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Campo Mourão, PR – Brazil

alesan.2000@alunos.utfpr.edu.br, eduardopena@utfpr.edu.br

Abstract. Data consistency ensures the validity and integrity of data represent-
ing real-world entities. Denial constraints (DCs) generalize various integrity
constraints, providing a powerful way to define rules that ensure data consis-
tency. This work analyzes the capabilities of relational database management
systems (RDBMSs) to detect DC violations in different metrics. We explore var-
ious SQL patterns for measuring DC violations and evaluate the performance
of multiple RDBMSs with extensive experiments, highlighting potential perfor-
mance improvements, choke points, and limitations when using them.

1. Introduction

Data consistency refers to the validity and integrity of the data representing real-world
entities. In this context, denial constraints (DCs) provide a powerful way to define rules
that ensure data consistency since they are a formalism that generalizes several types of
data dependencies, including functional and order dependencies. Typically, measuring the
inconsistency of a database regarding a set of DCs is achieved by detecting DC violations,
which are sets of tuples that do not comply with the DCs.

Several studies have used constraint-based techniques for data error detection and
data repairing [Chu et al. 2016]. [Fan et al. 2008] study conditional functional depen-
dencies to capture inconsistencies using SQL. HoloClean [Rekatsinas et al. 2017] and
NADEEF [Dallachiesa et al. 2013] are well-known data cleaning systems that use Post-
greSQL to detect and repair data errors, leveraging the DC formalism to define integrity
rules. [Pena et al. 2021] proposes a standalone tool to detect violations of DCs, showing
that some RDBMSs fall short in performance depending on the database size and DC
predicates. However, given RDBMS’s availability and ease of use, data professionals of-
ten opt for them instead of standalone tools. Also, since the proposal of the tool, some
RDBMS have updated the available algorithms, which are now more capable of delivering
faster results 1. Thus, this paper revisits relational DBMSs for handling constraint-based
queries. Our study includes exploring various SQL query patterns that facilitate the mea-
surement of different facets of DC-related inconsistencies. Additionally, we analyze the
performance of several RDBMSs, examining various query processing engines.

Our contributions are as follows: we review different DC queries for violation
detection studied in previous works, along with new derivations using alternative clauses
(e.g., GROUP BY or EXISTS), evaluating the potential performance improvements or

1https://duckdb.org/2022/05/27/iejoin.html
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drawbacks associated with their use; we conduct extensive experiments on diverse com-
binations of datasets, RDBMSs, and DCs, measuring the execution time of over 9000
query executions and analyzing their general behavior, highlighting possible choke points
and limitations, including bugs, encountered when using the different RDBMSs.

2. Background
Consider a relation instance r with schema R, and predicates p : t.A θ t′.B, where
A,B ∈ R; θ is a comparison operator in {=, ̸=, <,≤, >,≥}; and t, t′ is a pair of distinct
tuples of r. A DC φ specifies a predicate conjunction that must not be true given any tuple
pair of r. The DC φ is expressed as: φ : ∀t, t′ ∈ r,¬(p1∧. . .∧pm), and it is satisfied if, for
all pairs of the table, at least one of the predicates of φ is false. Intuitively, tuples violating
DCs point to inconsistent and, thus, problematic value combinations in the database.

Computing DC violations can be achieved using intuitive SQL queries, but dif-
ferent RDBMSs may process these queries in distinct ways. Factors such as the query
processing model, selectivity of DC predicates, and the join algorithms used for DC pred-
icates can significantly impact processing costs.

Query Processing Models. Query processing models define how RDBMSs handle and
execute queries. The iterator model (aka, Volcano model) processes queries tuple by tu-
ple using iterators and operators that extract data from its child operators in a pipeline.
It is memory efficient, but potentially incurs the function call overhead, as operations are
called for each tuple. The materialization model processes intermediate results by fully
computing and storing them before passing to the next operator, reducing re-computation,
but possibly requiring substantial memory usage. The vectorization model improves CPU
cache utilization and reduces function call overhead by processing batches or vectors of
tuples at a time, balancing the granularity of tuple-at-a-time processing and the efficiency
of batch operations. The compilation model translates queries into low-level machine
code before execution, allowing specific query handling that eliminates interpretation
overhead and can leverage advanced CPU features [Kersten et al. 2018].

Predicate Selectivity. The predicate selectivity, i.e., how many pairs of tuples satisfy
a given predicate, can significantly affect query processing cost. High-selectivity pred-
icates, such as equalities, usually return a small subset of tuples, reducing the data for
further stages in a pipeline. In turn, low-selectivity predicates, such as inequality compar-
isons ( ̸=, <,≤, >,≥), can return a large portion of the table, increasing the computational
cost as more data needs to be scanned, filtered, and possibly joined.

Join Algorithms. Execution planners must choose the most suitable join algorithms for
efficient predicate evaluation. Although algorithms such as Nested-Loop Join, Sort-Merge
Join, and Hash Join can be used in typical cases, each provides specific advantages and
disadvantages depending on the dataset, size, and predicates evaluated. For specific cases,
there are algorithms that can offer more efficiency. For example, IEJoin, a recently pro-
posed join algorithm, is already being used by some RDBMSs (e.g., DuckDB). It can
process a pair of range predicates more efficiently than traditional join algorithms.

3. Proposed Evaluation
We exploit the rich predicate structure of DCs to explore various SQL query patterns.
By applying these SQL queries to the DCs, we compute different metrics for data incon-
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sistency. Each metric provides a different perspective on the consistency of the dataset.
Table 1 presents the SQL queries and respective metrics obtained by executing them.
The metrics have been studied in previous works dealing with discovering DC violations
[Pena et al. 2021], data cleaning and repairing [Fan et al. 2008, Rekatsinas et al. 2017]
or inconsistency measures [Livshits et al. 2021].

Metric m1 provides the set of inconsistent pairs of tuples, which point to tuples
that conflict with each other regarding a DC, i.e., the DC violations. Queries Q1 and Q3

compute m1. The m2 metric provides the number of violations existing in the dataset,
where the inconsistency is measured in a single number with query Q2. The m3 metric
provides the set of tuples that participate in any violation, that is, the set of tuples existing
in any of the pairs obtained for the m1 metric. Queries Q4 and Q5 capture m3 . The m4

metric informs whether any violation exists in the dataset and is obtained when query Q6

returns a non-empty result. The metrics m1 and m3 are useful for DC-based data cleaning
methods. For instance, due to the anti-monotonic property of DCs (i.e., inconsistency
cannot increase by deleting tuples), a simple way to remove violations is to delete the
tuples obtained for m3 metric [Livshits et al. 2021]. We evaluated a pair of queries to
obtain metrics m1 and m3, enabling queries with (potentially) different execution plans
that might lead to faster query execution. We include the condition t.ID ̸= t′.ID to
ensure that only distinct tuples are used to compare the DC predicates.

Query SQL Statement
Metric

obtained

Q1
SELECT t.ID, t′.ID FROM r t JOIN r t′

ON p1 AND ... AND pm AND t.ID ̸= t′.ID
m1

Q2
SELECT COUNT(*) FROM r t JOIN r t′

ON p1 AND ... AND pm AND t.ID ̸= t′.ID
m2

Q3

SELECT t.ID, t′.ID FROM r t, r t′

GROUP BY t.A1, ..., t.Am, t′.B1, ..., t′.Bm, t.ID, t′.ID
HAVING p1 AND ... AND pm AND t.ID ̸= t′.ID

m1

Q4

SELECT t.ID FROM r t JOIN r t′ ON p1 AND ... AND pm AND
t.ID ̸= t′.ID UNION SELECT t′.ID FROM r t JOIN r t′ ON
p1 AND ... AND pm AND t.ID ̸= t′.ID

m3

Q5

SELECT t.ID FROM r t WHERE EXISTS ( SELECT 1 FROM r t′ WHERE
p1 AND ... AND pm AND t.ID ̸= t′.ID )
UNION SELECT t′.ID FROM r t′ WHERE EXISTS ( SELECT 1 FROM r t
WHERE p1 AND ... AND pm AND t.ID ̸= t′.ID )

m3

Q6
SELECT t.ID, t′.ID FROM r t JOIN r t′ ON p1 AND ... AND pm
AND t.ID ̸= t′.ID LIMIT 1

m4

Table 1. SQL queries used to detect data inconsistencies regarding DCs.

RDBMS Systems. We used RDBMSs that use different techniques for query process-
ing. PostgreSQL (v16.2), MySQL (v8.3.0), and SQLite (v3.37.2) use the iterator model.
DuckDB (v0.8.1) takes advantage of the vectorization model and implements IEJoin. Um-
bra (2023-11-14) implements just-in-time query compilation. RDBMS-1 and RDBMS-2
are community/developer versions of commercial RDBMSs. RDBMS-1 uses a hybrid
approach between an iterator and a vectorization model, and RDBMS-2 mainly uses the
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iterator model. We do not evaluate RDBMSs that use the materialization model (e.g.,
MonetDB) since previous work has shown critical issues related to memory usage for
queries aimed at discovering DC violations, particularly for large datasets and range and
non-equality predicates [Pena et al. 2021].

4. Experimental Evaluation
Our experiments include datasets from open-access sources (i.e., Kaggle and NYC Open-
Data) and repositories of previous work. For the DCs, we use the DC mining algorithm
from [Pena et al. 2022]. We inspected the discovered results and select a few DCs for
our tests. Table 2 presents the datasets and DCs selected. We start with clean datasets
and then generate datasets with different noise levels (DC violations). We use the noise
generator algorithm (CONoise) described in [Livshits et al. 2021], which inserts random
DC violations by adjusting tuple values to disrupt the dataset consistency, repeating the
process until reaching the desired amounts of noise. We analyze the execution plans of the
queries and measure the execution time (arithmetic mean of three executions, fetching all
resulting tuples) for each combination of dataset, DC, RDBMS, and noise level. Queries
that exceed four hours were interrupted and disregarded, as well as those that result in
errors or are not supported by the RDBMS being evaluated. The datasets produced, DCs,
results, and scripts used are publicly available 2.

Table 2. Datasets and DCs.

Name Size DC

φ1 Brasil Exp 10 000 000 ¬(t.ncm = t′.ncm ∧ t.unid < t′.unid ∧ t.via > t′.via)
φ2 Dob Job 2 182 000 ¬(t.job = t′.job ∧ t.borough ̸= t′.borough ∧ t.lot > t′.lot)
φ3 Measures 1 318 000 ¬(t.coolant > t′.coolant ∧ t.stator < t′.stator ∧ t.pm = t′.pm)
φ4 Tax 999 900 ¬(t.city ̸= t′.city ∧ t.zip = t′.zip)
φ5 Loan Default 255 000 ¬(t.age > t′.age ∧ t.income = t′.income ∧ t.amount = t′.amount ∧ t.term < t′.term)
φ6 Lineitem 152 000 ¬(t.quantity = t′.quantity ∧ t.tax = t′.tax ∧ t.discount < t′.discount ∧ t.price > t′.price)
φ7 Salaries1 100 000 ¬(t.base pay > t′.base pay ∧ t.overtime pay > t′.overtime pay ∧ t.other pay > t′.other pay ∧ t.total < t′.total)
φ8 Salaries2 100 000 ¬(t.total pay > t′.total pay benefits ∧ t.total pay benefits > t′.total pay)
φ9 Yellow Taxi 100 000 ¬(t.pickup datetime > t′.dropoff datetime ∧ t.dropoff datetime < t′.pickup datetime)
φ10 Flights 91 000 ¬(t.origin = t′.origin ∧ t.destination = t′.destination ∧ t.flights > t′.flights ∧ t.passengers < t′.passengers)

We used a server with the following configuration for running the queries:
Intel Xeon E5-2620 2.10Ghz Processor (4 cores), 20GB of RAM, 100GB of SDD
(CT2000MX500SSD1), OS Ubuntu 22.04.3 LTS (5.15.0-101-generic kernel).

Increasing number of violations. Figure 1 shows the results for the RDBMSs running
the different queries for datasets with increasing ratios of violations (measured by m3

metric). In general, DuckDB and Umbra perform better than the other RDBMSs, which
suggests that some design choices, such as advanced parallel processing and just-in-time
query compilation employed by Umbra, as well as vectorized execution used by DuckDB,
help the underlying RDBMSs outperform the others [Raasveldt and Mühleisen 2019,
Neumann and Freitag 2020]. In cases where the IEJoin algorithm is leveraged as a join
operator (i.e., φ7, φ8 and φ9), DuckDB can approach or even surpass the performance
of Umbra, providing significantly superior performance compared to other RDBMSs.
For instance, on φ9 for Q1, DuckDB performs 28x faster than Umbra and more than
2300x faster than other RDBMSs; similar results occur in φ8. Although Umbra gener-
ally achieves a lower execution time than DuckDB for the other datasets and DCs, this

2https://github.com/Alessandro-Neves/SQL-DC-violations-detection
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difference tends to decrease or even reverse when the number of violations in the dataset
increases, due to the time spent fetching the results produced for m1 and m3 metrics.
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Figure 1. Runtime comparison for datasets with fixed size and increasing noise.

As seen for queries Q6, when the goal is to verify the existence of violations,
PostgreSQL, MySQL, RDBMS-1, and RDBMS-2 can significantly reduce their process-
ing time on datasets with violations, especially when the dataset has a high noise level.
MySQL stands out in these cases, even outperforming DuckDB. In this case, the iterator
model execution may produce partial results early and finish due to the LIMIT clause,
significantly reducing query processing time. After the first results are generated, pro-
cessing the remaining tuples is unnecessary. However, it leads to poor performance when
the dataset is clean since it must evaluate all tuples to confirm no violation exists, resulting
in multiple iterations and re-evaluations of join conditions, adding substantial overhead in
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the query processing, and significantly increasing processing time.

Increasing number of rows. For the next experiment, we focus on DC φ1, which is more
computationally demanding. We generated datasets with increasing sizes, and the amount
of tuples that participate in any violation is fixed to nearly 1%. As seen in Figure 2, the
results show the same behaviors observed in the first experiment, with the processing time
growing significantly as the dataset size and number of violations increase (except in Q6,
due to the use of LIMIT), for instance, for the results in Q4, the difference in execution
time between the best and worst performing RDBMS is 122 seconds for the dataset with
1M tuples. For the largest dataset, with 10M tuples, this difference increases to more than
3 hours, DuckDB takes 1826 seconds to complete the same task that MySQL takes 13291
seconds. We run the experiment for DC φ7 and observed similar trends.
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Figure 2. Runtime for φ1 with progressive size and noise fixed at nearly 1%

Discussion. The CPU usage during query processing indicates that when executing Q1

on φ1, DuckDB predominantly uses only one processor core during query processing, in
contrast to Q3, DuckDB uses the four available processor cores. However, both return
the same results and are executed on the same dataset; this behavior is observed even in
reduced versions, as shown in Figure 2. DuckDB also performs faster in Q3 compared to
Q1 for φ2, φ3, and φ4. However, in these cases, the query execution time is too short to
observe how the processor cores are used during the query execution. The SQLite presents
an intense reduction in performance when processing Q5 for all evaluated datasets and
DCs, frequently exceeding the established execution time limit. A critical issue (i.e., bug)
observed is that DuckDB produces incorrect results by returning all tuples in the dataset
as participating in any violation (m3) for query Q5 (which uses the EXISTS clause) when
the Nested-Loop Join is employed for semi-join operations (i.e., φ7, φ8, and φ9), in this
case, the execution time decreases to just a few tens of milliseconds. For all other query
executions in DuckDB and other RDBMSs, the results presented the expected values.

5. Conclusion and future work

This study investigated the performance of executing SQL queries for DC violation detec-
tion across several RDBMSs. Our experiments show that some strategies, such as query
compilation or vectorized execution, perform better in most cases. Also, they show po-
tential bottlenecks in commonly used RDBMSs. This preliminary evaluation focuses on
the vanilla/out-of-the-box versions of RDBMSs without any fine-tuning or indexes. As
observed in previous studies, the indexing space for DCs can be extensive and not always
result in better-performance plans. However, a deeper view of fine-tuning and indexing
offers excellent opportunities for future work, as well as integrating the best-performing
systems with data cleaning solutions that currently use the less-performant systems.
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