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Abstract. This paper proposes an innovative approach for optimizing
portfolios of high-volatility assets, integrating return prediction with
CNN+BiLSTM into the Sharpe Index Model. The aim is to adapt the
Sharpe Index Model to the specific characteristics of the high-volatility asset
market, characterized by high volatility, non-normal distributions, and strong
correlations between assets. The methodology uses a model that estimates
the average return and future variance of assets, providing more accurate
inputs to the SIM and resulting in the Sharpe Index Model with Prediction.
The results show that the Sharpe Index Model with Prediction outperforms
the model without prediction, with an average accumulated gain of 68.88%,
compared to -19.76% with the SIM over 75 days.

Resumo. Este artigo propoe uma abordagem inovadora para otimizagao
de portfolios de ativos de alta volatilidade, integrando previsao de retorno
com CNN+BiLSTM ao Modelo do Indice de Sharpe (MIS). O objetivo é
adaptar o MIS as particularidades do mercado de ativos de alta volatilidade,
marcado por alta volatilidade, distribui¢coes nao normais e forte correla¢ao
entre ativos. A metodologia utiliza um modelo que estima o retorno médio
e a variancia futura dos ativos, fornecendo entradas mais precisas ao MIS
e originando o Modelo do Indice de Sharpe com Previsio (MIScP). Os
resultados mostram que o MIScP supera o MIS, com ganho acumulado
médio de 68,88%, contra -19,76% com o MIS em 75 dias.

1. Introducao

No ambito da pesquisa voltada para a area de financas, a otimizagao de portfélio
desempenha um papel crucial na gestao eficiente de ativos, com implicagoes signi-
ficativas para investidores, formuladores de politicas e a economia em geral. Ao
buscar alocagoes de ativos que mitigam riscos de perda de capital e ampliam retornos,
ela se destaca como um instrumento valioso na construcao de portfélios robustos
e eficientes. Seu emprego é crucial para a preservagao do capital, principalmente
mercados de alto risco, como é o caso do mercado de ativos de alta volatilidade na
blockchain [Hrytsiuk et al. 2019].

A gestao eficiente desses ativos apresenta grandes desafios. Di-
ferentemente dos mercados convencionais, esse mercado € caracterizado
por apresentar alta volatilidade [Saad e Jabbar 2022, Malladi e Dheeriya 2020,
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Al-Yahyaee et al. 2020, Miglietti et al. 2019], distribui¢ées ndo normais de pregos
[Hrytsiuk et al. 2019], alta correlagao entre ativos [Gkillas et al. 2018], movimenta-
¢ao conjunta [Gkillas et al. 2018], e liquidez limitada [Al-Yahyaee et al. 2020]. Essas
caracteristicas dificultam o uso de abordagens classicas de otimizacao de portfélio
nesse tipo de mercado. A baixa liquidez também pode afetar o desempenho de alguns
algoritmos de machine learning [Bomfim e Nascimento 2024]. No entanto, é possivel
adaptar esses modelos para lidar com a complexidade inerente ao contexto desses
ativos da blockchain.

A primeira abordagem de otimizacao de portfélio tem origem em Harry
Markowitz e seu trabalho inovador, a Teoria Moderna do Portfélio (MPT, na sigla
em inglés) [Markowitz 1952]. Essa teoria culminou nos modelos conhecidos como
modelos de Média-Variancia (MV). Esses modelos se baseiam na utiliza¢ao dos
retornos esperados de uma carteira como o retorno do investimento e a variancia dos
retornos da carteira como o risco do investimento [Chen et al. 2013].

Dentre esses modelos se destaca o modelo do Indice de Sharpe, um modelo
classico de MV que busca identificar o portfélio que maximiza o Indice de Sharpe.
Ao enfocar a maximizacao desse indice, o modelo procura equilibrar de forma 6tima
o potencial de retorno com a volatilidade associada, sendo frequentemente usado na
construcao de portfélios em mercados convencionais. Esse modelo, assim como os
outros modelos de MV, pressupoe que os investidores sao avessos ao risco, racionais,
buscam maximizar o retorno esperado, e que os ativos sao independentes e os seus
retornos possuem uma distribuicao normal.

No entanto, essas premissas nao condizem com as caracteristicas dos mercados
de ativos da blockchain. Assim, embora o modelo do Indice de Sharpe possa ser eficaz
na construcao de portfélios em mercados convencionais, como o de acoes, é necessario
modificd-lo para que ele possa ser empregado nesse mercado [Hrytsiuk et al. 2019].

Portanto, visando viabilizar a aplicacao do modelo do Indice de Sharpe na
construcao de portfélios no mercado de ativos da blockchain, uma nova abordagem é
proposta neste artigo. A metodologia adotada utiliza modelos de previsao do valor
de fechamento dos ativos para calcular estimativas mais precisas do retorno e da
correlagao futura deles. A utilizagao dessas estimativas, em vez do retorno médio e
da correlacao dos ativos, como é comum no modelo do Indice de Sharpe, resulta na
formulacao de portfélios com desempenho aprimorado.

2. Revisao da Literatura

2.1. Modelos de Média-Variancia

A Teoria Moderna do Portfélio (MPT) propoe a diversificagao como ferramenta
para minimizar o risco de um portfélio, mantendo niveis desejaveis de retorno
[Markowitz 1952]. A correlagao entre ativos desempenha papel essencial na composi-
¢ao de portfolios eficientes.

Essa teoria originou os modelos de Média-Variancia (MV), que visam minimi-
zar a variancia do portfélio Jz para um dado retorno esperado p:
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O modelo padrao considera que ativos sao independentes e que seus retornos
seguem uma distribuicao normal, o que nem sempre se verifica em mercados mais
volateis. Uma extensao relevante é o modelo da fronteira eficiente [Zhu et al. 2011],
que introduz o parametro de aversao ao risco A € [0, 1], permitindo ponderar o peso
relativo entre risco e retorno:

N N

min A | Y > wiw;cov(p;, ,uj)] —(1=2X) [;1 wi,ui] (3)

i=1j=1

Quando A = 0, o investidor prioriza o retorno; quando A = 1, prioriza a
minimizacao do risco. Outra abordagem amplamente utilizada é o modelo baseado
no Indice de Sharpe, que busca maximizar o retorno excedente ajustado pelo risco:

SR — Hp — Ky (4)
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Esses modelos sao a base tedrica para a construcao de portfélios eficientes, mas
apresentam limitagoes praticas diante de mercados como o de ativos da blockchain,
caracterizados por alta volatilidade e correlagoes dinamicas.

2.2. Uso de Inteligéncia Artificial para os Modelos de Média-Variancia

Com os avancos em inteligéncia artificial, surgiram propostas para aprimorar
os modelos de Média-Variancia (MV) por meio da previsao de retornos futuros
[Chaweewanchon e Chaysiri 2022, Guo et al. 2022, Du 2022, Ma et al. 2021]. Essas
abordagens buscam gerar entradas mais precisas para os modelos de otimizacao.

[Yu et al. 2020] analisaram o impacto da previsao de retorno em diversos
modelos de portfélio, demonstrando que a inclusao de previsoes melhora a alocacao
de ativos e o desempenho dos portfolios, mesmo considerando custos de transacao.
Concluiram que modelos MV e Omega se beneficiam mais desse aprimoramento em
comparacao a abordagens como MAD, DSR, LVaR e CVaR.

De forma semelhante, [Chaweewanchon e Chaysiri 2022] propuseram uma
estratégia que combina redes CNN e BiLSTM com selecao robusta de caracteristicas
para previsao de precos de acgoes. Sua integracao com o modelo MV resultou em
portfolios mais eficientes e melhor desempenho em séries temporais financeiras. Além
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disso, [Ma et al. 2021] compararam técnicas de aprendizado supervisionado, como
Random Forests, Support Vector Regression e redes LSTM, na previsao de retornos.
Apesar da eficacia geral do método Random Forest, o estudo indicou que as redes
LSTM alcancam melhor desempenho com a escolha adequada de atributos.

[Du 2022] focaram no uso de LSTM para prever precos de ativos co-integrados,
construindo portfélios estacionarios com ganhos superiores em indices como o CSI
300 e o S&P 500. J& [Wang et al. 2020] propuseram uma combinacao de LSTM com
o modelo MV de Markowitz, demonstrando o potencial da pré-selecao de ativos no
aprimoramento da performance de portfélios no mercado financeiro do Reino Unido.

Considerando o mercado de ativos da blockchain, [Brauneis e Mestel 2019]
aplicaram o framework de Média-Variancia para analisar portfélios compostos pelos
500 criptoativos mais capitalizadas entre 2015 e 2017. O estudo demonstrou que a
diversificacao entre criptoativos reduz riscos e que a estratégia 1/N supera, em muitos
casos, a selecao 6tima classica de MV em termos de indice de Sharpe e retorno.

Esses resultados indicam que, embora métodos classicos de otimizacao tragam
beneficios, o mercado de ativos da blockchain impoe desafios especificos devido a sua
alta volatilidade, liquidez limitada e correlagoes dinamicas. Assim, a integracao de
modelos de previsao baseados em redes neurais, como CNN+BiLSTM, mostra-se
promissora para fornecer entradas mais precisas a métodos de otimizacao como o
modelo do Indice de Sharpe.

Portanto, neste trabalho optou-se pela arquitetura CNN+BiLSTM consi-
derando evidéncias recentes da literatura que apontam sua superioridade frente a
modelos isolados. Segundo [Chen et al. 2024], modelos hibridos baseados em CNN
e LSTM tornaram-se estado-da-arte em tarefas de previsao de séries temporais
financeiras, na maioria das vezes superando redes LSTM puras e CNNs isoladas. Essa
superioridade decorre do fato de que as camadas convolucionais capturam padroes
locais relevantes nos dados, enquanto as camadas LSTM modelam dependéncias
temporais de longo prazo.

Modelos baseados apenas em LSTM ou GRU tendem a nao capturar ex-
plicitamente padroes locais presentes nos dados de preco ou indicadores técnicos,
o que limita sua capacidade de representacao. Por outro lado, arquiteturas como
Transformers exigem um grande niimero de parametros e dependem fortemente de
pré-treinamento em grandes volumes de dados externos para evitar overfitting, o que
pode ser invidvel em contextos de dados limitados como o mercado de criptoativos.

Dessa forma, embora existam alternativas vidaveis, o presente estudo concentra-
se em investigar como a integracao da arquitetura CNN+BiLSTM com o modelo
de otimizagao do Indice de Sharpe pode melhorar o desempenho de portfélios nesse
mercado especifico, buscando adaptar métodos tradicionais ao contexto de dados
altamente volateis e correlacionados.

3. Metodologia

A Figura 1 (b) descreve a pipeline usada para gerar um portfélio com o modelo do
Indice de Sharpe. Com o objetivo de aprimorar esse modelo para a construgao de
portfélios no mercado de criptoativos, este trabalho propoe o uso de modelos de
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previsao do valor de fechamento dos ativos, baseado em redes neurais, para calcular
estimativas mais precisas do retorno e da correlacao futura deles para servirem como
parametros de entrada do modelo do Indice de Sharpe (MIS).

Esse novo modelo foi referido como modelo do Indice de Sharpe com previsao
(MIScP). A Figura 1 (a) descreve a pipeline usada para gerar um portfélio com esse
novo modelo. A hipdtese é que o uso dessas estimativas mais precisas, ao invés
dos retornos médios e da matriz de correlagao dos retornos dos ativos, resultam na
formulagao de portfélios de melhor desempenho pelo MIScP.

(a) Modelo do indice de Sharpe com Previsdo (MIScP) (b) Modelo do indice de Sharpe (MIS)

Dados

¢ (2a)

Calculo de novos
atributos

Calculo do retorno médio
e da matriz de correlagao

(1a) (1b)
1 (5a) Dados

l (2b)

Calculo do retorno médio

e da matriz de correlagao

l (6a)

¢ (3a)

Redimensionamento Modelo do indice i (3b)
dos dados -
de Sharpe Modelo do Indice
¢ (4a) de Sharpe
Modelo de Previséo (7a) + (4b)
| Portfolio Portfélio

Figura '1. Pipeline do modelo do indice de Sharpe com Previsdo (a) e do modelo do
Indice de Sharpe (b)

Para realizar a comparacao entre esses dois modelos, foram definidos para
compor o portfélio na simulagao um ativo livre de riscos, atrelado a 100% do indice
dos Certificados de Depésitos Interbancarios (CDI), e os 25 criptoativos de maior
capitalizacao de mercado em fevereiro de 2023, com pelo menos 2 anos de dados.
Os criptoativos que compoem esse conjunto sao: Bitcoin (BTC), Ethereum (ETH),
Tether (USDT), Binance Coin (BNB), USD Coin (USDC), Ripple (XRP), Cardano
(ADA), Dogecoin (DOGE), Polygon (MATIC), Hex (HEX), Litecoin (LTC), TRON
(TRX), Avalanche (AVAX), Chainlink (LINK), Ethereum Classic (ETC), Monero
(XMR), Bitcoin Cash (BCH), Hedera Hashgraph (HBAR), Stellar (XLM), Filecoin
(FIL), Crypto.com Coin (CRO), Algorand (ALGO), VeChain (VET), Quant (QNT)
e Decentraland (MANA).

Os dados relativos ao indice CDI foram obtidos junto ao Banco Central do
Brasil, com coleta realizada em intervalos didrios. Os dados relativos aos criptoativos
foram obtidos através da plataforma Yahoo Finance. O conjunto de dados abrange
informacoes detalhadas sobre cada criptoativo, incluindo data, preco de abertura,
preco mais alto, preco mais baixo, preco de fechamento e volume de negociagao.
Essas informacoes foram coletadas em intervalos de uma hora, abrangendo o periodo
de 10 de outubro de 2021, das 0:00 horas (GMT 0), até 25 de dezembro de 2022, as
14:00 horas (GMT 0).

Alguns intervalos horarios nao puderam ser coletados devido a periodos
de manutencao programada da blockchain de alguns criptoativos, representando
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pequenos periodos de menos de 8 horas por ano. Optou-se por preencher essas
lacunas temporais aplicando interpolagao linear dos valores dos intervalos adjacentes,
que, embora tendam a reduzir a variabilidade local das séries e possam afetar
negativamente a capacidade do modelo preditivo de capturar picos, quedas rapidas
ou reversoes de tendéncia, mantém a frequéncia temporal dos dados sem comprometer
o calculo de alguns dos indicadores economicos adicionados como features no MIScP,
descritos na Secao 3.2.1.

A seguir, é descrito o experimento que consiste da comparacao dos dois
modelos e as métricas utilizadas para a comparacao. Em seguida, é detalhado o
MIScP, explicando as estratégias usadas no desenvolvimento do modelo do previsao
do valor de fechamento dos ativos do portfélio, que incluem a geracao de novas
features, a definicao da arquitetura da rede neural utilizada, o seu treinamento e a
geracao das entradas modificadas para o MIS.

3.1. Experimento

O experimento proposto para avaliar a hipotese apresentada consiste na comparagao
do desempenho do MIS com o MIScP, através da comparacao dos ganhos acumulados
por esses dois modelos em diferentes intervalos de tempo e do uso da métrica
Mazimum drawdown (MDD), descrita em [Mendes e Lavrado 2017]. Uma estratégia
de investimento foi desenvolvida para avaliar o desempenho dos modelos. Essa
estratégia consiste dos seguintes passos:

Entre com o modelo a ser usado (MIS ou MIScP).

Gere um portfolio usando esse modelo.

Aloque todo o capital disponivel nos ativos que o compoem por 24 horas.
Repita o passo (3) até o final do intervalo de tempo definido para a simulagao
de desempenho do portfélio.

Ll

5. Retorne o ganho total acumulado pelo modelo e 0o MDD para esse intervalo
de tempo.

Foram definidos 5 intervalos de tempo diferentes de 75 dias para a execucao da
simulacao com a estratégia de investimento descrita, a fim de verificar o desempenho
dos portfélios gerados por cada modelo em um cendrio que imita a realidade. Esses
intervalos estao representados na Figura 2, sendo que os periodos delimitados pela
cor verde correspondem a esses intervalos de 75 dias usados para a simulacao. Todas
as transacoes simuladas foram realizadas considerando uma taxa fixa de 0,1%?.

Além disso, os intervalos delimitados pelas cores roxo e azul da Figura 2
consistem dos periodos usados pelo Modelo de Previsao (MP) do MIScP para o
treinamento e a validacao dos parametros, respectivamente. Em cada um dos
intervalos, o MP do MIScP foi treinado usando diferentes quantidades de dados,
de forma a avaliar seu desempenho a medida que se aumenta o volume de dados
utilizados.

!Essa taxa foi definida como uma aproximacio baseada nas taxas praticadas por corretoras de
alta liquidez. A incorporacao de custos dinamicos ou de estratégias de simulacdo mais realistas
configura uma direc@o relevante para investigagoes futuras.
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o Legenda:
&
IS Periodo de Treino do MP [
x&
N Periodo de Validagéo do MP [
S
X Periodo de Teste do MIS e MIScP .

* MP: Modelo de Previsao * MIScP: Modelo do indice de Sharpe com Previsao

Figura 2. Definicdo dos periodos de treinamento, teste e validacdao do Modelo de
Previsdao (MP) do MIScP, bem como o periodo de validacdo do MIS e do
MIScP na estratégia de investimento proposta, para cada um dos 5 intervalos
de tempo definidos.

3.2. Modelo do Indice de Sharpe com Previsao

3.2.1. Conjunto de Dados do Modelo de Previsao

Com base nos dados adquiridos pela plataforma Yahoo Finance, e com o objetivo
de aprimorar a precisao e robustez do Modelo de Previsao, foram adicionadas novas
features ao conjunto de dados utilizado nos modelos preditivos. Essas features
foram derivadas de indicadores econdémicos amplamente empregados na analise
de investimentos e foram incorporadas por meio da biblioteca pandas-ta®>. Essas
features foram selecionadas dentre um conjunto de mais de 130 features disponiveis
na biblioteca pandas-ta utilizando o método de selecao de features descrito em
[Biesiada e Duch 2007]. Esses indicadores incluem:

e Archer Double Smoothed Oscillator (ADOSC): Oscilador que suaviza as osci-
lacoes de preco e volume para fornecer uma visao mais estavel das tendéncias
do mercado.

e Average Directional Index (ADX): Mede a for¢a de uma tendéncia, indicando
se o mercado estd em uma fase de tendéncia ou lateralizacao.

e Aroon Down (AROOND) e Aroon Up (AROONU): Avaliam a forca da
tendéncia com base na posicao dos pregos em relagao aos pontos mais altos e
mais baixos em um determinado periodo.

¢ Bollinger Bands (BBB): Utiliza bandas para avaliar a volatilidade e os niveis
de sobrecompra ou sobrevenda do mercado.

’https://pypi.org/project/pandas-ta/
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Tabela 1. Descricdo das camadas da rede neural.

# Camada Dimensao de saida Descrigao
1  Entrada (# de batches, 72, 11) Batch composto por matrizes
contendo 72 medicoes horarias de
11 atributos
2 CNN 1D (# de batches, 72, 11, 8) CNN, tamanho do kernel 5, 8
(TimeDistri- filtros, ativacao ReLU
buted)
3 Normalizacdo  (# de batches, 72, 11, 8) Normalizacao em lote
4 Ativacao (# de batches, 72, 11, 8) Fungao de ativacao ReLLU
5 CNN 1D (# de batches, 72, 11, 4) CNN, tamanho do kernel 3, 4
(TimeDistri- filtros, ativacao ReLU
buted)
6 Normalizacdo  (# de batches, 72, 11, 4) Normalizacao em lote
7 Ativagao (# de batches, 72, 11, 4) Fungao de ativacao ReLU
8 Flatten (# de batches, 72, 44) Achatamento temporal
9 LSTM (# de batches, 72, 16) BiLSTM, 16 neuronios,
(Bidirectional) return_sequences = True
10 Dropout (# de batches, 72, 16) Dropout 20%
11 LSTM (# de batches, 16) BiLLSTM, 16 neurdnios
(Bidirectional)
12 Dropout (# de batches, 16) Dropout 20%
13  Densa (# de batches, 48) Camada Densa, 48 neur6nios
14 Densa (# de batches, 24) Camada Densa, 24 neuronios,
funcao de ativagao tangente
hiperbdlica
15 Saida (# de batches, 24) Vetor com 24 previsoes do valor

de fechamento

e Choppiness Index (CHOP): Mede a amplitude de pregos em rela¢do a uma

faixa fixa, ajudando a identificar a direcao do mercado.

e Detrended Price Oscillator (DPO): Analisa ciclos de pregos, destacando

padroes de reversao e tendéncias.

e Kurtosis (KURT): Mede a forma da distribuigdo de precos, indicando a

presenca de caudas pesadas.

e Money Flow Index Sentiment (M ASSI): Combina o indice de fluxo de dinheiro

com a média maével para avaliar o sentimento do mercado.

e Skewness (SKEW): Mede a assimetria da distribuigao de precos, indicando

se ha uma inclinacao para a direita ou esquerda.

O valor de fechamento dos criptoativos foi normalizado a partir da funcao

Min-Max, conforme definida em [Patro e Sahu 2015]. Posteriormente, os dados foram
organizados em intervalos de 72 horas, espagados de 7 em 7 horas, dos 11 atributos
(compostos pelo valor de fechamento em conjunto com os 10 indicadores adicionados).
Em cada intervalo de tempo descrito na Figura 2, 75 dias de dados constituem o
periodo de validacao e, do perfodo que sobra, 80% dos dados constituem o conjunto
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de treinamento e 20% constituem o conjunto de teste.

3.2.2. Desenvolvimento do Modelo de Previsao do Valor de Fechamento dos Crip-
toativos

O Modelo de Previsao consiste de um Modelo de Previsao do valor de fechamento
de cada um dos 25 criptoativos do portfélio. A arquitetura desses modelos foi
baseada no trabalho de [Chaweewanchon e Chaysiri 2022] e estd ilustrada na Figura
3, sendo possivel explorar detalhes especificos de cada camada por meio dos niimeros
associados a elas, conforme apresentado na Tabela 1.

(1)
| Entrada | l (5) ; ©)
TimeDistributed Bidirectional
7 (2)
LSTM y 0
TimeDistributed CNN | Dense |
o (10)
NN 6
y ___©
I BatchNormalization | (1)
\ 4 (3) v _(14)
— \ 4 (7) Bidirectional
I BatchNormalization | | Dense |
| RelLU |
LSTM
(8)
Yy 4 \ 2 (12)
RelLU Flatten y (15)
| Saida |

Figura 3. Arquitetura do modelo

A entrada de cada um desses Modelos de Previsao consiste em janelas de 72
horas de dados dos criptoativos, com diferenca de 7 horas entre janelas consecutivas.

Eles foram implementados com a biblioteca TensorFlow e apresentam uma
mesma arquitetura sequencial composta por camadas convolucionais, recorrentes
e densas. A estrutura foi projetada para capturar padroes locais e dependéncias
temporais em séries temporais multivariadas.

Inicialmente, a estrutura desses modelos é composta duas camadas convo-
lucionais (Convolutional Neural Networks — CNN) aplicadas via TimeDistributed,
seguidas por normalizacao e ativacao ReLLU. A primeira, com filtros mais longos,
extrai padroes gerais, enquanto a segunda refina capturando padroes mais complexos
ao longo do tempo, enriquecendo a representacao das séries temporais.

Apés as camadas convolucionais, uma camada de achatamento (do inglés,
flatten layer) é empregada para transformar a saida multidimensional das camadas
anteriores em unidimensional para fazer a transicao para as préximas camadas.
Posteriormente, redes de memoria de curto-longo prazo bidirecionais — Bidirectional
Long Short-Term Memory (BiLSTM) sao integradas para compreensao aprimorada
de dependéncias temporais em ambas as direcoes, permitindo que o modelo capture
padroes complexos e aprenda dependéncias de longo prazo.

Por fim, a fase final do modelo envolve duas camadas densas, sendo que
a ultima camada utiliza ativacao tangente hiperbdlica, contribuindo para a nao
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linearidade do modelo. A saida consiste da estimativa do valor de fechamento do
ativo nas proximas 24 horas, através de um vetor contendo 24 saidas, sendo uma
para cada intervalo de uma hora.

3.2.3. Treinamento do Modelo de Previsao do Valor de Fechamento dos Criptoativos

A configuragao de treinamento adota a funcao de otimizacao Adam, conforme definido
em [Kingma e Ba 2014], com os valores padrao da biblioteca python Keras, exceto
pelo learning rate, que foi ajustado individualmente para cada um dos criptoativos.
Esse ajuste foi realizado por meio de avaliagao automatizada sobre os valores {5e-3, 5e-
4, 5e-5, be-6}, selecionando-se o que apresentou menor erro no conjunto de validagao
(parte azul da Figura 2). De maneira similar, o tamanho do batch foi definido por meio
de busca em grade entre os valores {16, 32, 64} para cada criptoativo. O nimero
de épocas utilizado foi limitado em 150, valor no qual se observou tendéncia de
overfitting em todos os modelos. Para mitigar esse efeito, foi adotada a estratégia de
salvar apenas os pesos correspondentes a época que apresentou o melhor desempenho
no conjunto de validacao.

A compilagao de todos esses Modelos de Previsao utiliza a fungao de perda
Erro Médio Quadratico — Mean Squared Error (MSE), definida conforme a Equagao
6.

MSEYY

=20 )

Onde Y representa o conjunto de valores verdadeiros, Y representa o conjunto
de valores previstos e n é o nimero total de valores dos dois conjuntos.

3.2.4. Calculo do Retorno Médio e da Matriz de Correlagao dos Valores Previstos

Conforme mencionado anteriormente, a saida do Modelo de Previsao de um criptoati-
vos é composto pela estimativa dos préximos 24 valores de fechamento em intervalos
de 1 hora. O retorno médio é definido como a média desses 24 valores.

J& a matriz de correlacao é uma representacao tabular formada pelo coeficiente
de correlacao entre cada um dos 24 valores estimados pelos Modelos de Previsao dos
25 criptoativos que compoem o portfélio. A férmula para o coeficiente de correlacao
entre dois conjuntos de valores X e Y é dada pela Equacao 7.

cov(X,Y)
XY)=———+ 7
corr(X,Y) 2 (X)o () (7)

Onde corr(X,Y) é o coeficiente de correlagao entre X e Y, cov(X,Y) é a
covariancia entre X e Y, o(X) é o desvio padrao de X e o(Y) é o desvio padrao de
Y. O retorno médio e a matriz de correlacao dos valores previstos constituem as
entradas modificadas para o MIS empregadas no MIScP.
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4. Resultados e Discussao

A Figura 4 apresenta a evolugao do investimento inicial (valor 1) obtido pela estratégia
usando o MIScP e, em comparacao, o MIS.
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Figura 4. (a) Ganhos acumulados - MIScP; (b) Ganhos acumulados - MIS

A Tabela 2 resume os ganhos acumulados obtidos em cada intervalo de tempo
para ambos os modelos.

Tabela 2. Ganhos acumulados ao longo dos intervalos experimentais

Intervalo Ganho MIScP (%) Ganho MIS (%)

1 -35.06 -64.97
2 -31.71 -27.19
3 123.19 -5.12
4 3.37 4.89
5 284.65 -6.40
Média 68.88 -19.76

Em geral, o MIScP superou o MIS em quatro dos cinco intervalos, com destaque
para os intervalos 3 e 5, alcancando ganhos de 123,19% e 284,65%, respectivamente,
enquanto o MIS apresentou perdas. A média total de ganhos também favoreceu o
MIScP (68,88%) em relagao ao MIS (-19,76%).

A Tabela 3 apresenta a métrica de risco Mazimum Drawdown (MDD) para
ambos os modelos.

695



Proceedings of the 40" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

Tabela 3. Valores da métrica MDD ao longo dos intervalos experimentais

Intervalo MDD MIScP (%) MDD MIS (%)

1 -41.17 -64.17
2 -57.58 -44.79
3 -25.92 -37.45
4 -22.10 -23.62
5 -13.17 -25.73
Média -31.99 -39.15

O MIScP apresentou um risco médio menor (-31,99%) em comparagao ao
MIS (-39,15%), reforgando sua vantagem em termos de volatilidade. Esses resultados
apresentam evidéncias favoraveis a inclusao de previsoes no modelo de Indice de
Sharpe para o aprimoramento da performance dos portfélios, resultando em maior
ganho acumulado e menor risco.

Por fim, destaca-se que a estratégia de rebalanceamento diario com custos
fixos de 0.1% por transacao, visando comparar de forma padronizada o desempenho
dos modelos. Contudo, essa escolha nao considera limita¢oes operacionais como
slippage, impacto de mercado ou restrigoes de liquidez, o que constitui uma limitacao
do presente estudo.

5. Conclusao

Este estudo propos uma abordagem inovadora para otimizar portfélios de criptoativos,
combinando previsao de retorno com CNN+BiLSTM e o MIS, culminando no MIScP.
A metodologia adaptou o modelo as caracteristicas do mercado de ativos da blockchain,
com alta volatilidade, distribui¢oes nao normais de precos, forte correlagao entre
ativos e liquidez limitada.

A aplicacao do MIScP mostrou-se viavel, com ganhos médios acumulados
superiores ao MIS, especialmente nos intervalos 3 e 5 (123,19% e 284,65% em 75 dias),
além de menor MDD médio. Esses resultados reforcam a importancia de incorporar
modelos de previsao para melhorar a construcao de portfélios em mercados voléteis.
A integracao da previsao CNN+BiLSTM com o MIS demonstrou, com base nos
dados avaliados, evidéncias empiricas de sua eficacia na maximizacao de ganhos e
na mitigacao de riscos. Portanto, conclui-se que a estratégia proposta oferece uma
solucao promissora para investidores que buscam otimizar retornos e mitigar riscos no
mercado de criptoativos, destacando a eficdcia dos modelos de previsao na construcao
de portfélios mais eficientes e adaptados a esse mercado.

Como trabalhos futuros, recomenda-se a realizagao de simulagoes que con-
siderem os efeitos da baixa liquidez, slippage e os diferentes custos de transacao
associados ao rebalanceamento didrio, bem como cenarios extremos de valorizacao ou
desvalorizacao de ativos. Além disso, propoe-se um estudo comparativo envolvendo
técnicas baseadas em modelos preditivos recentes (e.g., FEDFormer, Reformer), bem
como a investigacao do impacto da incorporacao de informacoes textuais provenientes
de redes sociais e noticias, exploradas por meio de modelos de linguagem.
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