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Abstract. This paper proposes an innovative approach for optimizing
portfolios of high-volatility assets, integrating return prediction with
CNN+BiLSTM into the Sharpe Index Model. The aim is to adapt the
Sharpe Index Model to the specific characteristics of the high-volatility asset
market, characterized by high volatility, non-normal distributions, and strong
correlations between assets. The methodology uses a model that estimates
the average return and future variance of assets, providing more accurate
inputs to the SIM and resulting in the Sharpe Index Model with Prediction.
The results show that the Sharpe Index Model with Prediction outperforms
the model without prediction, with an average accumulated gain of 68.88%,
compared to -19.76% with the SIM over 75 days.

Resumo. Este artigo propõe uma abordagem inovadora para otimização
de portfólios de ativos de alta volatilidade, integrando previsão de retorno
com CNN+BiLSTM ao Modelo do Índice de Sharpe (MIS). O objetivo é
adaptar o MIS às particularidades do mercado de ativos de alta volatilidade,
marcado por alta volatilidade, distribuições não normais e forte correlação
entre ativos. A metodologia utiliza um modelo que estima o retorno médio
e a variância futura dos ativos, fornecendo entradas mais precisas ao MIS
e originando o Modelo do Índice de Sharpe com Previsão (MIScP). Os
resultados mostram que o MIScP supera o MIS, com ganho acumulado
médio de 68,88%, contra -19,76% com o MIS em 75 dias.

1. Introdução

No âmbito da pesquisa voltada para a área de finanças, a otimização de portfólio
desempenha um papel crucial na gestão eficiente de ativos, com implicações signi-
ficativas para investidores, formuladores de poĺıticas e a economia em geral. Ao
buscar alocações de ativos que mitigam riscos de perda de capital e ampliam retornos,
ela se destaca como um instrumento valioso na construção de portfólios robustos
e eficientes. Seu emprego é crucial para a preservação do capital, principalmente
mercados de alto risco, como é o caso do mercado de ativos de alta volatilidade na
blockchain [Hrytsiuk et al. 2019].

A gestão eficiente desses ativos apresenta grandes desafios. Di-
ferentemente dos mercados convencionais, esse mercado é caracterizado
por apresentar alta volatilidade [Saad e Jabbar 2022, Malladi e Dheeriya 2020,
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Al-Yahyaee et al. 2020, Miglietti et al. 2019], distribuições não normais de preços
[Hrytsiuk et al. 2019], alta correlação entre ativos [Gkillas et al. 2018], movimenta-
ção conjunta [Gkillas et al. 2018], e liquidez limitada [Al-Yahyaee et al. 2020]. Essas
caracteŕısticas dificultam o uso de abordagens clássicas de otimização de portfólio
nesse tipo de mercado. A baixa liquidez também pode afetar o desempenho de alguns
algoritmos de machine learning [Bomfim e Nascimento 2024]. No entanto, é posśıvel
adaptar esses modelos para lidar com a complexidade inerente ao contexto desses
ativos da blockchain.

A primeira abordagem de otimização de portfólio tem origem em Harry
Markowitz e seu trabalho inovador, a Teoria Moderna do Portfólio (MPT, na sigla
em inglês) [Markowitz 1952]. Essa teoria culminou nos modelos conhecidos como
modelos de Média-Variância (MV). Esses modelos se baseiam na utilização dos
retornos esperados de uma carteira como o retorno do investimento e a variância dos
retornos da carteira como o risco do investimento [Chen et al. 2013].

Dentre esses modelos se destaca o modelo do Índice de Sharpe, um modelo
clássico de MV que busca identificar o portfólio que maximiza o Índice de Sharpe.
Ao enfocar a maximização desse ı́ndice, o modelo procura equilibrar de forma ótima
o potencial de retorno com a volatilidade associada, sendo frequentemente usado na
construção de portfólios em mercados convencionais. Esse modelo, assim como os
outros modelos de MV, pressupõe que os investidores são avessos ao risco, racionais,
buscam maximizar o retorno esperado, e que os ativos são independentes e os seus
retornos possuem uma distribuição normal.

No entanto, essas premissas não condizem com as caracteŕısticas dos mercados
de ativos da blockchain. Assim, embora o modelo do Índice de Sharpe possa ser eficaz
na construção de portfólios em mercados convencionais, como o de ações, é necessário
modificá-lo para que ele possa ser empregado nesse mercado [Hrytsiuk et al. 2019].

Portanto, visando viabilizar a aplicação do modelo do Índice de Sharpe na
construção de portfólios no mercado de ativos da blockchain, uma nova abordagem é
proposta neste artigo. A metodologia adotada utiliza modelos de previsão do valor
de fechamento dos ativos para calcular estimativas mais precisas do retorno e da
correlação futura deles. A utilização dessas estimativas, em vez do retorno médio e
da correlação dos ativos, como é comum no modelo do Índice de Sharpe, resulta na
formulação de portfólios com desempenho aprimorado.

2. Revisão da Literatura

2.1. Modelos de Média-Variância

A Teoria Moderna do Portfólio (MPT) propõe a diversificação como ferramenta
para minimizar o risco de um portfólio, mantendo ńıveis desejáveis de retorno
[Markowitz 1952]. A correlação entre ativos desempenha papel essencial na composi-
ção de portfólios eficientes.

Essa teoria originou os modelos de Média-Variância (MV), que visam minimi-
zar a variância do portfólio σ2

p para um dado retorno esperado µ:
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min σ2
p =

N∑

i=1

N∑

j=1
ωiωjcov(µi, µj) (1)

sujeito a

µp =
N∑

i=1
ωiµi ≥ µ,

N∑

i=1
ωi = 1, 0 ≤ ωi ≤ 1 (2)

O modelo padrão considera que ativos são independentes e que seus retornos
seguem uma distribuição normal, o que nem sempre se verifica em mercados mais
voláteis. Uma extensão relevante é o modelo da fronteira eficiente [Zhu et al. 2011],
que introduz o parâmetro de aversão ao risco λ ∈ [0, 1], permitindo ponderar o peso
relativo entre risco e retorno:

min λ




N∑

i=1

N∑

j=1
ωiωjcov(µi, µj)


 − (1 − λ)

[
N∑

i=1
ωiµi

]
(3)

Quando λ = 0, o investidor prioriza o retorno; quando λ = 1, prioriza a
minimização do risco. Outra abordagem amplamente utilizada é o modelo baseado
no Índice de Sharpe, que busca maximizar o retorno excedente ajustado pelo risco:

SR = µp − µf

σp

(4)

max SR =

[∑N
i=1 ωiµi

]
− µf

√∑N
i=1

∑N
j=1 ωiωjcov(µi, µj)

(5)

Esses modelos são a base teórica para a construção de portfólios eficientes, mas
apresentam limitações práticas diante de mercados como o de ativos da blockchain,
caracterizados por alta volatilidade e correlações dinâmicas.

2.2. Uso de Inteligência Artificial para os Modelos de Média-Variância

Com os avanços em inteligência artificial, surgiram propostas para aprimorar
os modelos de Média-Variância (MV) por meio da previsão de retornos futuros
[Chaweewanchon e Chaysiri 2022, Guo et al. 2022, Du 2022, Ma et al. 2021]. Essas
abordagens buscam gerar entradas mais precisas para os modelos de otimização.

[Yu et al. 2020] analisaram o impacto da previsão de retorno em diversos
modelos de portfólio, demonstrando que a inclusão de previsões melhora a alocação
de ativos e o desempenho dos portfólios, mesmo considerando custos de transação.
Conclúıram que modelos MV e Omega se beneficiam mais desse aprimoramento em
comparação a abordagens como MAD, DSR, LVaR e CVaR.

De forma semelhante, [Chaweewanchon e Chaysiri 2022] propuseram uma
estratégia que combina redes CNN e BiLSTM com seleção robusta de caracteŕısticas
para previsão de preços de ações. Sua integração com o modelo MV resultou em
portfólios mais eficientes e melhor desempenho em séries temporais financeiras. Além
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disso, [Ma et al. 2021] compararam técnicas de aprendizado supervisionado, como
Random Forests, Support Vector Regression e redes LSTM, na previsão de retornos.
Apesar da eficácia geral do método Random Forest, o estudo indicou que as redes
LSTM alcançam melhor desempenho com a escolha adequada de atributos.

[Du 2022] focaram no uso de LSTM para prever preços de ativos co-integrados,
construindo portfólios estacionários com ganhos superiores em ı́ndices como o CSI
300 e o S&P 500. Já [Wang et al. 2020] propuseram uma combinação de LSTM com
o modelo MV de Markowitz, demonstrando o potencial da pré-seleção de ativos no
aprimoramento da performance de portfólios no mercado financeiro do Reino Unido.

Considerando o mercado de ativos da blockchain, [Brauneis e Mestel 2019]
aplicaram o framework de Média-Variância para analisar portfólios compostos pelos
500 criptoativos mais capitalizadas entre 2015 e 2017. O estudo demonstrou que a
diversificação entre criptoativos reduz riscos e que a estratégia 1/N supera, em muitos
casos, a seleção ótima clássica de MV em termos de ı́ndice de Sharpe e retorno.

Esses resultados indicam que, embora métodos clássicos de otimização tragam
benef́ıcios, o mercado de ativos da blockchain impõe desafios espećıficos devido à sua
alta volatilidade, liquidez limitada e correlações dinâmicas. Assim, a integração de
modelos de previsão baseados em redes neurais, como CNN+BiLSTM, mostra-se
promissora para fornecer entradas mais precisas a métodos de otimização como o
modelo do Índice de Sharpe.

Portanto, neste trabalho optou-se pela arquitetura CNN+BiLSTM consi-
derando evidências recentes da literatura que apontam sua superioridade frente a
modelos isolados. Segundo [Chen et al. 2024], modelos h́ıbridos baseados em CNN
e LSTM tornaram-se estado-da-arte em tarefas de previsão de séries temporais
financeiras, na maioria das vezes superando redes LSTM puras e CNNs isoladas. Essa
superioridade decorre do fato de que as camadas convolucionais capturam padrões
locais relevantes nos dados, enquanto as camadas LSTM modelam dependências
temporais de longo prazo.

Modelos baseados apenas em LSTM ou GRU tendem a não capturar ex-
plicitamente padrões locais presentes nos dados de preço ou indicadores técnicos,
o que limita sua capacidade de representação. Por outro lado, arquiteturas como
Transformers exigem um grande número de parâmetros e dependem fortemente de
pré-treinamento em grandes volumes de dados externos para evitar overfitting, o que
pode ser inviável em contextos de dados limitados como o mercado de criptoativos.

Dessa forma, embora existam alternativas viáveis, o presente estudo concentra-
se em investigar como a integração da arquitetura CNN+BiLSTM com o modelo
de otimização do Índice de Sharpe pode melhorar o desempenho de portfólios nesse
mercado espećıfico, buscando adaptar métodos tradicionais ao contexto de dados
altamente voláteis e correlacionados.

3. Metodologia

A Figura 1 (b) descreve a pipeline usada para gerar um portfólio com o modelo do
Índice de Sharpe. Com o objetivo de aprimorar esse modelo para a construção de
portfólios no mercado de criptoativos, este trabalho propõe o uso de modelos de
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previsão do valor de fechamento dos ativos, baseado em redes neurais, para calcular
estimativas mais precisas do retorno e da correlação futura deles para servirem como
parâmetros de entrada do modelo do Índice de Sharpe (MIS).

Esse novo modelo foi referido como modelo do Índice de Sharpe com previsão
(MIScP). A Figura 1 (a) descreve a pipeline usada para gerar um portfólio com esse
novo modelo. A hipótese é que o uso dessas estimativas mais precisas, ao invés
dos retornos médios e da matriz de correlação dos retornos dos ativos, resultam na
formulação de portfólios de melhor desempenho pelo MIScP.

Dados

Cálculo do retorno médio
e da matriz de correlação

Redimensionamento
dos dados

Modelo de Previsão

Modelo do Índice
de Sharpe

Portfólio

(2a)

(5a)

(6a)

(1a)

Dados

Cálculo do retorno médio
e da matriz de correlação

Modelo do Índice
de Sharpe

Portfólio

(3a)

(4a)

(1b)

Cálculo de novos
atributos

(7a)

(2b)

(3b)

(4b)

(a) Modelo do Índice de Sharpe com Previsão (MIScP) (b) Modelo do Índice de Sharpe (MIS)

Figura 1. Pipeline do modelo do Índice de Sharpe com Previsão (a) e do modelo do
Índice de Sharpe (b)

Para realizar a comparação entre esses dois modelos, foram definidos para
compor o portfólio na simulação um ativo livre de riscos, atrelado à 100% do ı́ndice
dos Certificados de Depósitos Interbancários (CDI), e os 25 criptoativos de maior
capitalização de mercado em fevereiro de 2023, com pelo menos 2 anos de dados.
Os criptoativos que compõem esse conjunto são: Bitcoin (BTC), Ethereum (ETH),
Tether (USDT), Binance Coin (BNB), USD Coin (USDC), Ripple (XRP), Cardano
(ADA), Dogecoin (DOGE), Polygon (MATIC), Hex (HEX), Litecoin (LTC), TRON
(TRX), Avalanche (AVAX), Chainlink (LINK), Ethereum Classic (ETC), Monero
(XMR), Bitcoin Cash (BCH), Hedera Hashgraph (HBAR), Stellar (XLM), Filecoin
(FIL), Crypto.com Coin (CRO), Algorand (ALGO), VeChain (VET), Quant (QNT)
e Decentraland (MANA).

Os dados relativos ao ı́ndice CDI foram obtidos junto ao Banco Central do
Brasil, com coleta realizada em intervalos diários. Os dados relativos aos criptoativos
foram obtidos através da plataforma Yahoo Finance. O conjunto de dados abrange
informações detalhadas sobre cada criptoativo, incluindo data, preço de abertura,
preço mais alto, preço mais baixo, preço de fechamento e volume de negociação.
Essas informações foram coletadas em intervalos de uma hora, abrangendo o peŕıodo
de 10 de outubro de 2021, das 0:00 horas (GMT 0), até 25 de dezembro de 2022, às
14:00 horas (GMT 0).

Alguns intervalos horários não puderam ser coletados devido a peŕıodos
de manutenção programada da blockchain de alguns criptoativos, representando
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pequenos peŕıodos de menos de 8 horas por ano. Optou-se por preencher essas
lacunas temporais aplicando interpolação linear dos valores dos intervalos adjacentes,
que, embora tendam a reduzir a variabilidade local das séries e possam afetar
negativamente a capacidade do modelo preditivo de capturar picos, quedas rápidas
ou reversões de tendência, mantêm a frequência temporal dos dados sem comprometer
o cálculo de alguns dos indicadores econômicos adicionados como features no MIScP,
descritos na Seção 3.2.1.

A seguir, é descrito o experimento que consiste da comparação dos dois
modelos e as métricas utilizadas para a comparação. Em seguida, é detalhado o
MIScP, explicando as estratégias usadas no desenvolvimento do modelo do previsão
do valor de fechamento dos ativos do portfólio, que incluem a geração de novas
features, a definição da arquitetura da rede neural utilizada, o seu treinamento e a
geração das entradas modificadas para o MIS.

3.1. Experimento

O experimento proposto para avaliar a hipótese apresentada consiste na comparação
do desempenho do MIS com o MIScP, através da comparação dos ganhos acumulados
por esses dois modelos em diferentes intervalos de tempo e do uso da métrica
Maximum drawdown (MDD), descrita em [Mendes e Lavrado 2017]. Uma estratégia
de investimento foi desenvolvida para avaliar o desempenho dos modelos. Essa
estratégia consiste dos seguintes passos:

1. Entre com o modelo a ser usado (MIS ou MIScP).

2. Gere um portfólio usando esse modelo.

3. Aloque todo o capital dispońıvel nos ativos que o compõem por 24 horas.

4. Repita o passo (3) até o final do intervalo de tempo definido para a simulação
de desempenho do portfólio.

5. Retorne o ganho total acumulado pelo modelo e o MDD para esse intervalo
de tempo.

Foram definidos 5 intervalos de tempo diferentes de 75 dias para a execução da
simulação com a estratégia de investimento descrita, a fim de verificar o desempenho
dos portfólios gerados por cada modelo em um cenário que imita a realidade. Esses
intervalos estão representados na Figura 2, sendo que os peŕıodos delimitados pela
cor verde correspondem a esses intervalos de 75 dias usados para a simulação. Todas
as transações simuladas foram realizadas considerando uma taxa fixa de 0,1%1.

Além disso, os intervalos delimitados pelas cores roxo e azul da Figura 2
consistem dos peŕıodos usados pelo Modelo de Previsão (MP) do MIScP para o
treinamento e a validação dos parâmetros, respectivamente. Em cada um dos
intervalos, o MP do MIScP foi treinado usando diferentes quantidades de dados,
de forma a avaliar seu desempenho à medida que se aumenta o volume de dados
utilizados.

1Essa taxa foi definida como uma aproximação baseada nas taxas praticadas por corretoras de
alta liquidez. A incorporação de custos dinâmicos ou de estratégias de simulação mais realistas
configura uma direção relevante para investigações futuras.
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Figura 2. Definição dos peŕıodos de treinamento, teste e validação do Modelo de
Previsão (MP) do MIScP, bem como o peŕıodo de validação do MIS e do
MIScP na estratégia de investimento proposta, para cada um dos 5 intervalos
de tempo definidos.

3.2. Modelo do Índice de Sharpe com Previsão

3.2.1. Conjunto de Dados do Modelo de Previsão

Com base nos dados adquiridos pela plataforma Yahoo Finance, e com o objetivo
de aprimorar a precisão e robustez do Modelo de Previsão, foram adicionadas novas
features ao conjunto de dados utilizado nos modelos preditivos. Essas features
foram derivadas de indicadores econômicos amplamente empregados na análise
de investimentos e foram incorporadas por meio da biblioteca pandas-ta2. Essas
features foram selecionadas dentre um conjunto de mais de 130 features dispońıveis
na biblioteca pandas-ta utilizando o método de seleção de features descrito em
[Biesiada e Duch 2007]. Esses indicadores incluem:

• Archer Double Smoothed Oscillator (ADOSC): Oscilador que suaviza as osci-
lações de preço e volume para fornecer uma visão mais estável das tendências
do mercado.

• Average Directional Index (ADX): Mede a força de uma tendência, indicando
se o mercado está em uma fase de tendência ou lateralização.

• Aroon Down (AROOND) e Aroon Up (AROONU): Avaliam a força da
tendência com base na posição dos preços em relação aos pontos mais altos e
mais baixos em um determinado peŕıodo.

• Bollinger Bands (BBB): Utiliza bandas para avaliar a volatilidade e os ńıveis
de sobrecompra ou sobrevenda do mercado.

2https://pypi.org/project/pandas-ta/
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Tabela 1. Descrição das camadas da rede neural.

# Camada Dimensão de sáıda Descrição
1 Entrada (# de batches, 72, 11) Batch composto por matrizes

contendo 72 medições horárias de
11 atributos

2 CNN 1D
(TimeDistri-
buted)

(# de batches, 72, 11, 8) CNN, tamanho do kernel 5, 8
filtros, ativação ReLU

3 Normalização (# de batches, 72, 11, 8) Normalização em lote
4 Ativação (# de batches, 72, 11, 8) Função de ativação ReLU
5 CNN 1D

(TimeDistri-
buted)

(# de batches, 72, 11, 4) CNN, tamanho do kernel 3, 4
filtros, ativação ReLU

6 Normalização (# de batches, 72, 11, 4) Normalização em lote
7 Ativação (# de batches, 72, 11, 4) Função de ativação ReLU
8 Flatten (# de batches, 72, 44) Achatamento temporal
9 LSTM

(Bidirectional)
(# de batches, 72, 16) BiLSTM, 16 neurônios,

return sequences = True
10 Dropout (# de batches, 72, 16) Dropout 20%
11 LSTM

(Bidirectional)
(# de batches, 16) BiLSTM, 16 neurônios

12 Dropout (# de batches, 16) Dropout 20%
13 Densa (# de batches, 48) Camada Densa, 48 neurônios
14 Densa (# de batches, 24) Camada Densa, 24 neurônios,

função de ativação tangente
hiperbólica

15 Sáıda (# de batches, 24) Vetor com 24 previsões do valor
de fechamento

• Choppiness Index (CHOP): Mede a amplitude de preços em relação a uma
faixa fixa, ajudando a identificar a direção do mercado.

• Detrended Price Oscillator (DPO): Analisa ciclos de preços, destacando
padrões de reversão e tendências.

• Kurtosis (KURT): Mede a forma da distribuição de preços, indicando a
presença de caudas pesadas.

• Money Flow Index Sentiment (MASSI): Combina o ı́ndice de fluxo de dinheiro
com a média móvel para avaliar o sentimento do mercado.

• Skewness (SKEW): Mede a assimetria da distribuição de preços, indicando
se há uma inclinação para a direita ou esquerda.

O valor de fechamento dos criptoativos foi normalizado a partir da função
Min-Max, conforme definida em [Patro e Sahu 2015]. Posteriormente, os dados foram
organizados em intervalos de 72 horas, espaçados de 7 em 7 horas, dos 11 atributos
(compostos pelo valor de fechamento em conjunto com os 10 indicadores adicionados).
Em cada intervalo de tempo descrito na Figura 2, 75 dias de dados constituem o
peŕıodo de validação e, do peŕıodo que sobra, 80% dos dados constituem o conjunto
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de treinamento e 20% constituem o conjunto de teste.

3.2.2. Desenvolvimento do Modelo de Previsão do Valor de Fechamento dos Crip-
toativos

O Modelo de Previsão consiste de um Modelo de Previsão do valor de fechamento
de cada um dos 25 criptoativos do portfólio. A arquitetura desses modelos foi
baseada no trabalho de [Chaweewanchon e Chaysiri 2022] e está ilustrada na Figura
3, sendo posśıvel explorar detalhes espećıficos de cada camada por meio dos números
associados a elas, conforme apresentado na Tabela 1.

Entrada

ReLU

CNN

BatchNormalization

TimeDistributed

Flatten

ReLU

CNN

BatchNormalization

TimeDistributed

LSTM

Bidirectional

LSTM

Bidirectional
Dense

Dense

Saída

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(13)

(14)

(15)

(1)

Dropout

Dropout

(11)

(12)

Figura 3. Arquitetura do modelo

A entrada de cada um desses Modelos de Previsão consiste em janelas de 72
horas de dados dos criptoativos, com diferença de 7 horas entre janelas consecutivas.

Eles foram implementados com a biblioteca TensorFlow e apresentam uma
mesma arquitetura sequencial composta por camadas convolucionais, recorrentes
e densas. A estrutura foi projetada para capturar padrões locais e dependências
temporais em séries temporais multivariadas.

Inicialmente, a estrutura desses modelos é composta duas camadas convo-
lucionais (Convolutional Neural Networks – CNN) aplicadas via TimeDistributed,
seguidas por normalização e ativação ReLU. A primeira, com filtros mais longos,
extrai padrões gerais, enquanto a segunda refina capturando padrões mais complexos
ao longo do tempo, enriquecendo a representação das séries temporais.

Após as camadas convolucionais, uma camada de achatamento (do inglês,
flatten layer) é empregada para transformar a sáıda multidimensional das camadas
anteriores em unidimensional para fazer a transição para as próximas camadas.
Posteriormente, redes de memória de curto-longo prazo bidirecionais – Bidirectional
Long Short-Term Memory (BiLSTM) são integradas para compreensão aprimorada
de dependências temporais em ambas as direções, permitindo que o modelo capture
padrões complexos e aprenda dependências de longo prazo.

Por fim, a fase final do modelo envolve duas camadas densas, sendo que
a última camada utiliza ativação tangente hiperbólica, contribuindo para a não
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linearidade do modelo. A sáıda consiste da estimativa do valor de fechamento do
ativo nas próximas 24 horas, através de um vetor contendo 24 sáıdas, sendo uma
para cada intervalo de uma hora.

3.2.3. Treinamento do Modelo de Previsão do Valor de Fechamento dos Criptoativos

A configuração de treinamento adota a função de otimização Adam, conforme definido
em [Kingma e Ba 2014], com os valores padrão da biblioteca python Keras, exceto
pelo learning rate, que foi ajustado individualmente para cada um dos criptoativos.
Esse ajuste foi realizado por meio de avaliação automatizada sobre os valores {5e-3, 5e-
4, 5e-5, 5e-6}, selecionando-se o que apresentou menor erro no conjunto de validação
(parte azul da Figura 2). De maneira similar, o tamanho do batch foi definido por meio
de busca em grade entre os valores {16, 32, 64} para cada criptoativo. O número
de épocas utilizado foi limitado em 150, valor no qual se observou tendência de
overfitting em todos os modelos. Para mitigar esse efeito, foi adotada a estratégia de
salvar apenas os pesos correspondentes à época que apresentou o melhor desempenho
no conjunto de validação.

A compilação de todos esses Modelos de Previsão utiliza a função de perda
Erro Médio Quadrático – Mean Squared Error (MSE), definida conforme a Equação
6.

MSE(Y, Ŷ ) = 1
n

n∑

i=1
(Yi − Ŷi)2 (6)

Onde Y representa o conjunto de valores verdadeiros, Ŷ representa o conjunto
de valores previstos e n é o número total de valores dos dois conjuntos.

3.2.4. Cálculo do Retorno Médio e da Matriz de Correlação dos Valores Previstos

Conforme mencionado anteriormente, a sáıda do Modelo de Previsão de um criptoati-
vos é composto pela estimativa dos próximos 24 valores de fechamento em intervalos
de 1 hora. O retorno médio é definido como a média desses 24 valores.

Já a matriz de correlação é uma representação tabular formada pelo coeficiente
de correlação entre cada um dos 24 valores estimados pelos Modelos de Previsão dos
25 criptoativos que compõem o portfólio. A fórmula para o coeficiente de correlação
entre dois conjuntos de valores X e Y é dada pela Equação 7.

corr(X, Y ) = cov(X, Y )
σ(X)σ(Y ) (7)

Onde corr(X, Y ) é o coeficiente de correlação entre X e Y , cov(X, Y ) é a
covariância entre X e Y , σ(X) é o desvio padrão de X e σ(Y ) é o desvio padrão de
Y . O retorno médio e a matriz de correlação dos valores previstos constituem as
entradas modificadas para o MIS empregadas no MIScP.
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4. Resultados e Discussão

A Figura 4 apresenta a evolução do investimento inicial (valor 1) obtido pela estratégia
usando o MIScP e, em comparação, o MIS.

Figura 4. (a) Ganhos acumulados - MIScP; (b) Ganhos acumulados - MIS

A Tabela 2 resume os ganhos acumulados obtidos em cada intervalo de tempo
para ambos os modelos.

Tabela 2. Ganhos acumulados ao longo dos intervalos experimentais

Intervalo Ganho MIScP (%) Ganho MIS (%)

1 -35.06 -64.97

2 -31.71 -27.19

3 123.19 -5.12

4 3.37 4.89

5 284.65 -6.40

Média 68.88 -19.76

Em geral, o MIScP superou o MIS em quatro dos cinco intervalos, com destaque
para os intervalos 3 e 5, alcançando ganhos de 123,19% e 284,65%, respectivamente,
enquanto o MIS apresentou perdas. A média total de ganhos também favoreceu o
MIScP (68,88%) em relação ao MIS (-19,76%).

A Tabela 3 apresenta a métrica de risco Maximum Drawdown (MDD) para
ambos os modelos.
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Tabela 3. Valores da métrica MDD ao longo dos intervalos experimentais

Intervalo MDD MIScP (%) MDD MIS (%)

1 -41.17 -64.17

2 -57.58 -44.79

3 -25.92 -37.45

4 -22.10 -23.62

5 -13.17 -25.73

Média -31.99 -39.15

O MIScP apresentou um risco médio menor (-31,99%) em comparação ao
MIS (-39,15%), reforçando sua vantagem em termos de volatilidade. Esses resultados
apresentam evidências favoráveis à inclusão de previsões no modelo de Índice de
Sharpe para o aprimoramento da performance dos portfólios, resultando em maior
ganho acumulado e menor risco.

Por fim, destaca-se que a estratégia de rebalanceamento diário com custos
fixos de 0.1% por transação, visando comparar de forma padronizada o desempenho
dos modelos. Contudo, essa escolha não considera limitações operacionais como
slippage, impacto de mercado ou restrições de liquidez, o que constitui uma limitação
do presente estudo.

5. Conclusão

Este estudo propôs uma abordagem inovadora para otimizar portfólios de criptoativos,
combinando previsão de retorno com CNN+BiLSTM e o MIS, culminando no MIScP.
A metodologia adaptou o modelo às caracteŕısticas do mercado de ativos da blockchain,
com alta volatilidade, distribuições não normais de preços, forte correlação entre
ativos e liquidez limitada.

A aplicação do MIScP mostrou-se viável, com ganhos médios acumulados
superiores ao MIS, especialmente nos intervalos 3 e 5 (123,19% e 284,65% em 75 dias),
além de menor MDD médio. Esses resultados reforçam a importância de incorporar
modelos de previsão para melhorar a construção de portfólios em mercados voláteis.
A integração da previsão CNN+BiLSTM com o MIS demonstrou, com base nos
dados avaliados, evidências emṕıricas de sua eficácia na maximização de ganhos e
na mitigação de riscos. Portanto, conclui-se que a estratégia proposta oferece uma
solução promissora para investidores que buscam otimizar retornos e mitigar riscos no
mercado de criptoativos, destacando a eficácia dos modelos de previsão na construção
de portfólios mais eficientes e adaptados a esse mercado.

Como trabalhos futuros, recomenda-se a realização de simulações que con-
siderem os efeitos da baixa liquidez, slippage e os diferentes custos de transação
associados ao rebalanceamento diário, bem como cenários extremos de valorização ou
desvalorização de ativos. Além disso, propõe-se um estudo comparativo envolvendo
técnicas baseadas em modelos preditivos recentes (e.g., FEDFormer, Reformer), bem
como a investigação do impacto da incorporação de informações textuais provenientes
de redes sociais e not́ıcias, exploradas por meio de modelos de linguagem.
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