
A Parallel-based Map Matching Approach over Urban Place
Records

Tiago Brasileiro Araújo1, Carlos Eduardo Santos Pires1, Demetrio Gomes
Mestre2, Andreza Raquel Monteiro de Queiroz1, Veruska Borges Santos1,

Thiago Pereira da Nóbrega2
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Abstract. In the Smart Cities scenario, to avoid the conflicting geospatial
records between official and non-official sources, it is necessary to detect the
inconsistencies regarding the geospatial data provided by them. To this end, the
map matching task, i.e., the task of identifying correspondent features between
two geospatial data sources, should be applied. For spatial Big Data, the map
matching task is confronted with challenges related to volume and veracity of the
data. In this sense, we propose a Spark-based map matching approach, called
MATCH-UPS. To evaluate, real-world data sources of New York (USA) and Cu-
ritiba (Brazil) were applied. The results showed that MATCH-UPS improved
the precision by 26% and reduced the execution time by one third.

1. Introduction
Geographical coordinates and maps (digital or paper-based) are a common element of our
daily life which provide a two-dimensional representation of geographical features in the
real world, such as parks, bus stops, roads, rivers, buildings, and places. Such information
is often referred to as geospatial or geographical data and plays an essential role in many
governmental, economic and social domains, such as disaster response, urban planning,
and tourism [Du et al. 2017, Harb and Becker 2018]. In this sense, the large amount of
data collected by municipalities and map projects (e.g., Open Street Map) may be used to
improve the efficiency of public transportation and infrastructure investments. However,
since geospatial data sources are prone to inconsistencies and quality issues, it is important
to assess the data quality before using them to take valuable strategical decisions. In fact,
an analysis based on incorrect information can lead to wrong decisions [Christen 2012].

For Smart Cities scenario, the municipalities benefit of the data collected from
multiple sources, such as official documentation, third parties information, and environ-
mental sensors [Bojic et al. 2015, Fan et al. 2014]. To avoid the conflicting records be-
tween official and non-official sources it is necessary to detect the inconsistencies re-
garding the geospatial data provided by them. To this end, the Map Matching task,
i.e., the task of identifying correspondent features between two geospatial data sources
[Du et al. 2017], can be applied. For instance, map matching can be used to identify
geospatial records (e.g. parks, bus stops, and roads) from distinct data sources that refer
to the same real-world place. It is an essential pre-processing step for data integration,



change detection, data updating, and data comparison [Fan et al. 2014]. Map matching is
a powerful task to assist several projects interested in extract information from geospa-
tial data (for instance, control of deforestation, fires and floods) and approaches related
to smart cities [Bojic et al. 2015]. Several works report the necessity to apply the map
matching task to solve diverse problems related to urban mobility and environment in
different countries, such as USA [Pi et al. 2018], Chile [Arriagada et al. 2019], Sweden
[Bouguelia et al. 2018], and Italy [Interdonato and Tagarelli 2017]. In this context, the
present work has been conceived by analyzing the scenario and related issues addressed
by an international cooperation project called EUBra-BIGSEA. This project aims to de-
velop a cloud platform for data management and exploitation. In particular, the services
are able to empower data analytics to support the development of data processing appli-
cations.

In the context of spatial Big Data, the map matching task is confronted with two
main challenges: volume, as it handles a large amount of geospatial records (such as build-
ings, parks and bus stops of a megalopolis); and veracity, related to the reliability of the
data provided by the source [Christen 2012]. The desktop GIS software typically takes
hours to process (or compare) these massive geospatial data. Such a consumption of time
is unacceptable for many applications, particularly for real-time policy decisions such as
predicting which areas would be damaged by natural disasters. In this light, blocking
techniques and parallel computing are applied in order to minimize the problems related
to the large volume of data. Blocking techniques group similar records into blocks and
perform comparisons of the records within each block. The map matching in parallel aims
to reduce the overall execution time by distributing the comparisons between geospatial
records among the various resources (e.g., computers or virtual machines) of a compu-
tational infrastructure. Regarding the veracity, the map matching task can be applied in
order to assess the quality of data sources. For instance, by identifying conflicting and
inconsistent records between them [Fan et al. 2014]. Problems related to veracity often
occurs due to the data are collected through crowd-sourcing. For this reason, the OSM
has often been denounced due to its heterogeneity in quality from the beginning of its de-
velopment and needs to be evaluated by comparing with authority data [Fan et al. 2016].

In the literature, there are several map matching approaches [Fan et al. 2016,
Fan et al. 2014, Du et al. 2017, Alarabi et al. 2017]. However, most of them address the
problem of road network matching [Fan et al. 2014]. In this work, we concentrate on two
open areas not addressed by the previously mentioned works concomitantly: map match-
ing (involving points and polygons) and parallel computing, applying Apache Spark.
Overall, the contributions of our work are the following: i) our approach, called Match-
ing of Urban Places with Spark (MATCH-UPS), proposes the parallelization of the map
matching approach proposed in [Fan et al. 2014]. The novel approach applies the Spark
framework to parallel the execution of the map matching task; ii) we propose the appli-
cation of the semantic attributes (e.g., names of the places) and context information (e.g.,
neighbouring streets) for the matching task in order to assist the comparison of geospatial
records (i.e., polygons or points). This information provides additional evidence used to
assist the definition of the corresponding places (i.e., match) in the map matching task;
and iii) we propose the application of the blocking technique based on the geographical
similarity (from the coordinates) to group similar geospatial records into the same block.



2. Background

Matching Geospatial Data. In map matching, it is necessary to compare the geospatial
records of one data source with the geospatial records of the other one. To determine the
similarity of a record pair, geospatial and semantic attributes (e.g., geolocations, place
names, addresses, or postcodes) can be compared [Christen 2012]. If the records of a
record pair present various similar attribute values, these records have high chances of
being considered similar. According to the type of geospatial data (in this work, points
and polygons), the geospatial information can be explored in different ways. To compare
the geospatial information of two points (i.e., latitude and longitude of each point), the
distance between them is commonly evaluated [Fan et al. 2014, Xavier et al. 2016]. The
closer the points are, the greater the chances of them being considered as correspondents.
Regarding the polygons, the geospatial information (i.e., a set of latitude and longitude
for each polygon) can be evaluated based on the overlapping area of the polygon pair. To
improve the efficacy of the map matching results, semantic attributes (e.g., names, de-
scriptions, and annotations) of record pairs can also be compared beyond the evaluation
based on the geospatial attributes [Christen 2012]. For instance, the names of the build-
ings (semantic attribute) are linguistically compared (using linguistic measures such as
Jaccard or Levenshtein) to determine the similarity degree between them.

To determine whether a record pair is a correspondence or not, the similarity val-
ues can be combined (e.g., given by average or weighted average) or used individually
to compound a rule of classification. The most two commonly classifiers applied in this
context are: threshold-based and rule-based [Christen 2012]. The former combines the
similarity values (e.g., geospatial similarity and semantic similarity) and determines as
a correspondence the record pairs that have a final similarity value higher than a given
threshold. Related to the latter, a record pair can be classified not only as match or non-
match. Thus, a record pair is classified as one of the predetermined classification profiles
(for instance, match, possible match, or non-match) according to the rule, taking into ac-
count all the similarity values (e.g., geospatial similarity and semantic similarity). In this
work, we applied rule-based and threshold-based classifiers according to the number of
attributes assessed (consequently, the number of similarity values) in each scenario (i.e.,
involving polygons or points), as will be described in Section IV.

3. Related Work

The survey [Xavier et al. 2016] highlights several works which propose map matching
approaches in the context of geographical data. In the work [Fan et al. 2016], a polygon-
based approach is proposed to match roads and urban blocks provided by Open Street
Map (OSM) and official data sources. The algorithm represents the urban blocks (i.e.,
elements of urban planning) as polygons (e.g., surrounding buildings) and lines (e.g.,
surrounding streets). Thus, the algorithm is able to match urban blocks evaluating their
spatial topologies based on the polygons. To determine the similar polygons (which model
the urban blocks), the algorithm evaluates the overlapping areas between the polygons.

Similar to [Fan et al. 2016], the work [Fan et al. 2014], which inspired our work,
proposes a method for matching building footprints (i.e., polygons), in order to assess
the quality of the data provided by OSM. The similarity between polygons is defined
by the percentage of overlapping area between them, using 30% as the threshold for



considering a polygon pair as a match. However, the work [Fan et al. 2014] presents
limitations when the same building is represented as two disjoint polygons (commonly
in scenarios where the polygons have a small area) in OSM data and authoritative data
[Du et al. 2017]. Regarding context-based map matching, the work [Zhang et al. 2014]
affirms that in cases when there is ambiguity in the correspondences, the similarity of
geographical features depends on the context. This work proposes a triangulation-based
approach to define the neighbourhood of urban places, considering a continuous influence
from the closest places.

In these terms, although the works previously discussed address the map matching
task, none of them proposed approaches to address map matching and parallel computing
simultaneously. Despite the work [Alarabi et al. 2017] apply parallel computing over the
geospatial records management, it does not address the map matching task. Thus, apply-
ing parallelism/cloud computing in the context of geographical Big Data is treated as an
open research area [Zhang et al. 2015, Xavier et al. 2016]. The work [Zhang et al. 2015]
also highlights the lack of parallel-based map matching approaches. Therefore, our work
emerges as a bridge between map matching and parallel computing since we propose a
Spark-based approach that parallelizes the map matching task. In addition to assessing
the geographical similarity of the geospatial records (provided by the overlapping area or
the distance between the records), our work takes into account other attributes (e.g. place
names) of the records and applies context-based information. Regarding context-based
map matching, our work considers the streets as context information and applies rules
(instead of triangularization) based on the distance between bus stops/streets to determine
which bus stops are considered correspondents.

4. The MATCH-UPS Approach
4.1. Overview
Given two sets of geospatial records, represented by D1 and D2, the map matching task
consists in identifying all correspondences between records. We denote the schema fol-
lowed by the records of D as E = (a1, a2, . . . , an), in such a manner that each ai cor-
responds to an attribute (e.g., name, category, and geographical coordinates). Therefore,
the input data sources D1 and D2 contain a finite set of records denoted as a pair of
〈attribute, value〉: r = [〈a1, v1〉, 〈a2, v2〉, . . . , 〈an, vn〉]. Let sim(r1, r2) be the similarity
measure between records r1 and r2, Φmax the maximum threshold that defines whether r1
matches r2, and Φmin the minimum threshold that defines the pair r1 and r2 as non-match.
Thus, the map matching can classify the pairs of records as Match(M) = {(ri, rk) | ri ∈
D1, rk ∈ D2 and sim(ri, rk) ≥ Φmax}, Non−Match(NM) = {(ri, rk) | ri ∈ D1, rk ∈
D2 and sim(ri, rk) ≤ Φmin} and PotentialMatch(PM) = {(ri, rk) | ri ∈ D1, rk ∈ D2

and Φmin < sim(ri, rk) < Φmax}.
In this work, we propose a Spark-based map matching approach, denoted as

MATCH-UPS1, for dealing with records represented by spatial geometries (e.g., polygons
and points). Thus, the MATCH-UPS approach performs pairwise comparisons between
geospatial records, determining the similarity between them. To classify a record pair, lin-
guistic and geographical matchers are applied. A linguistic matcher explores the textual
attributes of the record (e.g., name and description) to determine the linguistic similarity

1https://github.com/brasileiroaraujo/GeoMatch-MATCH-UPS-.



Table 1. Classification rules.

Rule Classification
LS >LST and GS >GST Match
LS <LST and GS <GST Non-Match
(LS >LST and GS <GST) or (LS <LST and GS >GST) Potential match

(LS) of a record pair. To this end, algorithms such as Jaccard and Levenshtein distance
are used. A geographical matcher explores the coordinates of both geospatial records in
order to identify the overlapping area or the distance between them. The proportion of
the overlapping areas (for polygons) or the distance (for points) represent the geograph-
ical similarity (GS) between the records of a pair. Thus, the record pairs are categorized
according to the classification rule show in Table 1 which considers the similarity values
as well as a linguistic similarity threshold (LST) and a geographical similarity thresh-
old (GST). The record pairs are classified into threes categories: match, non-match, and
potential match.

4.2. Geospatial Polygons

Regarding the polygons (for instance, buildings, residential regions, parks, and forests),
the similarities between the geospatial records can be measured through the linguistic
and geographical matchers. As previously mentioned, the linguistic matcher can apply
algorithms such as Jaccard and Levenshtein distance to determine the linguistic similarity
between the records. To measure the geographical similarity, the overlapping area be-
tween the polygons of the geospatial records is evaluated. In this sense, works such as
[Fan et al. 2014] consider that a pair of geospatial records with an overlapping area above
30% are classified as a match. Therefore, the geographical similarity threshold (GST)
applied to polygons (records) pairs is 0.3 (30%). Equation 1 denotes the rule to measure
the similarity of two polygons (p1 and p2):

sim(p1, p2) = min(
overlappedArea(p1, p2)

area(p1)
,
overlappedArea(p1, p2)

area(p2)
) (1)

4.3. Geospatial Points

To perform the map matching task over points records (for instance, bus stops, points of
interest, and vehicle coordinates), linguistic and geographical matchers can be applied. In
this work, we apply only a geographical matcher since the records provided by the data
sources do not contain relevant linguistic attributes. The geographical matcher considers
as match the record pairs with a distance (in meters) lower than a certain GST (also given
in meters). Otherwise, the pair of records is considered as non-match. In this work, we
apply a GST of 20 meters, since the work [Yang et al. 2014] proved experimentally that
a pair of geospatial points with a distance lower than 20 meters can be considered as a
match. On the other hand, if we consider only the geographical distance, two problems
can be highlighted. Since several bus stops may be close to each other in the real world,
a bus stop can be classified as match more than once with different representations of bus
stops contained in the other data source. Moreover, the application of the geographical



Figure 1. Applying the context information over bus stops data sources.

matcher can only reduce the reliability of the results since the bus stops may be close but
might not represent the same bus stop. In order to minimize these problems, a context-
based strategy was proposed.

Context-based Map Matching. Since the attributes of records are exploited in
the map matching task in order to determine the similarity between a pair of records,
the lack of comparable attributes reduces the confidence of the map matching results.
The matching of urban areas is complex due to the ambiguities involved such as many-
to-many correspondences, the positional discrepancy between geographical objects in
two data sources, distinct map scales and objects with simplified descriptions or the ab-
sence of comparable attributes. This requires the application of context-based matchers
[Zhang et al. 2014]. Hence, the map matching approaches can apply contextual infor-
mation (e.g., surrounding geographical information such as streets, buildings, and urban
blocks) to improve the accuracy of the results. The context information can be provided
by external data sources in order to support the map matching task.

In this sense, we propose a context-based MATCH-UPS to compare geographical
points (e.g., bus stops records). Considering that the only comparable attribute between
two data sources is the georeferenced point (latitude and longitude), determining whether
or not a pair of records (i.e., points) is a match turns out a challenging and imprecise task.
For instance, Figure 1(a) depicts three geographical points (P1, P2 and P3), where each
point represents a bus stop. The bus stop P1 (in blue) is provided by the municipality data
source whilst bus stops P2 and P3 (in green) are provided by OSM. Since the distances
(in meters) from bus stop P1 to bus stops P2 and P3 are equivalent, it is not possible to
determine which bus stop (P2 or P3) correspondends to bus stop P1. Thus, the context of
the bus stops (in this case, the surrounding streets) is applied to the map matching task in
order to assist the matchers in the classification of pairs of records. In this case, the pair
〈P1, P3〉 is considered a correspondence since the bus stops P1 and P3 are at located the
same side of the street while the bus stop P2 is positioned at the other side of the street, as
illustrated in Figure 1(b) and 1(c).

4.4. An Efficient Approach for Map Matching Task
In this section, we describe the workflow of the MATCH-UPS approach, which combines
blocking techniques and parallel computing to enhance the efficiency of the map matching
task. The former groups similar records into blocks and perform comparisons within each
block. In this work, we apply part of the geographical coordinates (i.e., blocking key) to
block the records. In other words, records that share the same blocking key (based on the



Figure 2. The MATCH-UPS workflow.

geographical coordinates) are grouped into the same block. Since a pair of records located
at a long distance from each other has few chances to be similar, the blocking technique
prevents that this pair of records from being compared. Regarding the map matching
task in parallel, the Spark framework is applied to reduce the overall execution time by
distributing the comparison between geospatial records among the available resources.
Figure 2 depicts the whole workflow of the MATCH-UPS approach.

The proposed approach receives as input a set of records provided by two data
sources D1 and D2. To a better understanding, the records (r) provided by D2 are
marked by the symbol “*”. Initially, the records (r) are mapped as a key-value pair
(i.e., FlatMapToPair operator), such that the key is formed by the data source ID (which
provides the record) concatenated with the record ID whilst the value is the record it-
self. For instance, record r1 provided by D1 is mapped to the pair 〈11, r1〉. These
key-value pairs are stored in a DataFrame structure. Posteriorly, the first “n” numbers
(in this example, n = 4 was applied) of the latitude and longitude coordinates are ex-
tracted from each record (if the record is a polygon, the coordinates are extracted from
the centroid point). These numbers are concatenated in order to generate the blocking
keys. Therefore, each record generates a blocking key composed of the first four num-
bers of the latitude and longitude coordinates. In the example, the first four numbers
of the latitude (“2543”) and longitude (“4926”) coordinates of the record r1 are con-
catenated to generate the pair 〈2543.4926, r1〉. In the next step, all records sharing a



common blocking key are grouped into the same block (i.e., GroupByKey operator).
For this reason, the records r1, r3, r1∗ and r2∗ are grouped into the same block since
all records share the key “2543.4926”. The blocks determine which records should be
compared (by the matchers). Notice that each block is sent to an available resource,
where the comparisons between records are performed. Finally, after comparison, the
record pairs considered as a match or potential match are joined to compose the MATCH-
UPS output (i.e., MapToPair operator). In Figure 2, the output generated for the ex-
ample is {r1, r1∗, PM}, {r1, r2∗, PM}, {r2, r3∗,M}, {r4, r5∗, PM}, {r4, r6∗, PM} and
{r5, r4∗,M}.

Load balancing. In the map matching task, the most costly step (in terms of
computational cost) is the comparison step, where the matchers are applied to compare
the attribute values of each record pair. First of all, it is important to highlight two points:
i) all records contained in a block are sent together to a specific resource (e.g., node) to be
compared; and ii) since the blocks can have different number of records, the blocks can
generate a different amount of comparisons between records. Due to these two points, the
comparison step may suffer from load imbalancing problems. Load imbalancing occurs
when some nodes execute comparisons for a long time while other nodes remain idle
[Araújo et al. 2016].

For instance, in Figure 2, four blocks were generated b1 = {r1, r3, r1∗, r2∗},
b2 = {r2, r3∗}, b3 = {r4, r5∗, r6∗} and b4 = {r5, r6, r4∗}, which generate 4, 1, 2 and
2 comparisons, respectively. Assuming that there are two nodes available, a scheduler
can send randomly the blocks b1 and b3 to the first node and blocks b2 and b4 to the
other node. As a result, the task will suffer from the load imbalancing problem since one
node will perform six comparisons (4 + 2) while the other node will perform three (1 +
2) comparisons. To minimize the load imbalancing problem, the greedy load balancing
technique proposed in [Araújo et al. 2016] is applied. This load balancing technique takes
into account the amount of comparisons to be performed in each block to guide the distri-
bution of the blocks among the nodes. To this end, the blocks are ordered according to the
amount of comparisons: b1, b3, b4 and b2. Posteriorly, the top block is removed from the
stack and sent to the node with fewer comparisons already allocated, applying a greedy
algorithm. Therefore, the blocks b1 and b2 are sent to a node and the blocks b3 and b4 to
the other node. Thus, the load imbalancing is minimized since one node will perform five
comparisons (4+1) while the other node will perform four (2+2) comparisons.

5. Evaluation

In this section, we evaluate the effectiveness and efficiency of the MATCH-UPS approach
using a cluster infrastructure with five nodes. Each node has 1 core, an Intel(R) Xeon(R)
1.0GHz CPU, 7GB memory, and runs the 64-bit Debian GNU/Linux OS with a 64-bit
JVM and Apache Spark 2.02. For the evaluation, we use real-world data sources3 of Cu-
ritiba (Brazil) and New York (USA), provided by Open Street Map4 and their respective
municipalities. Table 2 depicts the number of geospatial records contained in each data
source as well as the number of duplicate records (i.e., correspondences) present in each

2https://spark.apache.org/
3Available in the project’s repository.
4https://www.openstreetmap.org/



Table 2. Data sources characteristics.

Pairs of Datasets Municipality OSM Duplicates
Curitiba (Parks/Squares) 682 16,189 682
New York (Parks/Squares) 2,008 1,264,799 -
Curitiba (Bus Stops) 6,982 736 6,982
New York (Bus Stops) 3,365 74,140 -

pair of data sources. The data source provided by the Municipality of Curitiba was con-
sidered as the gold standard since this data source was cleaned and assessed by the Federal
University of Technology (located in Curitiba) and the Institute of Research and Urban
Planning of Curitiba (IPPUC5). However, we do not have enough information about the
quality of the data source provided by the municipality of New York to consider it as the
gold standard. Therefore, the cells of the New York data sources do not have value for the
“Duplicates” column.

Effectiveness Results. This experiment evaluated the effectiveness of the
MATCH-UPS approach over the data sources of Curitiba since there is a gold standard
to validate the results. In this sense, three metrics are used to measure the effectiveness:
recall, precision and F-measure. It is important to highlight the MATCH-UPS approach
applies the same rule, proposed in [Fan et al. 2014], to determine whether or not a pair
of geospatial records is considered a match. Therefore, the effectiveness results of the
MATCH-UPS approach (without applying the blocking technique) are exactly the same
as the results achieved by the approach proposed in [Fan et al. 2014].

Figures 3 (a) and (b) depict the effectiveness of the MATCH-UPS approach over
the data sources that store the squares/parks and bus stops of the Curitiba. The goal of
this experiment is to evaluate the impact of the blocking technique and context infor-
mation on the effectiveness of the proposed approach. Regarding the squares/parks data
sources, the following MATCH-UPS variations were evaluated: i) MATCH-UPS based
on [Fan et al. 2014]; and ii) MATCH-UPS applying the blocking technique. Similarly,
concerning the bus stops data sources, the following MATCH-UPS variations were evalu-
ated: i) MATCH-UPS based on [Yang et al. 2014]; ii) MATCH-UPS applying the context
information; and iii) MATCH-UPS combining the application of context information and
blocking technique.

Based on the achieved results, it is possible to infer that the application of the
blocking technique described in Section IV does not affect significantly the MATCH-
UPS effectiveness. This behavior demonstrates that the blocking techniques just discarded
comparisons with low chances of resulting in matches. Thus, the application of the block-
ing technique emerges as a useful step to perform the map matching task. Furthermore,
we can highlight the 26% increase in the precision results achieved by the MATCH-UPS
when the context information was applied, as shown in the Figure 3(b). It occurs due to
the fact that this information assists the proposed approach to better classify the pairs of
geospatial records. Concerning the recall metric depicted in Figure 3(b), the proposed ap-
proach presents low values since the intersection rate between the OSM data source and
the municipality data source is only 10%, as described in [Araújo et al. 2017]. In other

5http://www.ippuc.org.br/



Figure 3. Evaluation of MATCH-UPS approach: (a) Effectiveness results for parks
and squares of Curitiba; (b) Effectiveness results for bus stops of Curitiba;
(c) Efficiency results for parks and squares of Curitiba; (d) Efficiency re-
sults for bus stops of Curitiba; (e) Efficiency results for parks and squares
of New York; and (f) Efficiency results for bus stops of New York

words, the intersection between the OSM and the municipality data sources contains only
696 records (of 6,982 records stored in the municipality data source).

Efficiency Results. In this experiment, we evaluated the efficiency of the
MATCH-UPS approach and its respective variations, similarly to the effectiveness ex-
periment. It is important to notice that all variations of the MATCH-UPS approach use
the load balancing technique described in Section IV. To measure the efficiency, the exe-
cution time (given by the average of three executions of each MATCH-UPS variation) and
the speedup (which measures how much faster a process runs in parallel) are evaluated.

The efficiency results indicate that the application of parallel computing enhances
the efficiency of the map matching task. Considering the MATCH-UPS approach (with-
out blocking technique) for stand-alone mode (i.e., one node) as the baseline approach,
it is possible to infer that the proposed Spark-based approach significantly reduces the
execution time of the map matching task, as illustrated in Figures 3(c)-3(f). Although the



application of context information improves the effectiveness results, this strategy takes
more time to be executed since it needs to process the context information besides to com-
pare the geographical attributes of the records. Regarding the application of the blocking
technique, it is important to highlight that the MATCH-UPS with the blocking technique
achieved the best results regarding execution time for all experimental scenarios since
the technique reduces the search space (i.e., number of comparisons between entities) of
the map matching task, as depicted in Figures 3(c)-3(f). In Figure 3(c), with 1 node, the
application of the blocking technique reduced the execution time by one third, without
significant impact on the effectiveness (as shown in the Figure 3(a)).

Concerning the speedup metric, the MATCH-UPS approach achieved better re-
sults when large data sources (e.g. data source of New York) are submitted. It occurs due
to the fact that Spark initialization time dominates the MATCH-UPS execution time for
small (and medium) data sources [Araújo et al. 2016]. On the other hand, the speedup
results of MATCH-UPS for large data sources (illustrated in Figures 3(e) and (f)) denote
the scalability of the proposed approach.

6. Conclusion
This article presents MATCH-UPS, a Spark-Based approach to perform map matching in
parallel. Context information and a blocking (indexing) technique are applied to enhance
the effectiveness and efficiency of the approach, respectively. It is important to highlight
that the MATCH-UPS approach can assist several smart cities approaches and environ-
ment projects from different countries that face common Big Data challenges, supporting
the citizens and changing the way they live. Furthermore, other map matching approaches
(e.g., the approaches proposed in [Fan et al. 2014, Araújo et al. 2017]) can benefit from
the Spark-based workflow and the blocking technique proposed in this work to enhance
the efficiency of them. Based on the experimental experiments, the results show that the
MATCH-UPS applying the blocking technique improves the efficiency without significant
impact on the effectiveness results. Moreover, the combination of context information and
blocking technique enhances the efficiency and effectiveness results.

In future work, we intend to execute the proposed approach over other large
geospatial data sources. Furthermore, we aim to extend the proposed approach in or-
der to match line records (e.g., streets and trajectories). Another open area is to propose a
map matching approach able to deal with streaming geospatial data.

References
Alarabi, L., Mokbel, M. F., and Musleh, M. (2017). St-hadoop: A mapreduce frame-

work for spatio-temporal data. In International Symposium on Spatial and Temporal
Databases, pages 84–104. Springer.
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