Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

A Two-tiered Approach for Knowledge Reasoning

Fernando Antonio Dantas Gomes Pinto', Jefferson de Barros Santos?,
Sérgio Lifschitz', Edward Hermann Haeusler!

'Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio)
Departamento de Informética
Rio de Janeiro — RJ — Brazil

2Fundacio Getulio Vargas (FGV)
Rio de Janeiro — RJ — Brazil

{fpinto, sergio, hermann}@inf.puc-rio.br, Jjefferson.santos@fgv.br

Abstract. This article proposes an explicit two-tier approach for reasoning and
querying on Knowledge Bases. It separates the conceptual fraction from the
model elements, enabling clear connections between the components. This
method may be more effective than known one-tier solutions. Besides a theo-
retical view, we explore a case study on actual data about legal knowledge to
illustrate how well our strategy may work in practice.

1. Introduction

Integrating knowledge and data in models often leads to conflicts between theoretical
and universal assertions and the underlying logic of the models. For example, rela-
tional databases use models of the finite domain logic L, while first-order logic (FOL)
expresses integrity constraints. No FOL formula can express finiteness, while every
database instance is finite. On the other hand, the logic L., of the finite models is non-
recursively enumerable and a non-conservative extension of F'OL. In other scenarios,
Knowledge Graphs (KG) represent data and knowledge in a rather ad-hoc way. OWL-
based ontologies combine the TBOX, theoretical knowledge (KB), and the ABOX, which
is its model-based part. As in the relational model, the logical reasoning tasks concerned
the ABOX are different from those regarded to the ABOX. TBOX reasoning focuses on
the schema or structure of the knowledge base (concepts and relationships), while ABOX
reasoning focuses on the specific instances and their properties. The similarity with the
above-mentioned relational database case is perfect. TBOX reasoning provides conclu-
sions about the conceptual hierarchy and relationships, while ABOX provides conclusions
about individual membership and properties. Their computational complexity is also very
different, as is the case with relational databases. In both cases, relational and ontologies,
the exclusively model-based reasoning is computationally easier than the conceptual one'.

We shortly analyze and depict two main problems with this rather ad-hoc way of
integrating the conceptual and the model-based or data-driven KB part: (1) consistency
and completeness in Knowledge Representation (KR) and (2) unnecessary higher rea-
soning complexity on the represented knowledge. We propose in this paper a two-tiered
approach for reasoning and querying on a KB turning the integration of the conceptual
(part 1) of the KB with its model (data-driven, part 2) aspect. The explicit linking between

IThe first is related to model-checking while the latter is related to logical consequence verification, i.e.,
LogSPACE vs PSPACE.

652

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

these parts allows us to connect the answer set of the queries made at the theoretical level
to run as model-theoretical queries at the model-based level. We argue that this strategy
is more efficient than one-tier logical solutions, including a mix of logic, data, and knowl-
edge representation, such as KGs or Description Logic systems. Besides a theoretical
view, we also explore a practical case study on legal knowledge representation obtained
from public gazettes and the Law from the Union, State, or City.

2. Logical Models and Knowledge Representation

Modeling data along with a knowledge base involves structuring information to facilitate
effective reasoning and retrieval. Some common approaches are: (1) Relational Data
Model is a widely used approach to represent data through mathematical relations (or
tables) in a database system. Attributes describe properties of entities and their corre-
sponding relationships, forming the basis for database design. The underlying logic of
the relational DBs is the First-Order Logic (FOL). The logical schema of a DB is the
FOL non-logical language used, i.e., the set of predicate or relational symbols, functional
and constant symbols. Predicates of arity one is used to express concepts, and those with
arity two, to express the relationships or queries. FOL structures for a non-logical FOL
language L are the DBs. Each structure can be regarded as an FOL model that also has to
satisfy the integrity constraints (IC) of the DB. The IC is a set of FOL formulas that any
DB instance or model should satisfy. For example, we need to express that any person
should have one and only one mother in a schema about family relationships in the set
of IC; (2) Ontologies formally represent knowledge by defining concepts, relationships,
and axioms within a domain. Ontologies use a structured format to capture domain-
specific knowledge and facilitate the sharing and integration of data. Technologies like
the Ontology Web Language (OWL) support creating and managing ontologies. Descrip-
tion Logic (DL) supports reasoning on the ontologies if OWL-DL is used to express and
prove the properties of interest that should hold in the ontology. This approach is also
based on the dichotomy between conceptual terminology, i.e., theoretical knowledge or
TBOX; instance-based or model-theoretical knowledge; (3) Semantic Web Technologies
such as Resource Description Framework (RDF) and SPARQL Protocol and RDF Query
Language (SPARQL), enable the representation of data and knowledge on the web in a
machine-understandable format. They allow linking, querying, and reasoning over dis-
tributed and interconnected data sources; (4) Graph-based models, like property graphs
and knowledge graphs, represent data as nodes (entities) connected by edges (relation-
ships). These models capture complex relationships and hierarchies in data, making them
suitable for representing knowledge bases with rich interconnections.

3. Dealing with Two Logic Formalisms

This paper discusses the main problems in integrating data and knowledge for logical
systems such as those cited in Section 2. We use theoretical or universal assertions to
refer to propositions that belong to a theory and model-based propositions when referring
to facts held in a model. For example, the proposition that any person has one and only
one father is theoretical, while the proposition that says that Jos is Maria’s father is part
of the corresponding model.

Following the literature on logic and epistemology of science, we denote by

653

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

theory? any set of propositions A, expressed in some logic L that is closed by logical
consequence, i.e., A = Cn(A) = {¢ : A =1 ¢}, where = is the logical consequence
in the logic L and ¢ is an arbitrary proposition of L. In relational DBs, the underlying
logic that expresses the theoretical and universal assertions does not fit very well with
the underlying logic of the models. The logic of the queries is FOL, while the logic
of the ICs and other theoretical propositions is the logic of finite domains, named here
as FOL_.,. However, FOL_, does not recursively enumerate its valid assertions, and
FOL recursively does it. In practice, there are rare cases where a theoretical assertion
must be proved. They are generally model-checked together with the model-based as-
sertions related to the DBs. Logically speaking, the most frequent theoretical integration
with model-based assertions may be inconsistent or incomplete. So, they should be kept
separate, even when sharing knowledge about the same specific domain.

Ontologies and OWL-based Semantic Web Technologies use TBOX to represent
the theoretical assertions and formalization of the domain-specific ontology. The model-
based assertions are formalized using nominals in the ABOX. We know that the computa-
tional complexity of TBOX reasoning in the acyclic case is PSPACE-complete and, with
the general case, is EXPTIME-complete and hence intractable, see [Baader et al. 2007]
for the details cited here we find a jungle of fragments of Description Logic with different
complexities; they go from NP-complete to NEXPTime complexity.

The practical validation of ontologies with this union-only way of integrating
model-based and theoretical assertions is not very efficient. The usual way of dealing
with ABOX reasoning has been quite similar to FOL; the TBOX is instantiated with the
elements in the ABOX, producing a greater TBOX, and the validation goes on this new
TBOX. It is pretty much like checking satisfiability in first-order logic. Our approach
advocates that a rather general and abstract query should be checked as a logical conse-
quence regarding the TBOX, and in the very case that it is not a logical consequence, the
abstract and formal counter-example is used to define a query that runs on the ABOX, pro-
viding, if it is the case, an answer set at a much lower computational complexity than the
usual approach of using an augmented ABOX+TBOX. Non-OWL-DL KB having model-
based assertions and graph-based KBs (KG) have a similar feature with the addition of
model-based assertions, which multiplies by the size of these assertions the complexity
of validation of the set of theoretical assertions, resulting in a very high complexity.

4. A Two-Tiered Logic KB Approach

When considering only the validation in the TBOX, i.e., with theoretical assertions only,
the complexity is smaller than the overall complexity of TBOX+ABOX, since the size of
the TBOX+ABOX is strictly higher than the TBOX size only. Besides that, to reason with
formulas that uses individuals from the ABOX together with the concepts of the TBOX
is known to be of a higher complexity. Similar behaviours occur with FOL and FLogic,
the logic behind the RDF-Schema theory. Our approach keeps the logical manipulation
of the conceptual theory and the model-based reasoning separate.

Using a formal query a(ps,...,px), i.e., a query written using formal parame-
ters p;, ¢« = 1...p, represented by fresh constants. We then proceed to check whether

’This definition is formally taken as a logical theory. To consider mathematical theories, we should
include mathematical axioms in the set of propositions.

654

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

TBOX F «a(py,...,pr). If the answer is positive, any substitution of the parameters
by individuals in the ABOX also holds. On the contrary, if the answer is negative, the
checking procedure will return an answer set indicating the atomic concepts holding and
failure for each parameter regarding some atomic concept; this is what we call prop-
erly an answer set. This answer set will serve as a basis for performing a query that
will run against the ABOX and produce the actual counter-examples in the model-based
part of the theory. Observe that the query is made on a smaller set of formulas, the
ABOX only, by a more efficient algorithm, the model-checker. Thus, our approach is
computationally more efficient than running the reasoning on the ABOX+TBOX KB.
To a logician, we would explain that we are using a form of Craig interpolation theo-
rem [Craig 1957] to reduce the complexity of the reasoning. We consider a Knowledge
Base with a Model representing Data, also named KB with Data, as a pair (A, ()) where
A is a theory presentation, i.e., a set A of formulas of some logic Ly, representing the
theory Cny,.(A)?, and @ is a model in Ly, where Ly, is the logic where the models
come from. () is a model of A, i.e. Q € Mod(A). Cn(A) is the usual logical conse-
quence operator. We do not need to specify Cn formally since we consider the mappings
Mod and Th, and Cn(A) = Th(Mod(A)). To be more flexible, we might consider a
mapping ¢ from non-logical languages in L), to non-logical languages in Ly and the
condition ¢5(Q) € Mods(A). We also need a validation procedure Pr that, whenever
we give a X-formula* o from Ly, Pr verifies whether A € Cn(X)(A) or not, providing
the counter-examples belonging to the set CEr, if A ¢ Cn(X)(A). CEr is the set of all
counter-examples to formulas in Ly. To complete the formalization, we need a mapping
gs from C'E7p into queries (formulas with free variables in Lj;) over (), such that, for each
v € CEr(A,), gs(y) € Q. The structure is then formed by ((A, Q), Pr, ¢s).

A computational mechanism has been devised that integrates an SAT Solver
with a query generator, henceforth referred to as the “framework”. We con-
sider a logic tool based on Description Logic L., adapted to legal ontologies.
We use a Tableau System [Fitting 1969] developed for reasoning on legal ontolo-
gies [Haeusler et al. 2010] [Alkmim et al. 2022]. The model-based part is represented
in terms of a graph database structure. Consequently, we consider the Knowledge
base with Model data in the pair (L., Graph,,) and the instance of our approach as
((Ligw, Graphy,), Pr, gs). This instance of our proposed approach will perform an audit
process in a KG of the legal domain (laws). We illustrate with an example where and how
it interconnects (integrates) the logic of L;,,, and a Graph DB to have inferences in a two-
logic-based way, as explained in 4. Initially, we defined a set of Competency Questions
(CQ)> extracted from various laws (municipal, state, and federal) together with business
specialists in a chosen City in Brazil, available at the link: Competence Questions Re-
port. These CQs are formulas in L,,,, representing the legislation’s compliance rules over
real problems and data. These rules define what should be valid in a knowledge base
regarding its TBOX, the domain of interpretation. Thus, we can define the CQ as (C, o)
such that C' is a question expressed in 1;,,, language and o is an answer to this question
expressing counter-examples generated by specialists through a tableaux reasoner. The
complete practical experiment of this case study is available in the link: Practical Exper-

3The operator Cny, is {a € L7 : A a} as noted in the background section.
“Formulas written in the non-logical language of L.
SThey are used in methodologies for validating ontology functional requirements[Bezerra et al. 2013].

655

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

iment Report. Its objective is to evaluate the quality of the framework in two aspects:
accuracy in generating counter-models and query coverage. Both metrics summarize our
approach’s ability to make the connection between models (two-tier approach for reason-
ing). We are concerned with treating only the concepts and roles extracted from the L;,,,
formulas and directly building them as elements of KG. We use a transpiler® to translate
the grammar of the counter-model and transform it into SPARQL. In practice, L;,,, can
be mapped to RDF properties, and nominal “concepts”, present in L4, to RDF object
“values”. Then, from RDF to SPARQL is also a direct transformation.

This instance of our approach uses three basic templates that helped construct
SPARQL queries for graph databases: (1) The first template is applied according to the
number of open branches in the tableau. To do this, the framework starts the construction
process by associating each branch with a single complete SPARQL structure (SELECT
clause, projection variables and WHERE clause). For example, if Tableau generates two
counter-examples, this template will be used twice. In other words, we will have a query
for each open branch; (2) The second template is for cases where the counter-model only
presents variables signed with 7. The query is constructed by applying these variables to
each WHERE clause of the subset of queries presented in the first template; (3) The third
template is for cases where the counter-model presents variables signed with F, so the
query is built using the FILTER NOT EXISTS in the parameters of the WHERE clause.
Then, this template is associated with the rules of the first and second templates. The
case study presents an example from a federal law in Brazil, No. 9,717 of November 27,
1998. In Article 1, the law establishes specific social security rules (RPPS) for public
employees of the Union, the States, the Federal District, and the municipalities. +arc (w:
(VtipoFunc.SERVIDOR 1 —(VtemVinculo.EST)) —1 (temVinculo.CEL M (3temPrev.RGPS)))

() vtipoFunc.SERVID ORN{~¥ temVinculo.EST):» (inculo.CELn{dtemPrev.RGPS)

@ \‘N:F{VtipoFunc.SER\IIDORn(~VtemVincqu.EST)»BtemVim:uIn.CELn(3temPrev.RGFS)]) waw

B w': T {tipoFunc.SERVIDORn (~ ¥temVinculo.EST)} (2) wRw'
) \‘M':F(EhemVincuIn.CELn(Eheumv.RGPS)} 2) wRw'
(] \‘N':T[Vtiquunc.SERVIDOR] 3) whaw'

© \‘M':T[-'Vlem\fintulu.EST] B) whaw'

] ﬁm_@“w'mﬁmmpmu.mpﬂ) whaw'
@ \lu':T{SERVIDOR] @ waw' (1U]‘w':T(SERVIDOR) @) waw'
(11)|w' - F {vtemVinculo EST} (5) w'sw' (12]‘w' - F (vtemVinculo EST)) w'sw'
(13)|w':F{CEL} @) wew' (14]‘w':F[RGPS] @ waw'
(15)|w":F(EST) (1) wRw" (15]‘w“:F{EST} 12) whw"

Figure 1. An open tableau.

The open tableau 1 has a counter-model with two counter-examples, represented
by two branches. The left branch contains the counter-example of nodes 15, 13, and 9
IDs. The right counter-example of nodes 16, 14, and 10 IDs. The framework generates
one query for each branch in cases with more than one counter-example. Given page lim-
itations, we show one branch as see Listing 1 (right branch). When the counter-example
contains the F (false signal) of a nominal (nodes 15, 13, 16, and 14), the framework de-
cides a template with a non-existence filter. The FILTER NOT EXISTS allows filtering
results based on whether certain triple patterns do not exist in an RDF graph.

A term describing the conversion of code from one language to another [Keith D. Cooper 2011].

656

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

PREFIX foaf: <http :// xmlns.com/ foaf/0.1/>
SELECT ?name

WHERE { {

SELECT ?name

WHERE {

?x foaf:tipoFunc ’SERVIDOR’

FILTER NOT EXISTS {?x foaf:temVinculo ’EST’}
?x foaf:name ?name

A
SELECT ?name
WHERE {
?x foaf:tipoFunc ’'SERVIDOR’ .
FILTER NOT EXISTS {?x foaf:temPrev ’RGPS’}
?x foaf:name ?name

b3}
Code Listing 1. SPARQL query generated (right branch) by framework.

<?7xml version="1.0" encoding="utf-8"7>
<rdf :RDF
xmlns: foaf="http :// xmlns.com/foaf/0.1/”
xmlns:rdf="http ://www.w3.0rg/1999/02/22 —rdf —syntax —ns#">
<foaf:Vinculos rdf:nodeID="Nf1002b3c57¢3f3225c88f6XX">
<foaf :name>FULANO DA SILVA</foaf :name>
<foaf:tipoFunc >SERVIDOR</foaf : tipoFunc>
<foaf:temVinculo>EST</foaf:temVinculo>
<foaf:temPrev>RGPS</foaf:temPrev>
</foaf:Vinculos>
<foaf:Vinculos rdf:nodeID="N22e140cbdf80cb49b537834YY">
<foaf :name>SICRANO DA SILVA</foaf :name>
<foaf:tipoFunc >SERVIDOR</foaf : tipoFunc>
<foaf:temVinculo>EST</foaf:temVinculo>
<foaf:temPrev>RPPS</foaf:temPrev>
</foaf:Vinculos>
<foaf:Vinculos rdf:nodeID="N6388d7508deb49e585c9b699d9ad03DD”>
<foaf :name>BELTRANO DA SILVA</foaf :name>
<foaf:tipoFunc>SERVIDOR</foaf : tipoFunc>
<foaf:temVinculo>CEL</foaf:temVinculo>
<foaf:temPrev>RPPS</foaf:temPrev>
</foaf:Vinculos>
</rdf :RDF>

Code Listing 2. XML/RDF file.

Listing 2 shows an XML/RDF instance of the hypothetical functional relationships. The
cases of non-compliance are FULANO DA SILVA and BELTRANO DA SILVA where the val-
ues of the predicates for <foaf:temVinculo> and <foaf:temPrev> are not compatible.
Furthermore, the formula looks for cases where employee not is EST (Estatutdrio) and RGP S.
Therefore, only BELTRANO DA SILVA (Figure 2) is retrieved by the query. In summary, the

DOWNLOAD RESULTS QUERY INFORMATION

name
"BELTRANO DA SILVA"

Figure 2. Result query generated by AllegroGraph.

execution of the case study presented 100% in accuracy and 100% in query coverage of the frame-
work.

5. Conclusion and Future Works

Logical formalisms, like first-order and description logic, express structured knowledge and rela-
tionships within a KB. By encoding knowledge in a logical form, systems can perform automated
reasoning and inference to derive assertions valid from existing data. This is the task of deduc-
tive databases that experienced a more challenging escape for validating within lower complexity
KB with theoretical and model-based assertions. We proposed a formalization for reasoning and
querying on a KB, integrating the conceptual part of the KB with its model or data-driven aspects.
Formalism helps to clarify the risk of producing an incomplete, rather inconsistent KB, which is
a first contribution. We also argue that this two-tiered KB is more efficient than one-tier, such as
usual KGs and DLs. Further research includes (i) instantiating this approach to other data models
and (ii) considering other theories and KB that could enable other interesting inferences.

657

Proceedings of the 39t Brazilian Symposium on Data Bases October 2024 — Florianépolis, SC, Brazil

References

Alkmim, B., Haeusler, E. H., and Nalon, C. (2022). A labelled natural deduction system for
an intuitionistic description logic with nominals. In Arieli, O., Homola, M., Jung, J. C., and
Mugnier, M., editors, Proceedings of the 35th International Workshop on Description Logics
(DL 2022) co-located with Federated Logic Conference (FLoC 2022), Haifa, Israel, August 7th
to 10th, 2022, volume 3263 of CEUR Workshop Proceedings. CEUR-WS.org.

Baader, F., Calvanese, D., Mcguinness, D., Nardi, D., and Patel-Schneider, P. (2007).
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press; 2nd Edition.

Bezerra, C., Freitas, F., and Santana, F. (2013). Evaluating ontologies with competency ques-
tions. In 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and
Intelligent Agent Technologies (IAT), volume 3, pages 284-285.

Craig, W. (1957). Three uses of the herbrand-gentzen theorem in relating model theory and proof
theory. Journal of Symbolic Logic, 22(3):269285.

Fitting, M. C. (1969). Intuitionistic logic model theory and forcing. North-Holland Publishing,
Amsterdam, Netherlands.

Haeusler, E. H., d. Paiva, V., and Rademaker, A. (2010). Intuitionistic logic and legal ontologies.
Conference: Legal Knowledge and Information Systems - JURIX 2010.

Keith D. Cooper, L. T. (2011). Engineering a Compiler . Elsevier, 2nd edition.

658

