Container of provdeploy
database liliane-imac20 database N/A

5 Liliane amd64 Singularity py-readseq-modelGenerator

ReadSeq, python2, java,
raxml, dfa-lib-python with
telemetry, and psutils
for python applications

liliane-iMac20 application java

6 Liliane N/A N/A java-readseq-modelGenerator

ReadSeq, python2, java,
raxml, dfa-lib-python with
telemetry, and psutils
for Java applications

liliane-iMac20 application java

DenseED explores variations of its CNN architecture (convolutional, discrimina-
tor/generator, conditional, etc.), training metrics, and parallelization techniques. It also ex-
plores multiple execution environments with different TensorFlow and CUDA versions (i.e.,
multiple containers), and these changes have an impact on the training execution time.

Analyzing all these different details over time becomes increasingly complex, lead-
ing to a trial-and-error process. Without provenance, it is difficult to reproduce the same
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results or match DenseED with its compatible containers. For instance, even using a single
environment like SDumont, users face this challenge since there are multiple GPU parti-
tions with distinct devices available (e.g., K40 and V100). These devices require different
combinations of cuDNN, CUDA, TensorFlow, and other software, resulting in distinct con-
tainer images. Also, these combinations are affected by the image origins (e.g., Docker Hub,
NCG, etc), which will ignore the GPUs if deployed in an incompatible partition, in the best
scenario.

Using ProvDeploy, this information is captured and becomes available through
the proposed data model implemented at the workflow provenance database, filling gaps
in the execution information, as required in query Q7. Table 5 shows the results of query
Q7 for each environment with different container compositions. We present only the con-
tainer composition with the shortest elapsed time in each environment and the lowest R2

for the DenseED execution. Query Q7 requires joining the entities execution, env partition,
workflow execution, and workflow with those from the DenseED provenance data model,
including hyperparameters and metrics within a constrained interval from the execution en-
tity.

Table 5. Q7 - Container composition with the smallest elapsed time per environment
and the best R2.
job id Composition Elapsed time(m) Env Name R2

10898072 Partial modular 4.01 sequana gpu 0.9979
10905992 Provenance Modular 20.55 cpu 0.9976
N/A Coarse-grained 32.78 liliane-iMac20-1 0.9975

In query Q7, the differences in R2 values are small, but we observe that, as ex-
pected, the elapsed time increases according to the type of environment. Notably, the best
workflow container composition varies with the environment specification, especially in
resource-limited scenarios such as the ‘liliane-iMac20-1’, which is a personal computer.
In this environment, the coarse-grained composition was the best when considering only
elapsed time. This occurs because a coarse-grained composition involves a single con-
tainer image, enabling it to expand and freely use available resources. In resource-limited
scenarios, other compositions tend to experience resource competition between containers.
Additionally, they require extra time to start and stop containers, which accumulates over
time, increasing the overall elapsed time.

Query Q8 can be successfully executed, identifying the best result in DenseED with
the highest R2 and the lowest RMSE. Query Q8 joins the entities execution, env partition,
workflow execution, container image, and workflow with those of the DenseED provenance,
like hyperparameters and metrics within a restricted interval of DenseED training. Consider-
ing that DenseED was executed with various compositions and on different hosts, container
provenance is crucial. Without it, the user would only know the values of K and L that led
DenseED to the presented R2 and RMSE. The user would lack information about the con-
tainer images (tensorflow, dfanalyzer, monetdb) and the environment in which this model
was executed (sequana gpu), making it much harder to replicate or reproduce the execution.
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5. Conclusion
Using containers to execute workflows in HPC environments can improve the portability
and reproducibility of workflows. However, while containers enhance portability, they lack
provenance data to assess reproducibility. In this paper, we explored container provenance
aspects and introduced a container-aware provenance data model that extends an existing
workflow provenance data model. Our goal is to provide container-aware provenance to
improve workflow data analysis in HPC environments and improve trust in the use of con-
tainers. We evaluated this model using queries to help analyze and reproduce the workflow.

The proposed model is implemented in ProvDeploy. For its provenance to be
successfully integrated with provenance from other services, certain requirements must be
met by those services. For example, they must have a key attribute that identifies the work-
flow, which is necessary for integrating with the container-aware provenance data model.
Despite such limitations, the proposed model represents a first step towards capturing con-
tainer provenance associated with workflow provenance. In future work, we plan to integrate
the proposed model with other provenance capture mechanisms and evaluate it with other
types of workflows.
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