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Abstract. The increasing adoption of solid-state drives (SSDs) due to their high
performance and reliability has made failure prediction crucial for ensuring
data integrity and availability. Self-monitoring, Analysis, and Reporting Tech-
nology (SMART) is a system for drives that periodically reports various oper-
ational parameters that facilitate early detection of potential issues. Although
many studies have used SMART attributes for approaching this matter – as a
binary problem – we test new ways of predicting SSD failures, considering mul-
tiple health levels. In this paper, we first use feature selection for selecting the
best SMART attributes as learning features. Then, we test the selected features
on several classification models and two different prediction horizons of one
month and one year ahead of the failure. The preliminary results effectively val-
idate our approaches to address that problem, mainly in the smaller prediction
horizon with non-linear models.

1. Introduction

Solid State Drives (SSDs) are well known for their low latency capabilities and reliability
over HDDs. Therefore, they have been widely used as a storage medium in modern data
centers and households [Maneas et al. 2020]. Hence, the study of failure prediction in
SSDs is a critical task to better maintain large storage reliability since it can be used to
replace drives and avoid data loss and other associated costs.

The drive manufacturers implement the SMART (Self-Monitoring, Analysis, and
Reporting Technology) [Ottem and Plummer 1995], a built-in system for HDDs and
SSDs that gathers data on the state of the drive daily, providing a time series that can
be used for failure prediction. Although it can change for each manufacturer, commonly
gathered data generally includes Raw Read Error Rate, Power On Hours, Power Cycles,
Device Temperature, Total LBAs Written, and Total LBAs Read. It is helpful since it
provides several indicators that can be analyzed to check drive reliability based on thresh-
olds. Despite all these preceding efforts, the exclusive use of SMART attributes to predict
failure is not enough [Murray et al. 2005].

Machine Learning techniques have shown to be a good tool to determine whether
a given drive is failing or not [Pereira et al. 2022, Xu et al. 2021] by using the SMART
attributes as inputs to models. However, as the literature is more extensive on failure
prediction in Hard Disk Drives, more study is necessary for SSDs.
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In this paper, we focus on providing a different view on SSD failure prediction and
present exploratory results. Although we are still using SMART attributes like other pa-
pers on SSDs [Chen et al. 2022], we are the first to study the modeling of the Remaining
Useful Life (RUL) of the drive to six health levels [dos Santos Lima et al. 2017], repre-
senting time spans, instead of the common classification of healthy versus unhealthy. We
test two horizons of prediction (1 year and 1 month). Also, we use a feature selection
method to select the best learning features to increase prediction accuracy and reduce
model complexity. Our results show that when non-linearity and temporal aspects are
considered together, predicting RUL with health levels is less challenging, especially in a
more tight time period, giving outcomes of up to around 90% accuracy depending on the
selected manufacturer model.

2. Failure Prediction of Storage Devices
Studies have tackled the problem with various approaches to address the failure prediction
task. One approach is to deal with the problem as a regression over the Remaining Useful
Life [Lima et al. 2018], where the model tries to predict the number of days left the disk
has before it fails. Another approach is to create classes over the RUL to perform a
classification task [Lima et al. 2021]. A common modeling of the classes is to use the
last month of the drive’s life as the class, indicating the failure (unhealthy state) and all
the rest as the healthy state. Also, it is noticeable a constant effort of researchers to
perform feature selection, as not all SMART attributes can contribute to failure prediction
[Felix et al. 2023].

Although HDD SMART data have been more extensively addressed for both re-
gression and classification of the RUL, SSD SMART data have also been leveraged in
other works, such as being used to investigate its correlation to failures [Han et al. 2021,
Lu et al. 2022] and to find the best learning features for failure prediction in the classi-
fication approach of the last month versus the rest. [Xu et al. 2021]. Even though the
usual 2-class classification problem for SSDs is suitable for a lot of cases, it may be of
one’s interest to increase the granularity of the failure prediction to better understand the
state of the drives, as described in [dos Santos Lima et al. 2017] for HDDs. To the best of
our knowledge, no study has ever performed this type of classification with SSD SMART
data.

3. Methodology
Our main goal is to predict SSD failures with SMART data by classifying the drive’s
Remaining Useful Life in health levels, a higher granularity than the usually employed
approach of 2-classes. We can divide our work into three main steps.

Data Preprocessing. For each SSD model, two prediction horizons are consid-
ered (360 and 30 days), labeling the day intervals in six health levels as depicted in Figure
1. Features with more than 99% of missing data are completely deleted.

Feature Selection. To evaluate the importance of SMART attributes in the SSD
model dataset, four feature selection approaches that were presented in [Xu et al. 2021]
are considered, covering a diversity of methods: Pearson correlation, Spearman corre-
lation, Random forest, and XGBoost. After passing all features to all four methods, a
ranking is obtained in every approach, and the first columns that together makeup at least
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360 days interval

R6 R5 R4 R3 R2 R1

90 days 60 days 30 days90 days 60 days 30 days

30 days interval

R6 R5 R4 R3 R2 R1

7 days 7 days 5 days 5 days 3 days 3 days

Figure 1. RUL interval setup used for the two prediction horizons.

70% of the total importance are picked as learning features for the given method and used
in the prediction experiments.

Health Level Prediction. After the preceding steps are finished, the last task is to
evaluate the classification. As an exploratory study, we selected three Machine Learning
models as predictors based on their characteristics: Logistic Regression as a linear model,
Random Forest as a nonlinear model, and Long Short-Term Memory network (LSTM)
as a nonlinear model that considers the temporal aspect of the data. As each SSD man-
ufacturer model can report different SMART features and may degrade differently, we
train different classification models for each of them. Also, we train one model for each
prediction horizon of 1 year and 1 month. For the experiments, we train and test failure
prediction considering all columns as learning features, and considering only the ones of
each feature selection approach.

To assess the performance of the failure prediction models, we are taking into ac-
count classic classification metrics, such as the Accuracy of the classification predictions,
the Precision, and the Recall. Both Precision and Recall are calculated using the macro
aggregation of the multiclass case. It is important to state that Precision is a very impor-
tant metric for this type of application. This happens because, as the Precision measures
how good the model does not label as positive a sample that is negative, it helps prevent
the costs of replacing a healthy disk. However, as there are cases where high Precision
does not represent the desired behavior, especially in the multiclass case, the F0.5 score
is a good balanced metric that also considers the recall but puts a bigger weight on the
Precision value.

4. Experiments and Results
This section provides a detailed analysis of the experiments conducted to evaluate the
effectiveness of the proposed methodology.

4.1. Dataset

We use the data released by [Xu et al. 2021], as it was the most complete public dataset
containing SMART time series. The dataset includes SMART logs and the timestamp of
the failed drives from six different drive manufacturer models, comprising almost 500K
SSDs, spanned over two years. Manufacturers are represented by MA, MB, and MC,
following a number that refers to one of the two drive models included by each manu-
facturer (e.g. MA1, MA2). Every drive’s data is a daily SMART data time series that
is potentially irregular, considering that SMART attributes are not collected daily for all
drives. After data preprocessing, SMART features can make up to 42 columns, including
raw and normalized values for each SMART. Altogether, around 16K of drives had failed
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within the two-year period, with total percentages by SSD model as follows: 8.40% for
MA1, 5.42% for MA2, 11.08% for MB1, 3.70% for MB2, 64.46% for MC1, and 6.94%
for MC2. All six drive models are SATA SSDs.

4.2. Experimental procedure

In this study, we are training Machine Learning models to classify SSD Smart Data into
different health levels. Therefore, we are splitting the dataset using 70% of the time series
for training and 30% for testing, considering each time series as a data point instead of
each observed day. The same training and testing split was used for the Feature Selection
and the Health Level Prediction steps. Also, from the six models at hand in the dataset,
we selected the three with more failure examples: MA1 (1,370), MB1 (1,807), and MC1
(10,510).

Three classification models are trained for the failure prediction step: Logistic
Regression, Random Forest, and LSTM. For the Random Forest, the number of estimators
is set to 100, and the maximum depth is set to 13. For the LSTM model, the hidden state
of the recurrent cell is set to 32, and its output is passed through two fully connected
neural network layers with outputs of size 16 and 6 and ReLU and Softmax activation
functions, respectively. Also, since the data can be irregularly sampled, we are adding
a time interval vector [Che et al. 2018] exclusively to the LSTM experiments. This new
attribute contains the information of the number of days before the last SMART sampling
for each row.

Except for the LSTM model, due to its high execution time, the experiments were
performed three times, and the reported value is the average. All experiments were run
using Scikit-Learn version 1.3.0 and PyTorch version 2.3.1

4.3. Results

30 Days 360 Days
Method MA1 MB1 MC1 MA1 MB1 MC1

No Feature Selection (No FS) 40 38 42 40 38 42
Pearson 6 12 12 4 11 5

Spearman 5 7 9 7 10 8
Random Forest (RF) 4 4 3 5 5 4

XGBoost 10 11 13 13 9 10

Table 1. Number of features chosen for each Feature Selection method.

The number of selected attributes in the Feature Selection step is presented in
Table 1, and the results for the health level prediction step are presented in Tables 2, 3,
and 4 for SSD models MA1, MB1, and MC1, respectively. The tables show the results
for the three classification models: Logistic Regression (LR), Random Forest (RF), and
Long Short-Term Memory network (LSTM), for each of the Feature Selection methods:
No Feature Selection (No FS), Pearson correlation, Spearman correlation, Random Forest
(RF) importance, and XGBoost importance. The reported classification metrics are Ac-
curacy (A), Precision (P), Recall (R), and F0.5 score. The best values for each metric are
marked in bold font for each classification model, and the overall better is marked with
an underline.
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30 Days 360 Days
Method A P R F0.5 A P R F0.5

LR (No FS) 23.7% 47.7% 18.3% 36.1% 32.2% 43.2% 25.4% 37.9%
LR (Pearson) 23.9% 62.2% 18.4% 42.2% 27.1% 56.0% 20.8% 41.8%

LR (Spearman) 23.5% 62.2% 18.2% 41.9% 27.5% 42.7% 21.3% 35.5%
LR (RF) 23.6% 74.6% 17.1% 44.6% 27.2% 37.3% 20.8% 32.2%

LR (XGBoost) 23.9% 47.9% 18.4% 36.3% 32.2% 43.3% 25.19% 37.8%
RF (No FS) 37.8% 42.5% 35.7% 41.0% 44.9% 48.3% 42.1% 46.9%

RF (Pearson) 32.1% 37.3% 28.1% 35.0% 41.8% 41.5% 40.6% 41.3%
RF (Spearman) 39.1% 39.0% 38.3% 38.9% 42.1% 42.3% 40.1% 41.8%

RF (RF) 38.3% 38.2% 36.4% 37.8% 47.9% 48.6% 46.7% 48.2%
RF (XGBoost) 41.0% 42.9% 39.8% 42.2% 49.8% 51.4% 47.6% 50.6%
LSTM (No FS) 70.0% 62.9% 66.4% 63.6% 43.4% 43.5% 44.3% 43.7%

LSTM (Pearson) 69.9% 67.3% 68.2% 67.5% 38.6% 41.3% 35.8% 40.1%
LSTM (Spearman) 78.6% 80.5% 76.8% 79.7% 43.7% 43.9% 43.4% 43.8%

LSTM (RF) 72.6% 74.2% 70.36% 73.3% 42.8% 43.5% 41.3% 43.0%
LSTM (XGBoost) 73.0% 72.9% 72.5% 72.8% 43.1% 43.6% 43.3% 43.6%

Table 2. Results for the MA1 manufacturer model.

In general, the results improve as the different classifiers consider non-linearity
and the temporal aspect of the data, getting results as low as 24% for the linear Logistic
Regression to results as good as 78% for the recurrent model on the model MA1. Also,
the biggest prediction horizon of 360 days had overall results considerably worse than the
30-day horizon (e.g., 59% versus 83.1% on the model MB1). This can happen because,
unlike HDDs, SSDs may show significant indications of failure when it is closer to the
actual failure. However, further investigation is needed. To the LSTM model, this differ-
ence was significantly bigger. This can also be associated with the chosen structure of the
network, where a more in-depth study of its hyperparameters, especially the size of the
hidden state, can make the network deal better with long-term time-series predictions.

30 Days 360 Days
Method A P R F0.5 A P R F0.5

LR (No FS) 23.3% 28.6% 16.8% 25.1% 30.7% 42.1% 27.7% 38.1%
LR (Pearson) 23.6% 55.8% 16.9% 38.3% 28.3% 49.2% 23.6% 40.4%

LR (Spearman) 23.7% 36.7% 16.9% 29.8% 28.9% 43.9% 26.1% 38.6%
LR (RF) 23.2% 74.4% 16.6% 43.8% 22.6% 52.5% 18.7% 38.6%

LR (XGBoost) 23.2% 57.7% 16.6% 38.6% 26.1% 44.3% 21.5% 36.5%
RF (No FS) 43.1% 64.2% 40.7% 57.5% 46.4% 51.7% 44.9% 50.2%

RF (Pearson) 40.1% 51.8% 37.9% 48.3% 45.2% 48.6% 44.1% 47.6%
RF (Spearman) 42.0% 52.9% 39.3% 49.5% 39.7% 43.8% 38.2% 42.6%

RF (RF) 40.6% 55.2% 36.0% 49.9% 46.9% 49.5% 45.9% 48.7%
RF (XGBoost) 44.7% 62.9% 42.4% 57.3% 46.9% 50.1% 45.9% 49.2%
LSTM (No FS) 80.1% 78.3% 79.9% 78.6% 59.3% 69.8% 55.5% 66.4%

LSTM (Pearson) 70.1% 78.3% 66.9% 75.8% 43.4% 45.9% 41.2% 44.8%
LSTM (Spearman) 81.6% 80.6% 80.5% 80.6% 51.0% 62.7% 48.4% 59.2%

LSTM (RF) 82.3% 80.4% 81.7% 80.7% 57.2% 67.5% 53.8% 64.2%
LSTM (XGBoost) 83.1% 80.7% 82.5% 81.1% 55.8% 67.7% 53.7% 64.3%

Table 3. Results for the MB1 manufacturer model.

Additionally, with a few exceptions for Feature Selection, the nonlinear methods
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of importance measure performed better than the linear methods. This is another evidence
that the problem of failure prediction for SSD is nonlinear. Furthermore, the Random
Forest Feature Selection method consistently chose fewer features and still achieved the
best results for the MC1 model in the 30-day prediction horizon.

Besides that, an interesting result is that the better reported Precision and F0.5
scores are consistently from the same classification models with better prediction accura-
cies. This is ideal for this type of application, as explained in Section 3.

30 Days 360 Days
Method A P R F0.5 A P R F0.5

LR (No FS) 24.2% 61.4% 16.8% 40.1% 30.7% 44.3% 23.9% 37.9%
LR (Pearson) 24.3% 61.4% 16.8% 40.1% 30.5% 39.8% 23.6% 35.0%

LR (Spearman) 24.4% 74.8% 16.9% 44.4% 30.8% 43.6% 23.9% 37.5%
LR (RF) 24.1% 62.2% 16.7% 40.3% 29.9% 56.4% 23.1% 43.8%

LR (XGBoost) 24.3% 61.3% 16.8% 40.1% 30.9% 40.8% 24.0% 35.8%
RF (No FS) 28.7% 49.5% 22.0% 39.6% 42.7% 49.5% 37.0% 46.4%

RF (Pearson) 27.7% 43.4% 20.8% 35.6% 41.4% 41.3% 36.7% 40.3%
RF (Spearman) 27.9% 43.6% 21.4% 36.1% 39.9% 40.6% 34.6% 39.2%

RF (RF) 30.2% 48.4% 23.1% 39.7% 45.8% 45.4% 41.4% 44.6%
RF (XGBoost) 30.4% 52.5% 24.0% 42.5% 46.3% 48.5% 41.3% 46.9%
LSTM (No FS) 92.3% 89.6% 90.3% 89.8% 46.9% 51.4% 47.3% 50.5%

LSTM (Pearson) 85.7% 82.1% 84.7% 82.6% 60.9% 66.1% 61.6% 65.1%
LSTM (Spearman) 83.2% 79.3% 81.2% 79.7% 55.0% 61.3% 55.8% 60.1%

LSTM (RF) 95.1% 93.3% 93.6% 93.4% 49.8% 55.8% 50.0% 54.5%
LSTM (XGBoost) 89.7% 85.9% 87.8% 86.3% 46.3% 49.0% 45.8% 48.3%

Table 4. Results for the MC1 manufacturer model.

5. Conclusion
In this study, we presented a novel approach to SSD failure prediction by classifying the
Remaining Useful Life (RUL) of the drives into six health levels, providing a more gran-
ular view than the traditional healthy versus unhealthy classification. Our methodology
involved data preprocessing to handle SMART attributes, feature selection using various
methods, and testing multiple machine learning models, including Logistic Regression,
Random Forest, and Long Short-Term Memory (LSTM) networks, across two prediction
horizons of one month and one year. Future work includes exploring more sophisticated
neural network architectures such as Transformer models, as long with an extensive hy-
perparemeter optimization to provide better performance in handling temporal data, cap-
turing complex patterns in SMART attributes, and improving overall prediction accuracy.
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