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Abstract. This paper addresses challenges highlighted by health professionals,
where up to 50% of a medical consultation’s time is spent on history creation.
To streamline this process, we propose leveraging Automatic Speech Recogni-
tion (ASR) models to convert spoken language into text. In our study, we assess
the effectiveness of pre-trained ASR models for medical history transcription
in Brazilian Portuguese. By incorporating language models to enhance ASR
output, we aim to improve the accuracy and semantic fidelity of transcriptions.
Our results demonstrate that integrating a 5-gram model with Wav2Vec2 PT
significantly reduces transcription errors, while also maintaining superior per-
formance in capturing textual nuances and similarity.

1. Introduction

The traditional process of collecting medical histories can be time-consuming and re-
quires considerable time from healthcare professionals [Chiu et al. 2017]. According to
Hapvida NotreDame Intermédica1, during a medical consultation, on average, up to 50%
of the total time is consumed by the creation of the medical history. Often, medical
histories may not contain detailed enough information, which can lead to inaccurate or
incomplete diagnoses.

Medical histories may also vary in terms of format, structure, and content, making
comparison and information sharing among healthcare professionals difficult. Another
possible problem is that during a consultation, for example, healthcare professionals may
face difficulties in remembering all the relevant details provided by the patient. In short,
it is necessary to seek solutions to the problems related to inefficiency, lack of precise
details, lack of standardization, and difficulty in accessing relevant information during
the process of collecting and creating medical histories.

In response to the challenges posed by the traditional process of collecting med-
ical histories, automatic speech recognition (ASR) emerges as a promising alternative.
ASR involves converting speech into text using computer programs, often employing
methods like pattern recognition and artificial intelligence [Reddy 1976]. While pre-
trained audio encoders like Wav2Vec2 [Baevski et al. 2020, Schneider et al. 2019] and
Jasper [Li et al. 2019] have proven effective in learning high-quality speech represen-
tations, their unsupervised nature typically necessitates a fine-tuning stage for specific
tasks, such as speech recognition in specialized domains like medical histories. However,
fine-tuning can be complex and often requires the expertise of a qualified professional.
Additionally, a comprehensive dataset containing pairs of audio and text specific to the

1https://www.hapvida.com.br/site/

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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domain and language is crucial. Nevertheless, such datasets are currently lacking for
medical histories in Brazilian Portuguese, rendering fine-tuning impractical.

ASR models should ideally perform reliably across various domains without the
need for supervised fine-tuning for every deployment distribution. Large language mod-
els (LLMs) like Whisper [Radford et al. 2023] or AudioPALM [Rubenstein et al. 2023]
present an alternative, allowing the knowledge gained during training on one or multiple
datasets to be applied to different yet related datasets. To comprehensively explore alter-
natives for ASR in addressing our specific problem, we establish a benchmark focused on
real audio and text data from medical histories. This benchmark enables us to evaluate
various ASR models, including advanced language models like Whisper.

Our findings highlighted challenges in Portuguese medical transcription, includ-
ing phonetic similarities (“SS” and “S”) and the silent “H”, leading to inaccuracies in
ASR transcriptions, medical acronyms (“FC” for frequência cardı́aca - heart rate) and
measurements (“bpm” for batimentos por minuto - beats per minute) further complicate
accurate transcription. Furthermore, while a doctor might verbally report a patient’s con-
dition as “the patient presents a heart rate of 90 beats per minute”, it’s common practice
for physicians to document this as “HR: 90 bpm” in the medical history.

Such obstacles underscore the need for precise decoding by ASR models for
Brazilian Portuguese in the clinical domain, where accurate medical history documen-
tation is crucial for legal compliance. To address these challenges arising from medical
terminology and better transcribe audio recordings of patient histories, we conduct a com-
parative study involving different ASR models, including Whisper and Wav2Vec2. More-
over, to balance the accuracy of clinical term transcription with the associated semantics
and context, we enhance the decoding of Wav2Vec2 PT by integrating language models
to correct the transcriptions.

We chose to incorporate a language model with Wav2Vec2 transcriptions because,
in our benchmarks, Wav2Vec2 PT outperformed Whisper. Specifically, Wav2Vec2 PT
achieved an average Word Error Rate (WER) of 0.24 and a cosine similarity of 0.88,
while Whisper achieved a WER of 0.37 and a cosine similarity of 0.83. Furthermore,
integrating Wav2Vec2 PT with a 5-gram model further enhanced its performance, achiev-
ing a WER of 0.17 and a cosine similarity of 0.91. Even after fine-tuning Wav2Vec2
PT, the improvement was more significant when a language model was integrated with
Wav2Vec2 PT.

The rest of this article is organized as follows. Section 2 presents the main related
works. Section 3 explains the data, evaluation metrics, and methods used. Section 4
discusses our experimental results. Finally, Section 5 summarizes this work and proposes
future directions.

2. Related Work

This section provides an overview of key studies related to ours. Some ASR approaches
in the medical domain have been explored, such as the survey by [Lee et al. 2023], which
assessed a machine learning-based SR system’s efficacy in reducing nursing documenta-
tion workload within a psychiatry ward. Conducted at Cheng Hsin General Hospital in
Taiwan, nurses evaluated the SR system’s documentation time and error rate compared to
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keyboard entry. Results revealed that the SR system processed 30,112 words in 32,456
seconds, achieving a recognition accuracy improvement from 87.06% to 95.07% across
four sessions. However, despite the improvements, the system still produced errors, indi-
cating that further refinement is necessary to ensure reliability in clinical settings.

In [Paats et al. 2018], an analysis of different language models’ impact on an Esto-
nian ASR system’s clinical performance was conducted. Initially using a Gaussian Mix-
ture Model (GMM) acoustic model, the system transitioned to a Deep Neural Network
(DNN) acoustic model. The fine-tuning process involved adapting the acoustic model
with in-domain data and the language model with spoken data. Testing with 11 radiolo-
gists dictating 219 reports in a clinical environment showed performance improvement,
with the average WER decreasing from 18.4% to 5.8%. While demonstrating acceptable
accuracy, these studies underscore the importance of adapting the model to the specific
domain. They show that although improvements are achieved, there are still errors and a
need for further enhancements in ASR transcription.

Researchers are collectively concerned about improving ASR model transcrip-
tion accuracy due to the potential for clinical harm arising from speech recogni-
tion inaccuracies, as evidenced in prior studies like [Chiu et al. 2017, Kar et al. 2021,
Sullivan et al. 2022], among others. While fine-tuning is important, researchers are ex-
ploring other strategies, such as the use of language models to enhance ASR model output.
The same idea that we follow in this paper.

[Chiu et al. 2017] explores two methods for constructing speech recognition mod-
els: one uses recurrent neural networks with connectionist temporal classification (CTC),
while the other employs Listen Attend and Spell (LAS) models. The CTC system trains
an acoustic model with CTC loss, using context-dependent phoneme outputs, n-gram
language models, and pronunciation dictionaries, and decodes using a finite-state trans-
ducer (FST) decoder. Both unidirectional and bidirectional CTC models were trained.
LAS models consist of an encoder, attention mechanism, and decoder. The CTC models
achieved a WER of 20.1%, while the LAS models achieved 18.3%.

[Kar et al. 2021] developed a system to extract medical information from audio
recordings in critical medical scenarios. The authors utilized a multi-style training ap-
proach and noise reduction techniques, integrating specific medical terms into the ASR
system for enhanced accuracy. The transcription texts were processed with MetaMap, a
tool identifying clinical concepts in UMLS ontologies, which notably improved accuracy,
particularly with medical terms. Results showcased a substantial reduction in WER of up
to 52.27% compared to the baseline model.

Another relevant study in this area is [Sullivan et al. 2022], which integrates a 4-
gram language model into the decoding process of Wav2Vec2. This integration aids in re-
ducing spelling errors and improbable word sequences, thereby increasing the likelihood
of accurately predicting words commonly found in the language. Moreover, an advantage
of incorporating a language model into decoding is the ability to calculate probabilities
from a text-only corpus, eliminating the need for audio data as in a fine-tuning approach.

The present study follows the strategies outlined in the aforementioned stud-
ies. First, based on the work of [Paats et al. 2018], the focus will be on adapting the
model to the medical domain and the specific language of Brazilian Portuguese. In line
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with [Kar et al. 2021], while creating an ontology of medical terms may seem appeal-
ing, it presents significant challenges, such as development complexity and the diffi-
culty of finding Portuguese-language databases for clinical domain. Therefore, we ex-
periment with language models to enhance decoding, as suggested by [Chiu et al. 2017]
and [Sullivan et al. 2022]. Furthermore, we compare different language models to as-
sess which are most effective for Portuguese. This approach was chosen due to the wide
availability of these pre-trained models and their flexibility.

3. Data and Methods

This section outlines our data source and methodology for addressing the research ques-
tions guiding our experiments. First, we employ data preprocessing, comprising two main
phases: audio standardization and text processing. Subsequently, we select several ASR
models and provide them with audio inputs. Each ASR model generates text outputs cor-
responding to the given audio. Additionally, we introduce a novel step aimed at enhancing
the decoding of ASR models by incorporating language models to mitigate syntactic er-
rors, given the critical importance of accurate medical histories. Finally, we evaluate the
text outputs of the ASR models using various evaluation metrics, including WER, Cosine
Similarity, and BLEU. All these steps are illustrated in Figure 1.

Text Normalization

Audio
Standardization ASR model Output

Normalization

Evaluation MetricsData Input Metrics
Output

Decoding
Enhancement with
Language Models

Figure 1. Methodology Overview

3.1. Data source and preprocessing

We establish a benchmark by recording 224 audio samples derived from authentic med-
ical history texts sourced from the private database of Hapvida NotreDame Intermédica.
This initiative addresses the lack of publicly accessible databases specifically tailored to
Brazilian Portuguese in the medical domain. The audio pairs are meticulously curated
and recorded by the authors. In the preprocessing stage, we standardize the audio files
to 16kHz frequency and conduct text preprocessing. This involves converting all text
to lowercase, removing accents, converting certain punctuations, such as ’:’ to ’colon’,
numbers to their written-out form and eliminating characters not present in the Wav2Vec2
vocabulary. These steps ensure uniformity and consistency throughout the dataset.
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3.2. ASR models
In this paper, we use three ASR models: Wav2Vec2, Whisper, and HuBERT
[Hsu et al. 2021]. In what follows, we provide an overview of such ASR models.

Wav2Vec2 addresses the challenge of training models with large datasets by uti-
lizing limited labeled data. It employs a unique approach by jointly learning discrete
speech units alongside contextualized representations. The model architecture consists of
a feature encoder that takes raw waveform input and passes it through blocks containing
temporal convolution, layer normalization, and a GELU activation function. The output
is then fed into a context network following a Transformer architecture.

HuBERT [Hsu et al. 2021] is a self-supervised BERT model [Devlin et al. 2018]
designed for audio inputs. To handle variable-length sound units and multiple sound units
per input, the authors introduce hidden units (Hu), which are clusters assigned to input
audio segments using k-means. These hidden units are then mapped to embedding vectors
and used as targets to train the BERT model. After pre-training to assign contextual repre-
sentations to audio inputs, the model is fine-tuned for ASR using a softmax layer. Accord-
ing to [Hsu et al. 2021], HuBERT performs comparably to Wav2Vec2 across all evaluated
fine-tuning subsets when pre-trained on Librispeech (960h) and Libri-light (60,000h).

Whisper [Radford et al. 2023] is a robust speech processing system designed to
overcome the limitations of unsupervised pre-trained audio encoders like Wav2Vec2.
While these encoders excel at learning speech representations from raw audio, they lack
a decoder of comparable performance, requiring fine-tuning for specific tasks like ASR.
Whisper introduces an encoder-decoder Transformer architecture [Vaswani et al. 2017],
utilizing sequence-to-sequence models for transcript prediction without extensive stan-
dardization. It also performs tasks such as language identification and translation to En-
glish. Trained with 680,000 hours of data across 96 languages, Whisper transfers well to
other datasets without requiring dataset-specific fine-tuning, making it a versatile multi-
language multitask model.

3.3. Fine-tuning Wav2Vec2 PT
Due to the absence of a dedicated Brazilian Portuguese medical corpus, we engaged three
medical science students (two females and one male) to record a total of 657 audio clips
containing real patient anamneses. This effort aimed to enhance transcription accuracy
by fine-tuning Wav2Vec2 PT, particularly in capturing the nuances of the Brazilian Por-
tuguese language and medical terminology. We applied the same pre-processing steps
outlined in Section 3.1 to this dataset.

During fine-tuning, the model’s parameters were adjusted to optimize perfor-
mance. This included setting a learning rate of 0.0003, a train batch size of 2, an eval
batch size of 1, a seed of 42, gradient accumulation steps of 8, and a total train batch size
of 16. The training process employed a linear learning rate scheduler with a warmup of
500 steps and lasted for 40 epochs. This process resulted in a loss of 0.7948 and a WER
of 0.7625 on the evaluation set.

3.4. Decoding Enhancement
We notice that ASR decoding can introduce errors, and given the critical importance of
precise texts, correction becomes necessary. We explore two approaches, both leveraging
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language models. Language models capture the fundamental structure and dependencies
of language. These models serve as tools for comprehending and producing natural lan-
guage text. Our investigation encompasses two strategies: one integrating an ASR and an
n-gram model, and another utilizing a large language model (LLM) known as Mistral
[Jiang et al. 2023]. There are several LLMs we might consider here to enhance the de-
coding. However, Mistral-7B outperforms LLaMA [Touvron et al. 2023] and is released
under the Apache 2.0 license, contributing to its appeal in licensing and performance.

N-gram. An n-gram language model employs statistical methods to forecast the
subsequent word in a sequence of text, drawing from preceding words. The “n” in “n-
gram” signifies the number of consecutive words considered within the conditional prob-
ability. For instance, a unigram entails assessing the prior probability of a single word,
denoted as P (pi). Meanwhile, a bigram entails considering two words P (pi|pi−1), and
a trigram involves considering the two preceding words P (pi|pi−1, pi−2), and so forth.
Expanding further, an n-gram model is denoted by P (pi|pi−1, ..., pi−n). Conceptually, a
bigram language model analyzes pairs of adjacent words, while a trigram model examines
groups of three words.

The n-gram models calculate the likelihood of word or character occurrences
based on preceding context, utilizing extensive textual datasets for training. With nearly
5,000 medical records from Hapvida NotreDame Intermédica, we utilize these texts in
our experiments to train the n-gram models. While integrating Wav2Vec2 + n-gram has
been previously investigated by [Sullivan et al. 2022], it hasn’t been explored in the med-
ical domain. In our experiments, we apply this strategy by leveraging KenLM2, departing
from decoding audio without a language model and enabling the processor to directly
receive the model’s output logits. This approach, rooted in the decoding process with a
language model, enables the processor to consider the probabilities of potential output
characters at each time step, thus rectifying any character errors made by the ASR model.

Mistral. [Jiang et al. 2023] stands as an open-source language model focused on
achieving high performance without requiring substantial hardware investments. This
emphasis on efficiency while delivering superior performance underscores its design.
Mistral-7B incorporates grouped-query attention (GQA) to optimize inference speed and
reduce memory demands during decoding, allowing for larger batch sizes and increased
throughput, crucial for real-time applications. Additionally, Mistral employs sliding win-
dow attention to handle longer sequences more efficiently, addressing a common limita-
tion in LLMs. These attention mechanisms enhance the performance and efficiency of
Mistral-7B, operating on the Transformer architecture.

Mistral-7B introduces Sliding Window Attention, Rolling Buffer Cache, and Pre-
fill and Chunking mechanisms. Sliding Window Attention utilizes stacked transformer
layers, while the Rolling Buffer Cache rotates the buffer to accommodate fixed attention
span sizes. Pre-fill and Chunking leverage available prompts, enabling pre-filling of the
cache with known prompt data during sequence generation. Additionally, the authors
present a fine-tuned model, Mistral-7B-Instruct, tailored for chat-based inference. In this
study, we improve ASR decoding through Mistral-Instruct, a large language model where
we provide instructions to correct sentences syntactically. The prompt strategy used is

2https://github.com/kpu/kenlm
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called one-shot learning.

To ensure consistently high-quality responses, Mistral-7B-Instruct is utilized
within a well-defined prompt structure. The prompt is provided as follows, where
“row[sentence]” is the medical report transcribed from an ASR model that should be cor-
rected. We also define rules for how responses should be written by the model, amongst
them ensuring corrections are limited to text enclosed within < and > delimiters, focus-
ing on correcting only spelling and syntactic errors without sentence restructuring, and
not providing explanations for the corrections made. This strategy not only enhances the
accuracy of the responses but also ensures they adhere to the desired standards.

### Prompt:
{"role": "user", "content": Please correct the following sentence in Portuguese:
<queixa sididor em bevê há hum mês com ocorrências exporádicas corrimento com
odor e prorido>;
Delimit the correction using the characters <>;
Do not rephrase the sentence; Correct only the
spelling and syntactic errors; Don’t rewrite
the sentence. There is no need to explain your choices.}
{"role": "assistant", "content": "<queixa-se de dor em bv há um mês com
ocorrências esporádicas corriemnto com odor e prurido>"}
{"role": "user", "content": Now, correct the following sentence in Portuguese:
{row[sentence]};
Delimit the correction using the characters <>;
Do not rephrase the sentence; Correct only the
spelling and syntactic errors; Don’t rewrite
the sentence. There is no need to explain your choices."}
### End

3.5. Evaluation Metrics
A range of metrics are utilized to evaluate the effectiveness of ASR models, including
Word Error Rate (WER), Cosine Similarity, and BLEU. This data is crucial for refining
models and enhancing their performance.

The word error rate (WER) is the most used evaluation metric for ASR systems.
The percentage of incorrect words gives the WER of a transcription concerning the num-
ber of input words. The incorrect words were erroneously inserted, replaced, or deleted
by the system transcription. WER is defined as in Equation 1.

WER =
I +R +D

H +R +D
(1)

where I is the number of inserted words, R is the number of replaced words, D is the
number of deleted words, and H is the number of hits. Despite its popularity, WER is
limited to accuracy at the word level.

Different from WER, BLEU [Papineni et al. 2002] can evaluate whether the tran-
scription maintains the context and organization of the sentence. BLEU was originally
proposed for neural machine translation and it claims to be highly correlated with human
assessment. BLEU is based on the precision of n-grams, which compares the n-grams
of reference text T ∗ with the n-grams of its transcription T . Let NG(n, t) be the set of
n-grams of text t, the n-gram precision Pn between texts T ∗ and T is given by Equation
2.

Pn =
|NG(n, T ∗) ∩NG(n, T )|

NG(n, T )
(2)
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BLEU is calculated as the geometric mean (all weights equal to 1/4) of Pn, for n =
1, 2, 3, 4 multiplied by a factor that penalizes transcriptions shorter than the referenced
text. The bleupenalty factor is 1 if |T | > |T ∗| and e(1−|T ∗|/|T |), otherwise. BLEU is defined
in Equation 3.

BLEU = 4

√
P1P2P3P4 × bleupenalty (3)

The Cosine Similarity allows for determining how close the two sentences are in a
defined vector space. For the Cosine Similarity, we can use Word Embedding or Sentence
Embedding vectors [Li et al. 2020] (in the experiments, we use the Universal Sentence
Encoder). The Cosine Similarity is defined as in Equation 4, where A and B are vectors
of attributes; Ai and Bi are components of vector A and B, respectively; ∥A∥ is the
Euclidean norm of vector A. Similarly, ∥B∥ is the Euclidean norm of vector B.

cos(A,B) =
AB

∥A∥∥B∥ =

∑n
i=1 AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(4)

4. Experimental Results

To guide this section, we have formulated the following key research questions. In what
follows, we study each research question separately.

1. RQ1. What are some descriptive statistics from the training data?
2. RQ2. Which are the pre-trained ASR models most effective for assisting with

medical history?
3. RQ3. What are the most effective decoding strategies that leverage language mod-

els to enhance the accuracy and reliability of ASR transcriptions?

4.1. Study on the results of RQ1

To investigate the impact of utilizing automated transcription tools on cognitive load and
efficiency for healthcare professionals, we prefer to analyze this research question us-
ing the dataset employed during fine-tuning. We engaged three medical science stu-
dents to record a total of 657 audio clips containing real patient anamneses. Analysis
of these recordings revealed notable statistics regarding duration: the average duration
was 94.69 seconds, with the shortest clip lasting 4.18 seconds and the longest stretch-
ing to 346.50 seconds, resulting in a standard deviation of 46.15 seconds. According to
Hapvida NotreDame Intermédica, medical appointments usually last around 15 minutes,
with nearly half of this time consumed by the manual entry of medical text into systems
(between 7 to 8 minutes).

With an average recording duration of 94.69 seconds, considerably shorter than
a typical medical appointment, there is ample opportunity for verification and potential
re-recording of transcriptions using automated tools such as ASR models. This has the
potential to alleviate the cognitive burden and improve efficiency for healthcare profes-
sionals. Moreover, it suggests that more time remains available for interaction between
doctors and patients. Thus, this highlights a crucial avenue for research to assess the
practical implications and effectiveness of integrating automated transcription tools into
medical workflows.
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4.2. Study on the results of RQ2

In this study, we selected the following pre-trained ASR models designed to support
Brazilian Portuguese language: Wav2Vec2 PT3, HuBERT4 and Whisper5. Our bench-
mark includes 224 audio recordings (differing from those utilized in fine-tuning) that
were transcribed and evaluated using the pre-trained models. Utilizing the widely used
WER metric for this task, HuBERT achieved a WER of 0.66, Whisper achieved a WER of
0.37, and Wav2Vec2 PT achieved a WER of 0.24. Wav2Vec2 PT also demonstrated supe-
rior performance in capturing textual nuances and similarity, scoring a BLEU of 0.55 and
cosine of 0.88, compared to HuBERT’s BLEU of 0.12 and cosine of 0.68, and Whisper’s
BLEU of 0.43 and cosine of 0.83.

Table 1. Examples of medical histories generated by the ASR pre-trained models.

Model Original Transcription WER
BLEU

SCORE
(n-gram)

Cosine
Similarity

Wav2Vec2 PT

PT: paciente fez ultrassonografia que
acusou nódulo tireoidiano

fez nova ultrassonografia com
surgimento de um novo nódulo

EN: patient underwent ultrasound which
accused of thyroid nodule

performed another ultrasound
with emergence of a new nodule

paciente fez ultrasonografia que
acusou o nódulo tireoidiano
fez nova ultrasonografia com

o surgimento de um novo nódulo

0.31 0.32 0.92

Whisper

paciente fez ultra sonografia que
acusou o nóluo tiréoediano

fez nova ultra sonografia com o
surgimento de um novo nóluo

0.5 3.88e-78 0.91

HUBERT

paciente fez utra so nografia que
acusou nodlotiraoe de ano fez nova
utração nografia com sulgimento

de um novo nódulo

0.56 0.18 0.88

Wav2Vec2 PT

PT: nega dor sialose halitose
pigarro ou outras queixas

EN: denies pain, sialosis,
halitosis, throat clearing

or other complaints.

nega dor cialose
alitose pigarro

ou outras queixas
0.25 0.41 0.93

Whisper
mega doce se arose
alitosse pigarro ou

outras queixas
0.62 0.29 0.60

HuBERT meca dor se alos alitose
pigarro ou outras queixhas 0.62 4.34e-78 0.78

We performed the Wilcoxon signed-rank test [Wilcoxon 1992] since it is a non-
parametric test. From the statistical point of view, the test is safer since it does not assume
normal distributions. Our null hypothesis (HO) states that the models perform equally
well for WER results. So, we conducted the statistical test to compare the performance
of the Whisper, HuBERT, and Wav2Vec2 PT models. The Wilcoxon tests revealed highly
significant differences between all pairs of models. Specifically, the ρ-values were ex-
tremely low for each comparison: between Whisper and HuBERT (ρ = 2.072e-29), be-
tween Whisper and Wav2Vec2 PT (ρ = 9.566e-15), and between HuBERT and Wav2Vec2
PT (ρ = 1.359e-37). These results indicate strong evidence to reject the null hypothesis
and conclude that the models’ performances are statistically different. From such a com-
parison of the three pre-trained ASR models, Wav2Vec2 PT outperformed the other two
models.

Through our evaluation, we identified challenges encountered by established ASR
models such as Wav2Vec2 PT and Whisper, particularly when confronted with medical

3https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese
4https://huggingface.co/jonatasgrosman/exp_w2v2t_pt_hubert_s807
5https://huggingface.co/openai/whisper-large-v3
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terms such as “thyroid nodule (nódulo tireoidiano)”, “sialosis (sialose)”, and other terms
outlined in Table 1. Additionally, we noticed common errors in Brazilian Portuguese tran-
scriptions, stemming from phonetic similarities such as “SS” and “S” (ultrassonografia),
“S” and “C” (sialose) as well as the presence of silent “H” (halitose). Our analysis further
underscores the complexities associated with accurately transcribing medical terminol-
ogy, thereby shedding light on the limitations of widely used ASR models in capturing
the nuances of healthcare-related vocabulary.

To address such errors, we have opted to fine-tune the Wav2Vec2 PT using addi-
tional pairs of audio and text in Brazilian Portuguese derived from real medical histories.
We refer to this fine-tuned model as Wav2Vec2 PT Fine-tuned6. The fine-tuning pro-
cess has been previously described in Section 3.3, our primary objective was to reduce
grammatical errors.

Despite the intended objective, the fine-tuned model’s performance worsened un-
expectedly, resulting in more inaccurate transcriptions of medical terms, with a WER of
0.66. The pre-trained Wav2Vec2 PT model was initially trained on the CommonVoice and
LibriSpeech datasets. This degradation may have been amplified by regional differences
in the audio data used for fine-tuning, hindering rather than aiding the model compared
to its previous training data. Additionally, only a limited number of text-audio pairs were
utilized in fine-tuning. It’s crucial to acknowledge the regional context of this research,
as it’s part of a larger R&D project intended for use by local healthcare professionals.
Though the benchmark recordings were made by regional researchers, the specific region
is undisclosed due to blind submission. Given the critical importance of medical history,
improving the decoding accuracy of our best ASR model (Wav2Vec2 PT) according to
the benchmark remains imperative.

4.3. Study on the results of RQ3

We examined two approaches employing language models to handle corrections in ASR
transcriptions. The first method consisted of training an n-gram with almost 5,000 medical
reports collected from Hapvida NotreDame Intermédica. We varied n using the values
{3,5,7}. The implementation used an integrated Wav2Vec2 PT and an n-gram model via
KenLM. Even with variations in n, the models exhibit similar performance, as evidenced
by the Wilcoxon tests, which achieved ρ > 0.05 (ρ around 0.4), all indicating statistical
equivalence. Due to space constraints, we opted to outline the findings of Wav2Vec2
PT+5-gram7.

The second method uses Wav2Vec2 PT+Mistral-7B-Instruct8, prompting the
model to correct the spelling and syntactic errors. Using the benchmark, the Wav2Vec2
PT+5-gram outperformed the other models, achieving an average WER of 0.17, and
Wav2Vec2 PT+Mistral-7B-Instruct achieved an average WER of 0.48. The Wilcoxon test
results demonstrate statistical differences between Wav2Vec2 PT+5-gram and Wav2Vec2
PT+Mistral-7B-Instruct (ρ = 8.18e-28), besides Wav2Vec2 PT and Wav2Vec2 PT+5-gram
(ρ = 2.17e-13). Wav2Vec2 PT+5-gram achieved an average BLEU score of 0.65, and an
average cosine similarity of 0.91.

6https://huggingface.co/medtalkai/wav2vec2-xls-r-1b-medical-domain02
7https://huggingface.co/medtalkai/wav2vec_kenlm5
8https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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Wav2Vec2 PT+Mistral-7B-Instruct exhibited a lower performance than the others
due to its tendency to slightly alter the wording while preserving the intended meaning,
as reported in Table 2. Unlike others, Wav2Vec2 PT+5-gram excels at fixing transcription
errors. Even with language models, it’s still a challenge to deal with medical acronyms,
like ’fc’ (frequência cardı́aca) and ’bv’ (baixo ventre), and measurements, such as ’bpm’
(batimentos por minuto) as highlighted in Table 2. Note that the punctuation “:” was
replaced with a colon (dois pontos, in Portuguese), and numbers are written out in full.

Original Sentence Transcription
queixa-se de dor em bv há um mês com ocorrências esporádicas corriemnto com
odor e prurido

Wav2Vec2 PT: queixa-se de dor em bvê a um mês com ocorrências hesporádicas
corrimento com odor e prurido
Wav2Vec2 PT+5-gram: dor em bv a um mês com ocorrências esporádicas corri-
mento com odor e prurido
Wav2Vec2 PT+Mistral-7B-Instruct: queixa-se de dor em côito a um mês com
ocasiões esporádicas correndo com odores e prurido

fc dois pontos cento e quatro bpm Wav2Vec2 PT: efc dois pontos cento e quatro bê p eme
Wav2Vec2 PT+5-gram: fc dois pontos cento e quatro b p em
Wav2Vec2 PT+Mistral-7B-Instruct: efc dois pontos cento e quatro beém

Table 2. Examples of transcriptions from the language models combined with
Wav2Vec2 PT

5. Conclusion and Future Works

This paper has addressed the critical need for accurate and efficient transcription of medi-
cal histories through the development and evaluation of an ASR tool. Given the absence of
a dedicated Portuguese medical history database, we constructed a comprehensive bench-
mark consisting of 224 pairs of audio and text sourced from authentic medical history
documents. Our evaluation of established ASR models, including Wav2Vec2 and Whis-
per, revealed notable challenges, particularly in accurately transcribing specific medical
terms. The intricate nature of healthcare-related vocabulary and the nuances of the Brazil-
ian Portuguese language highlight the limitations inherent in widely used ASR models.
Furthermore, we have shown that incorporating language models such as n-gram can
significantly enhance the transcription accuracy of Wav2Vec2 PT, offering promising av-
enues for further improvement in medical transcription technology.

In future research, we aim to fine-tune Mistral-7B-Instruct for the medical domain
to enhance transcription accuracy. We will also investigate advanced language models
such as GPT to further improve ASR model transcription accuracy. Additionally, we
plan to explore the use of knowledge graphs and evaluate approaches like constructing
controlled vocabularies to compare their performance against n-gram models and/or in
combination with them.
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