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1 Departamento de Informática e Estatı́stica – Universidade Federal de Santa Catarina (UFSC)

vit2santoss@gmail.com, dorneles@gmail.com

Abstract. Segmenting invoice item description into attributes that describe its
features may be a newsworthy alternative for subsequent entity resolution. This
paper presents a set of experiments to show the performance of seven LLMs,
including Llama-3, Sabiá-2-Medium, Command R+, Claude 3 Opus, GPT-3.5,
GPT-4, and Mixtral 8x22B, in segmenting text within Invoice items descriptions
using zero-shot learning techniques. We have employed accuracy, precision,
recall, and F1-score evaluation metrics to highlight the effectiveness of LLMs.
The experiment involved segmentation preparation, model training, prompt op-
timization, attribute extraction, and output generation. The objective is to de-
termine each model’s precision in accurately identifying segmentation within
invoice item descriptions.

1. Introduction

Assessing whether distinct data instances represent the same real-world object (entity
resolution [Hoffart et al. 2012]) is essential for a wide variety of applications, such as
data integration [Varma et al. 2021], data matching [Dorneles et al. 2011], and so on. The
big challenge of an entity resolution process is working with conflicting data, such as
inconsistent, typos, missing, dirty, or even fake data. The main reason for this data conflict
is the way people enter data, especially when there is no strict standard for doing so.
Considering data from multiple sources or users, the problem is even more challenging.

A scenario where these conflicting data problems are prevalent is that of Electronic
Invoices. Figure 1(a) shows real examples extracted from items from medicine sales
invoices, which present high heterogeneity in the description of medicines. In a manual
analysis of the items presented in the figure, it is possible to observe that the lines painted
in yellow refer to the same object in the real world (Injectable Dipyrone, 500 mg with
50ml), as do the lines painted in green (Dipyrone in Drops, 500mg with 10ml). To solve
the entity resolution problem in this scenario, segmenting the medicine description into
attributes that describe the characteristics of each item (as shown in Figure 1(b)) is an
interesting alternative for subsequent entity resolution.

Many works in the literature explore text segmentation, highlighting its critical
role as a task of information extraction process from the web and its application to do-
mains such as medication descriptions [Lerman et al. 2004], [Haider and Yeşilada 2022],
and [Chen et al. 2022]. The granularity of the term “segmentation”, used in literature,
depends on the object to be segmented. Generally, the process of dividing an object into
meaningful units is called “object segmentation” [Kayed et al. 2021]. Despite advance-
ments, traditional methods often need help with varied and large-scale datasets. This gap
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Figure 1. (a) Original data from invoices; (b) Treated data after processing

underscores the potential of Large Language Models for robust and scalable segmenta-
tion, given their superior context understanding and ability to handle unstructured data
[Simon and Lausen 2005], [Chen et al. 2023].

Large Language Models (LLMs) exhibit impressive versatility, addressing a wide
range of tasks as evidenced by [Yao et al. 2024] and [Chang et al. 2023]. Their excep-
tional performance in natural language processing and domain-specific tasks has led to
increased adoption, particularly for urgent information access needs. The segmentation
of Electronic Invoice items is an application where LLMs could demonstrate significant
potential, enhancing data management, solving entity resolution issues, and supporting
analysis and evidence-based decision-making. In this context, LLMs’ ability to extract
relevant information from initial descriptions is crucial. Zero-shot prompting, where the
prompt provided to the model does not include examples or demonstrations, allows us to
evaluate this capability. This approach tests the models’ adaptability and performance,
providing insights into their ability to handle diverse linguistic variations and formatting
styles.

In this article, we present a set of experiments that compare seven LLM models
and their performance in segmenting Electronic Invoice items. The experiments and eval-
uations involving Llama-31, Sabiá-2-Medium2, Command R+3, Claude 3 Opus 4, GPT-
3.55, GPT-46, and Mixtral 8x22B7. We aim to assess the models effectiveness in accu-
rately identifying and extracting key attributes from medication descriptions, employing
stringent evaluation criteria such as accuracy, precision, recall, and the F1-score. Despite
challenges like model context window limitations and tendencies toward “laziness” with
longer descriptions, our study underscores the importance of evaluating models based
not only on accuracy but also on their ability to handle diverse information types and nu-
ances across various attributes. By enhancing our understanding of LLMs capabilities and
limitations in segmentation tasks, especially in medication descriptions, this research con-
tributes to improving their applicability and reliability in contexts requiring segmentation
and data extraction tasks.

1https://llama.meta.com/
2https://www.maritaca.ai/
3https://cohere.com/
4www.anthropic.com/claude
5https://openai.com/
6https://openai.com/
7https://mistral.ai/
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This paper is organized as follows. We explore some related work in segmentation,
reviewing previous studies and methodologies in similar research endeavors in Section 2.
Section 3 presents details of our segmentation process, outlining its methodology and
procedural steps. In Section 4, we describe our sample, the evaluation metrics used for
assessing the models, the experiments conducted and the results obtained. Finally, Section
5 concludes the paper and proposes avenues for future research.

2. Related Work
The segmentation process is a common task in the information extraction area, where
from a plain text, it is desirable to have meaningful data units that characterize a given en-
tity. Some works address the problem of extracting and segmenting references from PDF
documents [Boukhers et al. 2019, Peng and McCallum 2006, Zhang et al. 2011], while
another focusing on extracting and segmenting posting addresses [Borkar et al. 2001,
Kayed et al. 2021, Cruz et al. 2021]. Considering greater granularity, the work proposed
in [Misra et al. 2011] is to segment texts using topic modeling.

The work by [Boukhers et al. 2019] presents an innovative probabilistic approach
aimed at enhancing segmentation accuracy by addressing variability in the content,
length, and location of references within documents. This improvement is demon-
strated through evaluations, with segmentation being performed using Conditional Ran-
dom Fields (CRFs). Similarly, in their research on CRFs, [Peng and McCallum 2006]
highlight the importance of accurate segmentation in enhancing search engine accuracy,
particularly in the extraction of header and citation fields. Additionally, the utilization of
structured SVM and CRFs by [Zhang et al. 2011] underscores the effectiveness of these
methods in analyzing references with high precision, thus emphasizing the pivotal role of
structured learning approaches in achieving accurate segmentations.

In [Cruz et al. 2021], the need for innovative segmentation methods to deal with
challenges such as non-standardized or incomplete addresses is emphasized. This study
investigates automated approaches to match addresses, recognizing segmentation as a
critical step in this process. For instance, [Borkar et al. 2001] present the datamold
method, which enhances Hidden Markov Models (HMM) to automatically segment un-
formatted text records into structured elements, such as addresses. This enhancement
results in significant accuracy in extracting addresses from different cultural contexts.
[Kayed et al. 2021] discuss the extraction of addresses from the web, highlighting the
importance of segmentation in preparing unstructured data obtained from social media.

Furthermore, in [Misra et al. 2011], text segmentation was examined through the
lens of latent Dirichlet allocation (LDA) and multinomial mixture (MM) models, reveal-
ing the superior segmentation performance offered by topic model-based methods com-
pared to traditional techniques. Their work also addressed the computational overhead
associated with LDA by proposing a modified dynamic programming algorithm. Ex-
panding upon this foundational research, [Aumiller et al. 2021] introduce a novel legal
document segmentation system leveraging transformer networks to predict the topical co-
herence of text segments. Trained on a comprehensive dataset comprising approximately
74,000 Terms of Service documents, their model surpasses baseline performance metrics
and demonstrates robust adaptation to the nuanced structures inherent in legal documents.

Lastly, other types of work, such as those presented in [Lerman et al. 2004,
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Haider and Yeşilada 2022, Chen et al. 2022, Simon and Lausen 2005, Chen et al. 2023],
introduce methodologies ranging from automatic extraction and segmentation of web ta-
ble records to unsupervised web data extraction and estimating classifier performance
in unlabeled population segments. These works collectively underscore the importance
of segmentation in various tasks related to web data processing, highlighting its role in
facilitating accurate data extraction, pattern recognition, and model performance estima-
tion. Effective segmentation is shown to be crucial for optimizing the performance and
efficiency of diverse web data processing tasks.

Through these works, it becomes evident that segmentation is a foundational ele-
ment in various web data extraction methodologies, enabling precise analysis and insight
extraction from complex structures. However, a significant gap remains in performing
segmentation across highly varied and large-scale datasets, such as medication descrip-
tions. Traditional methods often struggle with the complexity and variability inherent in
such data. This is where Large Language Models (LLMs) show great promise. With their
deep understanding of context and semantics, LLMs can handle diverse and unstructured
data more effectively than traditional approaches. They leverage vast amounts of training
data to learn intricate patterns and relationships within the data, enabling higher accuracy
in segmentation.

3. Segmentation process
The proposed segmentation process requires a pipeline with three sequential steps: (i) pre-
processing; (ii) training; and (iii) attribute segmentation. Each step builds on the previous
one, ensuring a structured and efficient flow from raw data to segmented outputs.

Figure 2. Segmentation pipeline

Figure 2 illustrates the pipeline, which follows the following steps:

• Pre-processing: This initial phase concerns data preparation and consists of three
sub-steps:

(i) Strings containing medication descriptions were extracted from electronic
invoices. This extraction was automated using Python scripts and Pan-
das for data manipulation, resulting in a dataset containing only the item
descriptions.
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552



(ii) The extracted descriptions were categorized into specific product classes
using the NCM number. This categorization process was semi-automated
with manual validation to ensure accuracy.

(iii) The fields or attributes for segmentation, were manually defined by the
authors based on the data structure and segmentation requirements.

This pre-processing procedure results in a dataset of categorized items ready to be
segmented according to the defined attributes.

• Training: Building on the pre-processed data, this step involves engineering
prompts for the language models. We established a general prompt and tested
various variations to identify the most effective one across all models. Despite
setting a low model temperature to minimize creativity, we instructed the models
to return only the provided information and avoid inferring non-existent attributes.
This approach ensured accuracy, as some models tended to infer information not
explicitly stated. The final prompt defined for this purpose was:

Reorganize the data from <string> according to:
<attribute1,. . .,attribute7>. For any missing data,
put N/A. Return the data in CSV format, separated by
";".

The term ”N/A” denotes ”not applicable,” indicating the absence of this informa-
tion in the string.

• Attribute Segmentation: In this final step, the LLM processes the item descrip-
tion strings stored in the String Database and segments them according to the
defined attributes (Att.1, Att.2, ..., Att.7), guided by the established prompt. After
segmentation, the data is exported to a structured CSV file, where each string is
listed alongside its corresponding attributes for streamlined data analysis and ma-
nipulation. The final output is a detailed and well-organized CSV file containing
segmented medication descriptions.

4. Experimental Evaluation
The main objective of this study is to evaluate the performance of models in segmenting
attributes by feeding all the description data directly into the models’ prompt, utilizing
zero-shot prompting. This approach allows us to assess the models’ ability to accurately
identify and extract key attributes from medication descriptions, such as name, volume,
concentration, and active ingredient. In this section, we describe the models used in the
experiments, the dataset and data sample, the evaluation metrics used for assessing the
models, the experiments conducted, and the results obtained.

4.1. Models

In our study, we selected the seven models described above for evaluation. These mod-
els were accessed via API, facilitating seamless integration into our research framework.
The selection process prioritized models known for their proficiency in natural language
processing tasks, ensuring robustness and reliability in our evaluation methodology.

• Llama. Meta AI’s Llama 3, with custom 24K GPU clusters and over 15 tril-
lion data tokens, offers enhanced productivity and creativity. With an 8K context
length, it is available in 8B and 70B versions, supporting diverse AI applications.
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Evaluations, such as those in [Yoon et al. 2024, Zhang et al. 2024], highlight its
performance in various tasks.

• Sabiá. The Sabiá-2, developed by Maritaca AI, is a family of language models
specialized in Portuguese text processing. It includes Sabiá-2 Small and Sabiá-
2 Medium, with the latter featuring an 8192-token context window. Designed
for domain-specific tasks,Sabiá-2 Medium surpassing the performance of GPT-
3.5 and matching or exceeding GPT-4 in Brazilian exams, as demonstrated in
[Almeida et al. 2024].

• Claude. Claude 3 Opus, Anthropic’s premier language model, features an ex-
tensive context window of 200,000 tokens and can produce outputs up to 4096
tokens long. With approximately 150,000 words and 680,000 Unicode characters,
it’s designed for advanced tasks. Continuously updated training data until August
2023 ensures Claude 3 Opus remains at the forefront of state-of-the-art language
models, as noted in [Uppalapati and Nag 2024].

• Command.Command R+ is Cohere’s latest and most advanced model, designed
for conversational interactions and tasks requiring extensive context. With a 128k
context window, it efficiently processes information and outperforms previous Co-
here models in tasks requiring broader context.

• Mixtral. The Mixtral 8x22B, developed by Mistral AI, stands out as the com-
pany’s most efficient open model. With a 22B sparse Mixture-of-Experts (SMoE)
architecture, it utilizes 39B of active parameters out of 141B and features a 64k
context window.

• GPT.OpenAI’s GPT-4 Turbo and GPT-4 models, built upon GPT-3.5, excel in nat-
ural language understanding and code generation. The gpt-4-0125-preview model,
with a maximum output of 4,096 tokens and a context window of 128,000 tokens,
demonstrates enhanced performance, especially in code generation tasks. Ad-
ditionally, the gpt-3.5-turbo-0125 model, an updated version of GPT-3.5 Turbo,
provides improved accuracy in responding to requested formats. Trained until
September 2021, it returns a maximum of 4,096 tokens with a context window of
16,385 tokens.

Table 1 presents a comparison among the models, showing the context window
and the maximum output. These are currently limiting factors for models, preventing the
insertion of large inputs or restricting model responses. Comprehending these details is
crucial to assessing the capabilities and limitations of each model, which directly influ-
ences its applicability in different scenarios.

Model API model name Context window (Cw) Max output
Llama-3 llama3-70b 8k tokens ≤ 4096 tokens

Sabiá-2-Medium sabia-2-medium 8.192 tokens ≤ (8192 - Cw) tokens
GPT-3.5 Turbo gpt-3.5-turbo-0125 16.385 tokens ≤ 4096 tokens
Mixtral 8x22B open-mixtral-8x22b 64k tokens ≤ (64k - Cw) tokens
Command R+ command-r-plus 128k tokens ≤ 2048 tokens

GPT-4 gpt-4-0125-preview 128k tokens ≤ 4096 tokens
Claude 3 Opus claude-3-opus-20240229 200k tokens ≤ 4096 tokens

Table 1. Comparison of models with varying context window sizes and maximum
output lengths

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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4.2. Dataset and Sampling method

For our analysis, we utilized a dataset comprising 4,861 medication descriptions related
to the term “dipyrone”, sourced from invoices provided by the Public Prosecutor’s Office
of Santa Catarina. These descriptions amount to approximately 114,208 tokens within a
context window. However, this quantity exceeds the capacity supported by some of the
models we are working with, both for input and for generating outputs that meet or exceed
this volume, as demonstrated in Table 1. To overcome this challenge, we opted to extract
a representative sample from this population of descriptions, enabling us to conduct our
tests more efficiently, even if we have to perform them in batches.

When selecting this sample, we considered both the diversity and the frequency
of the descriptions, given the non-probabilistic nature of our description population. Ac-
cording to [Rea and Parker 2012], which defines a small population as one with fewer
than 100,000 items, we applied the formula provided in the book for calculating sample
size. This approach allowed us to determine a sample size that is representative of our
dataset. For our case, we used the following formula:

sample =
Z2 · (0.25) ·N

Z2 · (0.25) + (N − 1) ·M2
E

.

Where ME represents the margin of error in terms of proportions, Z is the Z-
score for different confidence levels, and N is the population size. The margin of error
ME indicates the precision of the sample estimate relative to the true population mean. A
Z-score is a value representing how many standard deviations a given data point is away
from the mean of a distribution. In this case, we used Z = 2.575 for a confidence level
of 99% and ME = 0.1, resulting in a 10% margin of error. This led us to a sample of 161
descriptions, totaling approximately 4, 446 tokens, which is an acceptable amount for the
context window of the models.

4.3. Prompt Configuration

Initially, our strategy aimed to input all description data directly into the model’s prompt,
facilitating segmentation and the generation of a structured CSV file. However, due to the
limit of the model’s context windows, which are incapable of processing prompts with
thousands of input tokens, executing this process all at once became unfeasible. Given
these limitations, and since our dataset sample has approximately 4.446 tokens, we had
to split the input data into batches to comply with the maximum token limit supported by
all the model’s input/output. This partitioning allowed us to manage the data effectively
and ensure that each model processed a manageable portion of the dataset.

We decided to divide the tasks into batches of 15 descriptions due to the output
limitations of some models, which, even within the context window limit, could not han-
dle more than 15 descriptions at a time. The decision to use batches instead of processing
individual descriptions underscores the efficiency of this approach, especially with larger
datasets. Batch processing significantly reduces the required time compared to the one-
by-one method.

The one-by-one method refers to processing each description individually, one at a
time, which can be highly time-consuming, especially for large datasets. In this method,
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each description is processed separately, and the model’s output for each description is
handled individually. This approach does not take advantage of batch processing efficien-
cies and can result in increased overall processing time. For instance, processing 4,861
descriptions using the batch method of 15 descriptions takes approximately 2 hours and
36 minutes, whereas the one-by-one method would take around 4 hours and 35 minutes.
This illustrates that batch processing is more efficient, as it significantly reduces the total
time required for processing large volumes of data.

The Figure 3 illustrates the comparison of execution times for different quantities
of descriptions (5, 10, and 15), for both batch processing and individual processing. The
blue and red lines represent the execution time for batch processing and one-by-one pro-
cessing, respectively. The data were obtained by running both methods with the Claude
model and recording the time required to process each quantity of descriptions.
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Figure 3. Execution time comparison between batch processing and one-by-one
processing using the Claude model.

4.4. Evaluation criteria
For evaluating our experiments, a direct comparison between the model’s responses was
performed line by line to calculate fundamental classification evaluation metrics such as
precision, recall, accuracy, and F1-score. Our segmentation process can be treated as a
classification problem, where each segmentation unit identified by the model corresponds
to a specific class, such as medication name, concentration, type of use, among others.
These metrics allow us to evaluate the model’s ability to make accurate predictions and
correctly identify the attributes of interest.

Based on the methodology presented in [Géron 2019], precision and recall met-
rics are calculated as follows: precision is the ratio of true positives (TP ) to the sum of
true positives and false positives (FP ), while recall is the ratio of true positives to the
sum of true positives and false negatives (FN ). These metrics enable the evaluation of
the model’s ability to make accurate predictions and correctly identify the attributes of
interest. Accuracy, in turn, represents the proportion of correct predictions made by the
model relative to the total number of predictions. This metric provides a general measure
of the model’s performance and is often used as a first approach for classifier evaluation.
The Figure 4 presents the formulas used for precision, recall and accuracy.
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recall =
TP

TP + FN

, precision =
TP

TP + FP

, accuracy =
Tp

Total
.

Figure 4. Recall, Precision and Accuracy formulas

The F1-score (F1), derived from the harmonic mean of precision and recall, pro-
vides a unique measure that combines these two metrics into a single value. This measure
is particularly useful when there is an imbalance between the classes because it penalizes
classifiers that favor one metric over the other.

F1 =
2× precision× recall

precision+ recall
.

4.5. Methodology
The segmentation process began with the pre-processing phase, where 4,861 medication
descriptions related to the term “dipyrone” were extracted from electronic invoices. This
dataset was then sampled down to 161 descriptions. During this phase, we established the
attributes for segmentation: “Description”, “Volume”, “Concentration”, “Type”, “Active
Ingredient”, “Batch” and “Expiration Date”.

In the subsequent prompt engineering phase, a general prompt was designed and
tested across all models using 15 descriptions from the sample in a zero-shot manner to
ensure its effectiveness for attribute extraction. Finally, during the attribute segmentation
phase, the optimized prompt was applied by the LLMs to segment the 161 medication
descriptions into the predefined attributes, producing a structured CSV file for analysis.

Then, we applied a normalization procedure to standardize the models’ responses,
facilitating fair and accurate metric comparisons. This normalization involved manipu-
lating each column separately, including removing spaces, converting uppercase letters
to lowercase and vice versa, and standardizing the representation of measurements. The
objective was to mitigate any potential biases introduced by variations in input formatting
or the writing nuances of the models.

Next, for metric calculation, we’ve adopted a binary approach to assess the perfor-
mance of LLMs in the segmentation task. For example, considering the following string
as an item description: Dipyrone Monohydrate 500mg/ml Drops 10ml, and
the following structure as the model’s desired result:

Input model's expected return
Item description Description; Volume; Concentration; Type; Active Ingredient; Batch; Expiration date; 

Dipyrone Monohydrate 500mg/ml Drops 10ml Dipyrone Monohydrate 500mg/ml Drops 10ml; 10 ml; 500 mg/ml; Drops; Dipyrone Monohydrate; N/A; N/A;

The binary scheme assigns a value of 1 to attributes present in the input descrip-
tion and 0 to those absent, including cases where the attribute is labeled as “N/A”. For
instance, given the description provided earlier, the corresponding binary representation
would be [1, 1, 1, 1, 1, 0, 0].

We extended this binary representation to encompass both the input descriptions
and the LLMs’ responses. Consequently, we could define the following:
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557



• True Positive (TP ): This occurs when both the input and the LLM output a 1,
indicating that the LLM correctly identified the attribute. It also includes cases
when both the input and the LLM output a 0, signifying that the LLM correctly
recognized the absence of the attribute or labeled it as “N/A”.

• False Positive (FP ): This arises when the input is 0 (“N/A”), but the LLM outputs
a 1, suggesting that the LLM generated information not present in the input.

• False Negative (FN ): This emerges when the input is 1, but the LLM outputs a
0 (“N/A”), indicating that the LLM either failed to identify the attribute, provided
an incomplete response, or incorrectly labeled it as “N/A”. It also includes cases
where the LLM outputs incorrect or incomplete information for a present attribute.

Employing these definitions, we computed the relevant metrics to assess the
LLMs’ performance in string segmentation.

4.6. Results
In examining the outputs generated by the seven models against the expected attributes,
we’ve conducted a thorough evaluation of each model’s performance. This comprehen-
sive assessment not only provides insights into segmentation efficacy but also highlights
areas for potential improvement or optimization in our experimental setup. The resultant
comparative analysis, detailed in Table 2, serves as a valuable resource for understanding
the strengths and limitations of each model in handling segmentation tasks.

Model Accuracy Precision Recall F1-score
Command R+ 0.149 0.913 0.620 0.738

Llama-3 0.161 0.922 0.670 0.776
Mixtral 8x22B 0.279 0.953 0.695 0.804

Sabiá-2-Medium 0.304 0.904 0.756 0.823
GPT-3.5 Turbo 0.403 0.947 0.747 0.835

GPT-4 0.422 0.953 0.787 0.862
Claude 3 Opus 0.633 0.992 0.836 0.907

Table 2. Metrics-based Comparative Analysis of Large Language Models for At-
tribute Segmentation Task

The highlight among the models was Claude, with an F1-score of approximately
90%. This result underscores the efficiency of the model in segmentation, indicating its
ability to accurately extract attributes from descriptions. Similarly, GPT-4 also demon-
strated strong performance with an F1-score of 86.2%. Our decision to evaluate the mod-
els using a zero-shot prompting approach aimed to provide an impartial assessment of
their inherent capabilities without additional training or data supplementation. By re-
fraining from providing specific information to the models, we sought to evaluate their
raw ability to comprehend and segment attributes, a crucial aspect in real-world applica-
tions where access to comprehensive training data may be limited.

Furthermore, Claude’s performance is evidenced by its precision of 0.992 and re-
call of 0.836. In this context, precision reflects the model’s ability to correctly identify
relevant attributes with minimal false positives, meaning it successfully avoided generat-
ing information not present in the input (i.e., FP ). The recall metric indicates Claude’s
capability to capture the majority of relevant attributes, with few instances where it failed
to identify an attribute or incorrectly labeled it as “N/A” (i.e., FN ).
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Despite these positive results, it is important to address the challenges encoun-
tered during the evaluation process. A noteworthy issue observed in the models was their
tendency to exhibit “laziness” when dealing with longer descriptions. Instead of anno-
tating the entire content meticulously, the models opted for truncated annotations, adding
“. . . ” at the end of descriptions. This behavior, while understandable from a computa-
tional standpoint, introduced inaccuracies in segmentation, primarily affecting the accu-
racy metric, which considers a prediction as correct only when all attributes are accurately
identified. As we can see in the Table 3 below, we measured the accuracy of each model
concerning each attribute:

Models Description Volume Concentration Type Active Ingredient Batch Expiration Date
Command R+ 0.242 0.931 0.770 0.844 0.788 0.751 0.826

Llama-3 0.322 0.975 0.745 0.745 0.844 0.844 0.900
Mixtral 8x22B 0.434 0.987 0.757 0.801 0.844 0.869 0.881

Sabiá-2-Medium 0.714 0.875 0.776 0.795 0.838 0.782 0.857
GPT-3.5 Turbo 0.664 0.968 0.788 0.813 0.869 0.788 0.869

GPT-4 0.701 0.981 0.906 0.801 0.801 0.863 0.888
Claude 3 Opus 0.763 0.981 0.925 0.919 0.925 0.875 0.894

Table 3. Model Accuracy for Each Attribute

Analyzing Table 3, some significant insights can be drawn. Firstly, there is a no-
table variation in the models’ performance across different attributes, highlighting their
distinct segmentation abilities. The Claude 3 Opus model demonstrates remarkable ac-
curacy across most attributes, indicating its overall capability for precise segmentation.
Specifically, it achieved accuracies of 0.763 for Description, 0.981 for Volume, 0.925 for
Concentration, 0.919 for Type, 0.925 for Active Ingredient, 0.875 for Batch, and 0.894
for Expiration Date.

The Mixtral 8x22B achieved the highest accuracy in Volume, with a score of
0.987, underscoring its particular strength in this attribute. Llama-3 also demonstrated no-
table performance in the Expiration Date attribute, with an accuracy of 0.900. Moreover,
both GPT-4 and Sabiá-2-Medium exhibited competitive performance for the Description
attribute, reflecting their potential in this area. However, a common challenge across all
models was the tendency to truncate annotations in longer descriptions. This limitation
impacted accuracy for attributes that require a comprehensive understanding of the full
content, highlighting the need for further refinement to enhance consistency, especially in
more complex scenarios.

In addition, the models exhibited an overall good average regarding the attributes:
volume, concentration, type, and active ingredient. These attributes are key characteristics
for the identification and classification of medications. This suggests that the models pos-
sess a solid understanding of these fundamental attributes, which are crucial for effective
medication analysis and classification tasks.

Finally, our evaluation methodology was designed to provide a comprehensive as-
sessment of the models’ capabilities in handling diverse attributes rather than focusing
solely on individual attribute accuracy. While accuracy is a crucial factor, we also con-
sidered the models’ overall effectiveness in managing various types of information and
their ability to accurately segment attributes. This holistic approach enabled us to gain
valuable insights into each model’s overall performance and identify areas for potential
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enhancement, ensuring a more nuanced understanding of their strengths and limitations
in real-world applications.

5. Conclusion and Future Work
This paper presented an evaluation of the ability of LLMs to segment strings in attributes
of medication descriptions using a zero-shot prompt approach. The results yielded valu-
able insights into the performance of different models, with Claude standing out by
achieving an impressive F1-score of approximately 90%. This score underscores the
model’s efficiency in segmentation, indicating its capability to accurately extract infor-
mation from descriptions. However, challenges such as the models’ tendency to exhibit
“laziness” when dealing with longer descriptions were observed, negatively impacting the
accuracy metric.

For future work, we intend to apply our segmentation pipeline to larger datasets,
addressing the context window limitations of current LLMs, which affect performance on
tasks involving over a million descriptions. To overcome these constraints, we will ex-
plore parallel computing strategies, dividing segmentation tasks into smaller, concurrently
processed sub-tasks. This approach aims to enhance scalability, optimize the segmenta-
tion process, and ensure reliable performance on large-scale data, enabling more robust
applications.
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Dorneles, C. F., Gonçalves, R., and dos Santos Mello, R. (2011). Approximate data
instance matching: a survey. Knowledge and Information Systems, 27(1):1–21.
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data integration for entity disambiguation in biomedical text. In EMNLP.

Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., and Zhang, Y. (2024). A survey on large lan-
guage model (llm) security and privacy: The good, the bad, and the ugly. 4(2):100211.

Yoon, J., Gupta, A., and Anumanchipalli, G. K. (2024). Is bigger edit batch size always
better? – an empirical study on model editing with llama-3. ArXiv.

Zhang, P., Shao, N., Liu, Z., Xiao, S., Qian, H., Ye, Q., and Dou, Z. (2024). Extending
llama-3’s context ten-fold overnight. ArXiv.

Zhang, X., Zou, J., Le, D., and Thoma, G. (2011). A structural svm approach for reference
parsing. BMC bioinformatics, 12 Suppl 3:S7.

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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