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Abstract. Heterogeneous graphs have high representation power, which can be
maximized through node embeddings. Important embedding approaches are
based on node features and node metapaths, applied individually. This paper
proposes the creation of heterogeneous composition node embeddings, which
are based on local node features, features from node neighbors, and node me-
tapaths. This results in two types of composition embeddings: Features + Me-
tapaths and Aggregated + Metapaths. Experiments have demonstrated superior
performance compared to the baseline. In the experiments, our composition
Aggregated Features + Metapaths embedding achieved a Micro-F1 score of
65.89% compared to 61.53% from the baseline, highlighting its effectiveness.
Additionally, this paper also evaluates alternative models with these embedding
compositions that outperform the state-of-the-art approach.

1. Introduction
Heterogeneous graphs are important data structures used to represent both simple and
complex data-driven applications. They provide an excellent solution for representation
learning and as input datasets in various types of downstream applications. A critical
research question in this context is how we can enhance the representational power of
heterogeneous graphs and their components. Successfully addressing this question could
directly benefit applications that utilize these graphs, potentially leading to improved per-
formance.

One promising approach to enhancing this representational power is through the
use of node embeddings. Node embeddings are vector representations of nodes in graphs
that capture their features and relationships, allowing Deep Learning and Machine Lear-
ning algorithms to operate efficiently [Wang et al. 2023]. In heterogeneous graphs, me-
tapaths represent sequences of relationships connecting different types of nodes, provi-
ding a means to explore and integrate complex structural information. Combining node
embeddings with metapaths can significantly improve the semantic representation and
performance of graph-based applications.

Some work [Hamilton et al. 2017, Ying et al. 2018] introduces the generation of
embeddings based on the neighboring nodes, increasing their expressiveness and recom-
mendation performance. The work [Wang et al. 2023] proposes a new approach for ge-
nerating embeddings from metapaths, capturing semantics based on node relationships.
MAGNN [Fu et al. 2020] is a neural network designed to incorporate node content along
metapaths in heterogeneous graphs, and aims to improve graph embedding by aggregating
information from multiple metapaths to enrich node representation. Due to its relevance to
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626



our research and its status as a state-of-the-art method, MAGNN was chosen as the base-
line for our paper. However, none of the related work addresses the use of heterogeneous
graphs with the composition of embeddings to increase the semantic representativeness
of the nodes. Since nodes have embeddings composed of local information, their neigh-
bors, and their relationships with different types of nodes, this significantly enhances their
representational power.

In our previous work AGHE [Angonese and Galante 2024], we proposed an ap-
proach that creates a heterogeneous graph with embeddings generated from various hete-
rogeneous node features such as texts, images, and subgraphs. Thus, each node not only
has features but also individual embeddings for features and metapaths, and the merge of
features with metapaths. The gap in this work is the lack of a definition for composition
embeddings and the possibility of creating compositions based on features and metapaths.

This paper aims to specify a mechanism for aggregating semantics for nodes in he-
terogeneous graphs, proposing a novel type of node embeddings composed of aggregated
features from neighbors and metapaths. Through the aggregation of features, the target
node merges its features with those received from its neighbors, and the metapaths repre-
senting the relationships between the local type node and other types of nodes from its
neighbors. It is the foundation for creating heterogeneous embeddings based on aggrega-
ted features from neighbors and metapaths. Experiments were conducted to compare the
performance of classifiers in the Node Classification task with the MAGNN baseline. Our
composition Aggregated Features + Metapaths embedding achieved a Micro-F1 score of
65.89% compared to 61.53% from the baseline, highlighting its effectiveness. The results
have demonstrated the robustness and effectiveness of our proposal to use the embedding
compositions to enhance node representation.

The remainder of this paper is organized as follows: Section 2 conceptualizes the
background techniques applied in this paper. Section 3 reviews related work. Section
4 presents the AGHE approach as the base for the graph creation. Section 5 describes
the core foundation of the proposed embeddings. Section 6 presents the experiments and
results achieved, while Section 7 discusses the conclusions and future work.

2. Conceptualization
In this section, we present several important techniques closely related to the subject
matter of this paper, providing crucial support and context. Heterogeneous Graph
can have nodes and edges of different types, e.g., the graph encoding the relationship
between the Movie and its Director and Actor [Fu et al. 2020]. The challenge of the
heterogeneous graph representation learning is to figure out the information of nodes
from it and their neighborhoods, which makes the aggregated embedding more powerful
[Zhang et al. 2019, Sun et al. 2020, Jin et al. 2021]. The central problem in Deep Lear-
ning on graphs is finding a way to incorporate information about graph structure into Deep
Learning models. From this perspective, the challenge is that there is no straightforward
way to encode this high-dimensional, non-Euclidean information about graph structure
into a feature vector [Hamilton et al. 2017].

Graph Node Embeddings is the node representation, aiming to learn a func-
tion f(x) : V → Rd that embeds the nodes v into a low-dimensional Euclidean
space with d ≪ |V| [Wang et al. 2023]. Thus, graph embedding is the transforma-
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tion of property graphs to a vector or a set of vector spaces. Embedding should
capture the graph topology, node features, node-to-node relationship, and other rele-
vant information about graphs, subgraphs, and nodes. The similarity of embedding
between nodes indicates their similarity in the network, i.e., both nodes are close to
each other, connected or not by an edge, potentially used for any kind of prediction
[Hamilton et al. 2017, Santana and Ribeiro 2023].

Metapaths are sequences of node types that define specific paths through hetero-
geneous graphs, capturing the semantics and structural correlations between different ty-
pes of nodes [Sun and Han 2012]. Metapaths enable the analysis of complex relationships
and interactions within the graph by providing a structured way to traverse and connect
different types of entities. This concept involves creating graph embeddings based on ran-
dom walks that explore the heterogeneous neighborhood of a node, considering the type
constraints imposed by the metapath. Skip-Gram and Node2Vec models are employed to
maximize the probability of preserving both the structural and semantic properties of the
graph, thus enabling the learning of desirable node representations. By leveraging me-
tapaths, these models can capture rich contextual information and improve the accuracy
and interpretability of the resulting embeddings, making them highly effective for tasks
such as Link Prediction, Node Classification, and Clustering in heterogeneous graphs
[Dong et al. 2017].

Node Classification is the important RecSys task, aiming to predict the label yv
which could be a type, category, or attribute associated with all the nodes v ∈ V when
we are only given the true labels on a training set of nodes Vtrain ⊆ V . Thus, can make
predictions Z for each of the nodes by applying a shared function f to each of the latent
vectors h, classifying nodes based on their features, asZi = f(hi) [Hamilton et al. 2017].
Examples of Node Classification could include determining the genre of movies based on
their features and relationships. Node Classification models can exploit not only node fe-
atures, but also the concept that nodes with similar local neighborhood structures tend to
have similar labels. Additionally, they leverage the heterophily concept, which suggests
that nodes are more likely to connect to others with different labels and types. Another
interesting approach for Node Classification is based on vector embeddings, which prove
extremely useful as feature inputs. The basic idea is to use information about the neigh-
borhood of the node in a vector embedding, which serves as the representation of nodes
[Hamilton et al. 2017].

3. Related Work

The heterogeneous graph can be traced back to generate data embedding from node
features based on random walks approach citing Representation Learning on Graphs
[Hamilton et al. 2017, Ying et al. 2018] improving the node expressivity. More close to
the aims of our proposal is [Zhang et al. 2019] which defines of Heterogeneous Graph
Neural Network with the processing of embedding. The survey Graph Neural Networks
in RecSys [Wu et al. 2022] shows GNNs have been widely used in downstream applicati-
ons essentially because graph structure and GNN have superiority in graph representation
learning, citing GraphSAGE [Hamilton et al. 2017] as an important work regarding gene-
rating node embedding from node feature information.

MetaPath2Vec [Dong et al. 2017] is another crucial technique of this research due
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to its ability to capture the structure of heterogeneous graph, guiding random walks to ge-
nerate sequences of heterogeneous nodes with rich semantics. The Metapath Aggregated
Graph Neural Network (MAGNN) is an approach for heterogeneous graph embedding,
aiming to comprehensively consider the information present in heterogeneous graphs,
based on the Intra-Metapath aggregation extracting and combining information from me-
tapath instances connecting nodes with their neighbors. This node representation is used
as input for an external classifier, such as SVM, to perform the Node Classification task
[Fu et al. 2020]. This work is important and closely related to our approach, where the
main distinction lies in the method used by MAGNN to aggregate node information from
each node reached by metapaths, while our paper focuses on embedding compositions,
capturing semantics from local and neighboring node information, and metapaths.

Heterogeneous embeddings and their composition can enhance the data quality
of heterogeneous graphs, according to the research Approach for Generating Enhan-
ced Heterogeneous Embeddings from Heterogeneous Graphs (AGHE) presented by
[Angonese and Galante 2024]. Our paper expands on this concept by introducing a new
composition with aggregated features from the node neighbors and metapaths from the
target node. MAGNN was selected as a baseline because their approach is based on
Intra-Metapaths, which are close to our embedding compositions, supporting direct com-
parisons. They used the public IMDb Movies India dataset, thus allowing us to reproduce
the experiments using the same dataset. This paper demonstrates that the composition
of features and metapaths embeddings outperforms both simple features and metapaths
individually, as well as addressing the gap in MAGNN research, which does not use the
composition of local and neighbor node features with their respective metapaths.

4. AGHE - Approach for Generating Enhanced Heterogeneous Embeddings
from Heterogeneous Graphs

The Approach for Generating Enhanced Heterogeneous Embeddings from Heterogeneous
Graphs (AGHE) [Angonese and Galante 2024] shown in Fig. 1, generates heterogeneous
embeddings through the processing of texts, images, and subgraphs represented in the
nodes of heterogeneous graphs, such as the following steps. In the next section, we define
the compositions of embeddings introduced in this paper, which are used in Steps 2 and
3.

1. Graph Creation - generates the heterogeneous graph along with all its compo-
nents, such as nodes, edges, and node features. This step is critical because all
other steps and results depend on it;

2. Generating Text Node Embeddings - is the process of creating node embeddings
from their corresponding node features or extracted from images embedded in the
nodes;

3. Metapath and Aggregated Node Embeddings - generates of aggregated feature
embeddings using the random walks approach, representing the business rules
through the relationships among the nodes, followed by the generation of their
embeddings using the MetaPath2Vec algorithm;

4. Graph Enhancement with RecSys tasks - represents the experiments conducted in
this paper, aiming to predict the type of nodes, predict some links, and cluster the
nodes based on the heterogeneous graph generated in the before steps;
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5. Rebuilding the Graph - involves incorporating the generated embeddings and pre-
dictions saved into the graph nodes.

Figura 1. Steps of AGHE - Approach for Generating Enhanced Heterogeneous
Embeddings from Heterogeneous Graphs.

5. Composition of Heterogeneous Node Embeddings
This section presents the core foundation proposal of this paper for creating compositions
of heterogeneous node embeddings based on node features and metapaths. We propose
the creation of three embeddings composition based on node metapaths (Metapath),
node features (Features + Metapaths), and aggregation of neighboring node fea-
tures (Aggregated + Metapaths), and shown in Fig. 2.

Figura 2. Embedding compositions proposal.

5.1. Metapaths Embedding

Metapaths are sequences of node types that define specific paths through heterogeneous
graphs, and MetaPath2Vec is an algorithm that leverages the concept of metapaths, captu-
ring complex structural and semantic relationships between different types of nodes in the
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graph. A metapath embedding is generated by traversing the predefined metapaths and
incorporating the information into the target node. Let HG = (V , E) be a heterogeneous
graph where V is the set of nodes and E is the set of edges. A metapathM is a sequence
of node types and edges denoted as:

M = (V1
E1−→ V2

E2−→ · · · Em−1−−−→ Vm), (1)

where Vi represents the node type and Ei represents the edge. For a target node v ∈ V , the
metapath embedding hM

v is generated by aggregating the information from nodes reached
by traversing the metapathM starting from v, formally defined as:

hM
v = Aggregate ({f(u) | u ∈ Reachable(v,M)}) , (2)

where Reachable(v,M) is the set of nodes that can be reached from v by following the
metapathM, f(u) is a function that extracts the embedding of node u, and Aggregate is
a function that combines these embeddings into a single embedding for the central node
v.

5.2. Features + Metapaths Embedding

This embedding composition is the node representation with local information and its
relationships with its neighbors. It is composed of local node features with metapath
embeddings, capturing the semantics of the relationships with its neighbor nodes. For a
node v ∈ V , let xv be the feature vector representing the local information of node v.
The embedding composition zv of node v is then defined as the concatenation of its local
feature vector xv and its metapath embedding hM

v , which is denoted as:

zv = xv ∥ hM
v , (3)

where hM
v is defined in Equation 2 and ∥ denotes the concatenation operation.

5.3. Aggregated + Metapaths Embedding

It is composed of aggregated node features from both local information and information
from its neighbors through the random walk approach, which is then fused with meta-
path embeddings. This process captures the semantics of the relationships between the
neighbor nodes, resulting in a node representation that incorporates local and neighbor
semantics. For a node v ∈ V , let av be the aggregated feature vector that includes both
the local information of node v and the information from its neighbors. Thus, this com-
position can be formally denoted as:

av = Aggregate ({f(u) | u ∈ Neighbors(v) ∪ {v}}) , (4)

where Neighbors(v) is the set of neighbor nodes of v, f(u) is a function that extracts
the feature vector of node u, and Aggregate is a function that combines these feature
vectors. The embedding composition zv of node v is then defined as the concatenation of
its aggregated feature vector av and its metapath embedding hM

v from Equation (2):

zv = av ∥ hM
v , (5)

where hM
v is defined in Equation (2) and ∥ denotes the concatenation operation.
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6. Experiments

We present the experiments conducted to investigate the effectiveness of the proposed
embedding compositions based on features and metapaths. We also aim to evaluate the
performance of a set of classifiers beyond those used in the baseline, providing an exten-
sive comparison. Additionally, we compare the Hold-Out method used in the baseline
with the proposed Cross-Validation method to achieve a more comprehensive and robust
evaluation. These analyses support an understanding of how well embedding composi-
tions enhance node representation and Node Classification task results in heterogeneous
graphs. Consequently, we can demonstrate the strengths and limitations of each method
in handling complex data structures, providing insights into their practical applicability in
real-world scenarios.

6.1. Experiment Setup

We outline the experimental setup detailing the procedures and methodologies employed
to investigate the performance metrics of the proposed embedding compositions. Com-
prehensive experiments using the IMDb India Movies 1 Dataset were conducted for the
Node Classification task. IMDb is a collection of Indian movies with some data such as
titles, genres, ratings, and cast members. In the data pre-processing, we selected only
the genres Action, Comedy, and Drama, which are exactly used in the MAGNN baseline.
Additionally, we selected movies with positive values for Year, Votes, and Rating, and
containing Director information and at least one Actor. Thus, creating a subset with no
duplicated movies to be used in all experiments of this paper.

Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embed-
ding (MAGNN) [Fu et al. 2020] is an important state-of-the-art research framework, and
it serves as the baseline for this paper. MAGNN uses Intra-Metapaths embedding which
is the aggregation of structural and semantic information from the target nodes and their
neighbors along a specific metapath in a heterogeneous graph, applying the external SVM
classifier.

To evaluate the results of the classifiers while prioritizing effectiveness, we se-
lected the metrics Macro-F1, Micro-F1, and Standard Deviation, as they provide a com-
prehensive assessment of model performance and ensure compatibility with the baseline.
Macro-F1 ensures that all classes are considered equally important. Micro-F1 offers an
overall view of performance, considering all instances. The Standard Deviation provides
insights related to the consistency and robustness of the models, demonstrating the data
distribution around the average of the Macro and Micro-F1 scores.

The execution of the experiments uses the following methodology. Based on
the tabular subset used by the baseline, the heterogeneous graph was created using the
specifications defined in step 1 of AGHE. In the subsequent steps 2 and 3, the proposed
embedding compositions in this paper were generated. At the end of this process, we
obtained the following embeddings: Metapaths, composition of Features and Metapaths,
and composition of Aggregated Features and Metapaths. After creating the embedding
compositions, we conducted four experiments to compare the metrics results with the
baseline:

1https://www.kaggle.com/datasets/adrianmcmahon/imdb-india-movies
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1. Creation of the SVM model with Hold-Out and calculation of the scores for the
embedding compositions;

2. Creation of the XGBoost and Ensemble models with Hold-Out and calculation of
the scores for the embedding compositions;

3. Creation of the SVM, XGBoost, and Ensemble models with Cross-Validation and
calculation of the scores for the embedding compositions;

4. Statistical analysis of the model that achieves the best result.

Our paper selected the SVM classifier because it applies to the data scenario
we have in the experiments, which does not have a huge number of rows, a high ca-
pacity for generalization reducing the possibility of overfitting, and it is effective in high-
dimensional spaces. The second reason is to maintain compatibility with the baseline,
which also uses SVM. We introduced the XGBoost algorithm in our experiments because
it performs very well on classification problems, also its implementation is based on de-
cision trees, unlike the support vectors used by SVM. Additionally, our paper conducted
experiments utilizing the Ensemble classification technique, incorporating multiple clas-
sifiers with diverse approaches. This combination aims to capture wide data patterns,
thereby enhancing the robustness and predictive performance of the classification system.
We performed calibration tests with various base classifiers and obtained the best results
with the following ensemble combination: Random Forest Classifier, Extreme Gradi-
ent Boosting, Support Vector Machine, Decision Tree Classifier, Bootstrap Aggregating,
Adaptive Boosting, Gradient Boosting, and Logistic Regression.

The baseline used many different percentages for training, but since the standard
split for Hold-Out validation is 80% for training and 20% for testing, we decided to use it
in our experiments. This decision ensures consistency and compatibility with the experi-
ments performed in the baseline. In order to evaluate the results using a different approach
to sample generation, our experiments were also guided by the Cross-Validation techni-
que. We employed 5 iterations with 10 k-folds, applying stratified validation and shuffling
the data before the division into folds. The metrics Macro-F1 and Micro-F1, which were
also used in the baseline, were calculated in our paper by averaging the results and inclu-
ding their respective standard deviations.

6.2. Dataset Adaptation and Metapaths Definition
The heterogeneous graph schema after the transformation from IMDb movie table is
shown in Fig. 3(a). Thus, the set of graph nodes, their fields, and the relationships pro-
vided by the edges correspond exactly to the fields from the original table. Genre is the
field used as the multiclass of predictions, which is a little unbalanced where Drama at
45,3%, Action at 33,3%, and Comedy at 21,4%. Thus, we chose not to use the sampling
approach, which involves adding or removing data. Instead, the calculated metrics for the
classifiers used the “average” hyperparameter with the “weighted” value, which is also
appropriate for unbalanced multiclass classification.

Metapaths are an important part of embedding compositions which were defi-
ned according to Equation 1 and are shown in Fig. 3(b). They are defined as follows:
M← {(Movie → Director → Movie), (Movie → Actor → Movie), (Director →
Movie → Director), (Director → Movie → Actor → Movie → Director),
(Actor → Movie → Actor), (Actor → Movie → Director → Movie → Actor),
(Movie→Movie→ Director)}.
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(a) Network schema data model of the heteroge-
neous graph created and used in this paper.

(b) Distribution of graph nodes visited per metapath.

Figura 3. Heterogeneous graph model and metapaths defined.

6.3. Evaluation and Results

We present the evaluation results of our experiments, analyzing the performance metrics
of the various models and comparing them to the baseline.

6.3.1. Experiment 1

This experiment evaluates whether embedding compositions improve the results of the
Node Classification task. We compare them with the baseline MAGNN using the same
SVM classifier and Hold-Out training data. Table 1 shows the baseline achieved the
best Micro-F1 performance with 61.53% using the Intra-Metapath embedding defined by
itself. Using the same 80% training data, our paper slightly surpassed this, achieving
61.76% with the composition Features + Metapaths and 61.65% with the composition
Aggregated + Metapaths.

Tabela 1. MAGNN and SVM with Hold-Out and embedding compositions.

Embeddings MAGNN SVM
Mac-F1 Mic-F1 Mac-F1 Mic-F1

Intra-Metapaths 61.44 61.53
Metapaths 55.34 60.91
Features + Metapaths 55.84 61.76
Aggregated + Metapaths 55.82 61.65

6.3.2. Experiment 2

For this experiment, we propose the use of XGBoost and Ensemble classifiers to evaluate
whether embedding compositions enhance the results of the Node Classification task.
We compare these results with the baseline using Hold-Out training. This experiment
demonstrated that the XGBoost and Ensemble classifiers did not achieve better results

Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil
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than the baseline or SVM models, according shown Table 2. Thus, the conclusion remains
that SVM is the better algorithm to use for both single and embedding compositions.

Tabela 2. MAGNN and classifiers with Hold-Out and embedding compositions.

Embeddings MAGNN XGBoost Ensemble
Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1

Intra-Metapaths 61.44 61.53
Metapaths 54.19 58.16 53.93 59.96
Features + Metapaths 52.12 56.25 52.50 58.47
Aggregated + Metapaths 53.49 57.52 53.71 59.43

6.3.3. Experiment 3

For this experiment, we propose creating SVM, XGBoost, and Ensemble models using
Cross-Validation to evaluate whether embedding compositions improve the results of the
Node Classification task when compared with baseline using SVM and Hold-Out. Ta-
ble 3 shows the best result achieved, which was 65.89% Micro-F1, calculated from the
embedding composition Aggregated + Metapaths, which is the highest result across all
experiments, overcoming all models that used Hold-Out training data.

Tabela 3. Classifiers with Cross-Validation and embedding compositions.

Embeddings SVM XGBoost Ensemble
Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1

Metapaths 60.16 64.19 58.67 62.29 56.56 61.65
Features + Metapaths 59.23 65.68 57.74 61.02 56.57 61.02
Aggregated + Metapaths 60.77 65.89 58.54 62.92 56.59 61.86

6.3.4. Experiment 4

It is the statistical analysis of the model that achieves the best result. Fig. 4 shows the data
representation of the embedding compositions with the classifiers selected for the expe-
riments, illustrating the data distribution and the statistical test results. We analyzed the
Aggregated + Metapaths embedding composition with the SVM classifier, which achie-
ved the best results in our experiments. However, a similar analysis applies to the other
cases. We used Shapiro-Wilk Normality Statistical Test which is a reliable method for
assessing whether data follows a normal distribution [Mohd Razali and Yap 2011]. This
test is particularly sensitive to departures from normality and is suitable for small to me-
dium sample sizes, making it ideal for our experimental conditions. The statistical tests
achieved the following results: Statistic W - the value achieved of 0.984 is very close to
1, indicating that the data distribution fits well with the normal distribution; P-value - the
value achieved of 0.720 is well above the common significance level, meaning there is
not enough evidence to reject the null hypothesis (fail to reject H0) that the data follows
a normal distribution.
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Figura 4. Statistical tests for data distribution.

Therefore, we can conclude that the sample appears to be Gaussian, therefore,
following a normal distribution, shown by the Kernel Density Estimation (KDE) curve in
Fig. 4, confirmed the normality of the data, indicating the absence of outliers and that the
mean is an appropriate measure of central tendency.

6.3.5. General Results Analysis

The results achieved through embedding compositions are encouraging, as they have pro-
ven to be effective, especially when used with the Cross-Validation technique, as demons-
trated in Table 4, where all the models using Aggregated + Metapaths embedding compo-
sition outperformed the baseline used in this paper. Therefore, Table 4 presents only the
best-performing Micro-F1 metric values along with their standard deviations, which high-
light a near-linear distribution of the data around the means, concentrated between ±1%
and ±2%. Consequently, demonstrating low variability, thus indicating that the model is
reliable and robust to variations in the training data. Otherwise, we observe that all classi-
fiers SVM, XGBoost, and Ensemble achieved their best performance metric when using
the embedding composition Aggregated + Metapaths, achieving Micro-F1 of 65.89%,
62.92%, and 61.86%, respectively. The SVM model achieved the best performance using
all embedding compositions, with 64.19%, 65.68%, and 65.89% for Metapaths, Features
+ Metapaths, and Aggregated + Metapaths. We can also evaluate the experiments from
an ablation perspective, where the experiments aim to identify which embeddings and
algorithms have the greatest impact on the effectiveness of the models.
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Tabela 4. The best Micro-F1 metric achieved with its standard deviation.

Embeddings SVM XGBoost Ensemble
Mic-F1 STD Mic-F1 STD Mic-F1 STD

Metapaths 64.19 1.90 62.29 2.11 61.65 2.35
Features + Metapaths 65.68 1.74 61.02 1.99 61.02 2.24
Aggregated + Metapaths 65.89 2.03 62.92 2.12 61.86 2.13

The sequence of Macro-F1 60.77% and Micro-F1 65.89%, shown in Table 3, sug-
gests that the model performs better overall than on average for each class. This can occur
in scenarios with class imbalance, where the model is more effective in larger classes but
struggles with smaller ones.

7. Conclusion
This paper explored the use of heterogeneous graphs and embedding compositions as key
elements to enhance node representation. The experimental results based on the proposed
embedding compositions were quite promising. By incorporating the proposed embed-
dings, particularly the Aggregated + Metapaths composition, our approach achieved outs-
tanding results. The experimental outcomes demonstrated significant improvements in
node representation and classification task. Additionally, our experiments using the pro-
posed Cross-Validation technique, as an alternative to Hold-Out, achieved significantly
better performance in the observed metrics. Therefore, we can conclude that the proposed
embedding compositions are effective in enhancing node representation in heterogeneous
graphs, consequently improving the results in subsequent applications.

Future works include evaluating other ReSys tasks, such as Link Prediction and
Node Clustering; exploring different applications on the same heterogeneous graph, such
as Community Detection, Fraud and Anomaly Detection; proposing a new node embed-
ding composition using edge features; and implementing hyperparameters optimization
to achieve the best classifier hyperparameter values for optimal classifiers performance.
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