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Abstract. Floods are becoming increasingly frequent, and consequently, the
number of people and infrastructure affected by these events has increased. It is
essential to have accurate models for the prediction of such hydrometeorologi-
cal events, improving preparedness and decision making for damage reduction.
The goal of this work was to determine the variables (features) that contribute
the most to predicting hydrometeorological events. Feature engineering tech-
niques were used to understand which factors are most helpful in predicting
floods. The features were composed based on data from rain gauges, altimetry,
and location of rivers and lakes. It was observed that the variables that had
the greatest impact on improving the model were the data from rain gauges and
altitude data. The predictive model proposed is part of a larger system being
developed in the context of Smart Cities called ICARUS. The system is aimed at
improving response time and up-time of critical infrastructure during extreme
events.

1. Introduction
The number of people affected by hydrometeorological events has been increasing in
recent years, even considering non-extreme rainfall events [Lohmann 2011]. Predicting
these events requires data, and the lack of data is one of the main challenges. The absence
of data (cartographic, meteorological, hydrological) at suitable scales for local studies has
been one of the obstacles to conducting research related to understanding the dynamics
of extreme events in Brazil [Lohmann 2011].

To address similar problems, precipitation data collected from rain gauges
are commonly used. For the city of Curitiba, there are already other works us-
ing data collected by the Municipal Civil Defense, which registers the time and
location of flood events [Buffon and de Sousa 2018]. Fernandez and Splendore
[Fernandez and Splendore 2021] proposed the ICARUS (Integrated Crisis Awareness
and Resource Utilization for Smartcities) system, a platform that integrates detection of
extreme events and management of Smart City infrastructure. The system allows faster
response times in the face of such events. The work presented in this paper is part of the
ICARUS system.

A significant challenge in the context of extreme event detection is identifying
which variables are most relevant for predicting these events. The field of Feature Engi-
neering involves comparing variables to select the best ones that can influence the final
model’s outcome.
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The aim of this paper is to implement a predictive model for hydrometeorological
events in the city of Curitiba, using data collected by rain gauges, altimetry, and informa-
tion about rivers and lakes in the region. Feature engineering techniques are applied to
understand the factors that most influence the prediction of these events. The knowledge
generated in this work can contribute not only to future research related to the dynamics
of these phenomena in Brazil but also to the development and improvement of existing
models.

2. Fundamentals and Related Work

2.1. Floods, Inundations, and Flooding

Based on the work by Buffon [Buffon 2020], we adopt the following concepts: floods, in-
undation, and flooding, which will be used in this work. Therefore, it is essential to differ-
entiate them. Floods, also known as high waters, according to Noronha [Noronha 2021],
“involve an increase in the water level in the drainage channels of rivers, streams, and
reservoirs”. They occur during the rainy season without overflowing their banks, making
them a natural process. Inundations refer to events with water overflowing from rivers.
Meanwhile, flooding events occur when there is insufficient drainage in an area, primarily
in urban settings, and are not necessarily linked to floods or inundations.

Buffon [Buffon 2020] provides a theoretical foundation that presents different
types of flooding, structural and marginal, and explains their differences. This study
serves as the basis for choosing the most influential variables in the occurrence of floods
and flooding, as well as the theoretical foundation for this topic. From the thesis, two
promising variables were identified: data recorded by rain gauges and altimetry data.

2.2. Decision Trees and Random Forests

A popular technique for supervised learning is the decision tree. It consists of a hierarchi-
cal structure similar to a flowchart, with each internal node representing a test of a specific
feature or data attribute [Quinlan 1986]. The results of these tests branch the tree until the
final prediction result is found at the leaf node. Since decision trees are easy to understand
and interpret, they are often used for problems with few independent variables. However,
they can quickly become complex when many attributes are involved.

The Random Forest algorithm combines several independent decision trees to
make the final classification [Breiman 2001]. Each tree is built from a random sample
of data and only a subset of the available variables (randomly selected). Thus, each tree
has different strengths and weaknesses when classifying examples. By combining these
trees into a final model, individual weaknesses are compensated for by more robust trees.
This process produces a model that is less sensitive to variations in the training set and
can generalize correctly to new test sets [A and M 2002].

2.3. Related Work

Buffon and Souza [Buffon and de Sousa 2018] developed an analysis of flood and rainfall
data in Curitiba to find interrelationships of the phenomena. Their work presents cases of
recorded flooding without the occurrence of rain, which may indicate potential errors and
inconsistencies. The article explains issues related to data preprocessing in this context
and identifies areas in Curitiba with the highest flood risk. The results show trends in
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Figure 1. Architecture of the ICARUS System

the data, but the authors recommend the analysis of secondary data sources to enrich the
modeling.

Lohmann [Lohmann 2011] employed logistic regression-based models for prob-
abilistic flood prediction. This study was also conducted in Curitiba and utilized data
from meteorological radar, satellite, and rain gauges. The model achieved highly positive
results, with an F-Score of 0.8704, using higher resolution and more precise data.

Finally, the work presented in [Wu et al. 2010] demonstrates an approach for
anomaly detection in spatial and precipitation data. The authors propose an algorithm
called ”Outstretch” that is capable of identifying the top-k outliers using spatial scan
statistics [Kulldorff 1997]. The authors’ approach aligns with the work proposed here.
However, the work differs from the proposed one as it evaluates the accuracy of the al-
gorithm with data related to the behavior of the El Niño Southern Oscillation (ENSO)
phenomenon, which is a much more atypical and persistent phenomenon compared to the
types of natural disasters considered in this paper.

3. ICARUS System

The work presented in this paper is part of the ICARUS (Integrated Crisis Awareness
and Resource Utilization for Smartcities) System [Fernandez and Splendore 2021]. The
name given to this systems aims to represent the awareness that a smart city has regarding
the crises it faces, being integrated with a resource management and utilization module.

The general objective of the system is to develop an outlier-based model to pre-
dict natural disaster events. The model works in conjunction with the communication
infrastructure management system to mitigate issues [Matisziw and Murray 2009]. This
approach allows for prevention and contingency measures to avoid future communication
failures. The integration of all these components is referred to as the ICARUS system,
which includes the outlier detection model and the network infrastructure manager (Fig-
ure 1). The input to this platform is pluviometric data, a history of floods and inundations,
and geographic data such as latitude and longitude, with the output being an action taken
to mitigate a network connection failure.

The architecture of the system is shown in Figure 1, describing the stages of the
communication flow and how the interaction and integration between the models are per-
formed. The first stage shown in the diagram displays the management and acquisition of
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Figure 2. Map
discretized into
hexagons of Curitiba.

Figure 3. Rain Gauge
Data, February 20,
2018.

all the data used. The second and third stages describe how the outlier detection model
interacts with the infrastructure simulation model and vice versa.

4. Methodology

4.1. Data Acquisition and Processing

Rain Gauge Data: Hourly precipitation data provided by [Cemaden 2021] were
used, which has eleven automatic rain gauge stations in the Curitiba region. The work
[Fernandez and Splendore 2021] served as the basis for interpolating the data to obtain
the climatic conditions of the midpoint, using the interpolation method called Kriging.

The work [Fernandez and Splendore 2021] also discretized the map of Curitiba
into hexagons (Figure 2). Each hexagon has approximately 600 square meters of area.
The same was done in this work due to the amount of data and the high processing time
at a finer resolution. The base data was obtained from [Cemaden 2021].

With the intention capturing the impact of water retention in the soil, two new
metrics were created:(i) 3-Day Rain Accumulation, and (ii) 7-Day Rain Accumulation,
both using the precipitation values of the last days for the each hexagon.

Elevation Data: The elevation data (contour lines) were obtained from IPPUC
(Curitiba’s Planning Department)1. The provided files are in Shapefile format. Just like
in [Fernandez and Splendore 2021], these data were discretized into the same hexagons
(Figure 2), averaging the measurements of all points within that hexagon. The dataset was
obtained from [de Curitiba 2022].

Hydrometric Data: As an input for another variable, data from lakes, lagoons,
reservoirs, rivers, quarries, and floodplains were used. They were also obtained from
IPPUC, also in Shapefile format.

Again, the data were discretized into hexagons, and each hexagon received a vari-
able indicating whether it contained rivers, lakes, or quarries, and the number of each

1https://www.ippuc.org.br/
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type. This processing was done using the spatial operation Join. Then, the total number
of that hexagon was summed, creating the hydro score variable. A neighborhood variable
was also created, which sums the hydro score of neighboring hexagons. The dataset was
obtained from [de Curitiba 2022].

Flood Records: To measure the quality of the models, data on flood records
registered by the Municipal Civil Defense were used. It is important to note that these
records do not have high reliability because not all cases of flooding are reported and,
therefore, not recorded. These records were also discretized into hexagons. The dataset
was obtained from [IPPUC 2022].

4.2. Feature Engineering

In order to find the best features that detect flooding, this work used the Random Forest
algorithm, along with the Cross Validation method, executed in isolated environments
with each feature. They were implemented using the Python programming language and
the libraries Pandas and Scikit-learn.

This technique was used on precipitation data, elevation data for the city of Cu-
ritiba, and hydrometric data. For each data set, more than one variable was created. In
order to group related variables and also reduce the number of executions and compar-
isons, three groups of features were created: (i) Precipitation: Data collected from rain
gauges; (ii) Elevation: Elevation data; and (iii) Hydrometric: Data from lakes, lagoons,
reservoirs, rivers, quarries, and floodplains. For each group of features used in the model,
the times to run the model were recorded, as well as the evaluation metrics: Accuracy,
Precision, Recall, and F-Score. By comparing the results obtained by different models
using the F-Score metric, it was possible to identify the best features for classifying the
hydrometeorological events in question.

Next, models were created with the following combinations of feature groups:
(i) Precipitation + Elevation; (ii) Precipitation + Elevation + Hydrometric. Then, the
performance of the feature groups was compared to understand if any feature group could
be removed while maintaining equal or superior results.

4.3. Modeling and Evaluation

The Random Forest Classifier algorithm was used to classify points as flooding or no
flooding. The purpose of the work is not to use a robust model but a model that is simple
to understand to compare the results of different features. The process involved dividing
the collected data into training and testing sets (for performance evaluation). An execution
was performed for each feature group in isolation, and several executions considering the
union of features.

To assess the quality of the models, data on flooding records provided by the
Municipal Civil Defense were used. The main metric used is the F-Score, which combines
the values of precision and recall. Precision is the ratio of correctly predicted data to all
predicted data, and recall is the ratio of correctly identified data to all data. The Cross
Validation method was used in the executions with features to ensure a fair evaluation of
the features.
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5. Results
Based on the results obtained after running the Random Forest Classifier model, a com-
parative analysis was conducted between three feature groups: Precipitation, Elevation,
and Hydrometric (Table 1).

Group Time Accuracy Precision Recall F-Score
Precipitation 6m 42s 0.999670 0.941733 0.711386 0.777140

Elevation 3m 5s 0.999720 0.982721 0.710657 0.786063
Hydrometric 2m 21s 0.999577 0.89978 0.576307 0.624638

Precipitation + Elevation 6m 13s 0.999740 0.989872 0.745748 0.824096
All 7m 28s 0.999712 0.988170 0.714212 0.790546

Table 1. Results of the Random Forest Classifier model execution with various
features

Analyzing the features individually, we can see that the Hydrometric feature did
not achieve a high F-Score compared to the others. On the other hand, the Elevation
feature performed better in all metrics, except for Recall when compared to Precipitation.
This was surprising because elevation does not vary with the date, and it was expected
that Elevation alone would not achieve better results than the Precipitation group, which
varies with the date.

Another point to discuss is the execution time of each feature. The Precipitation
group was the slowest, which can be explained by the variation by date of the variable,
being the only group with this feature. The Hydrometric group was faster, and this can
be explained by the fact that there are many hexagons with a zero value for this group,
reducing the required comparisons and increasing the speed of the model.

In the execution with all features, the results were better compared to the rounds
with the features alone, but it was worse than the round using only Elevation and Precip-
itation. Therefore, we can say that the Hydrometric feature did not improve the results
when using other features together. This may have happened due to the simplification
of the Hydrometric Group, considering different types of water elements (lakes, lagoons,
rivers, etc.) as the same element. Perhaps with an improvement in the collection of this
variable, the result could have been better.

6. Conclusion
This work aimed to analyze variables that influence flood prediction in the city of Cu-
ritiba. The combination of Precipitation and Elevation features achieved the highest
F-Score. The result of the work was better than expected, considering that the work
[Fernandez and Splendore 2021] uses similar data at the same resolution, achieving an
F-Score of 0.60. It was possible to verify that new features helped improve the model,
and it was possible to verify that the Hydrometric data feature would be dispensable in a
subsequent work.

As suggestions for future work, four points can be mentioned: (i) Improve data
resolution and also the results; (ii) Explore a comparison between different machine
learning models; (iii) Use more data from various sources, such as Lidar data for al-
timetry, which have higher resolution but are more computationally intensive; (iv) Apply
the model to other cities with continuous records of floods and inundations and higher
precision remote sensing data.
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