
Towards a Technique for Extracting Relational Actors from
Monolithic Applications

Rodrigo Laigner1, Sérgio Lifschitz1, Marcos Kalinowski1, Marcus Poggi1,
Marcos Antonio Vaz Salles2

1Departamento de Informática – PUC-Rio, Brazil
{rlaigner,sergio,kalinowski,poggi}@inf.puc-rio.br

2Department of Computer Science (DIKU) – University of Copenhagen, Denmark
vmarcos@di.ku.dk

Abstract. Relational actors, or reactors for short, integrate the actor model with
the relational data model, providing an abstraction for enabling actor-relational
database systems. However, as a novel model of computation for databases,
there is no extensive work on reasoning about reactor modeling. To close this
gap, this paper aims to propose as well as evaluate a technique to extract re-
actors from a monolithic system. For evaluation, we selected a REST-based
open-source OLTP system in which a decomposition to microservices was con-
ducted and applied our technique on its predecessor monolithic version. Our
technique led to the same set of decisions, regarding table and behavior selec-
tion, taken by experts when decomposing the same system into microservices.
The proposed technique can be seen as a first step towards supporting practi-
tioners in decomposing OLTP systems into reactors.

1. Introduction
Reactive systems and microservices constitute a new trend in the development of data-
driven software applications [Boner et al. 2019, Hasselbring and Steinacker 2017]. To
support these new application development needs, proposals have been put forward to
integrate databases and actor systems [Bernstein et al. 2017, Shah and Salles 2017]. A
key idea in these proposals is to support asynchrony and distribution in application design
while still providing for desirable database functionality such as declarative querying and
transactions.

In particular, actor-relational database systems aim at integrating actor constructs
for encapsulation and concurrency at the level of the programming interface of a rela-
tional database management systems (RDBMS) [Shah and Salles 2017]. Relational ac-
tors (or reactors, for short) consist of a concrete programming model for actor-relational
DBMS [Shah and Salles 2018]. A reactor encapsulates relations in its state, and allows
for state manipulations to be executed only by asynchronous function calls returning fu-
tures. While reactors appear to be a promising programming model for actor-relational
databases, there is limited guidance in how to design applications based on reactors.
In [Shah and Salles 2018], the authors assert that “an interesting avenue for future re-
search is to explore an analytical machinery for modeling and comparing the quality of
reactor database designs.”

Thus, there is a need for a systematic approach to derive a reactor database design.
Towards this end, this work presents a technique for extracting reactors from a monolithic



application with Online Transaction Processing (OLTP) characteristics. The technique
considers variables such as the access frequency of application entry points and coupling
among tables. Importantly, we show that our technique can be used to suggest how to
break a REST-based monolithic application into reactors.

The document is organized as follows. Section 2 provides background, presenting
reactor database systems, the architectural style REST, and layered architecture. Section 3
discusses related work. Section 4 presents the technique proposed. Section 5 provides an
evaluation of the technique based on an open-source OLTP application. The limitations
are presented in Section 6. Finally, Section 7 presents concluding remarks.

2. Background
This section introduces background needed to contextualize our proposed technique.

Reactors. Stored procedures in RDBMS [Rowe and Stonebraker 1987] generally
do not present constructs to explicitly parallelize operations on the database. This way,
practitioners must rely on high level programming languages in the middle tier to handle
parallelism in application logic. However, the complexity in source code entailed by
the latter is substantial, raising the need for better abstractions [Sutter and Larus 2005].
In order to overcome this problem, [Shah and Salles 2018] proposed a relational actor
(reactor) database system, which is derived from the actor model [Agha 1986].

In the actor model, [Shah and Salles 2018] argue that “communication is typically
achieved by non-blocking send and blocking receive primitives.” In response to a received
message, an actor can also send messages to other actors. Reactors abstract such mes-
saging for concurrency and parallelism through asynchronous function calls that trigger
operations on encapsulated state. At the same time, reactors provide high-level database
abstractions for application programming. Importantly, “the state of each actor is ab-
stracted by a set of relations and application functions employ declarative queries against
relations” [Shah and Salles 2017]. Additionally, application functions can be executed
transactionally with reactors.

An excerpt of interaction among reactors adapted from [Shah and Salles 2017] is
shown in Figure 1. The figure depicts the use case of an order, triggered by the function
call add_items in the Cart reactor, which transactionally retrieves customer information
from a disjoint Customer reactor. After a separate transactional call to checkout, the
reactor Cart then records a store visit in the same Customer reactor.

Representational State Transfer. Representational State Transfer (REST) is an
architectural style described by Roy Fielding [Fielding 2000] aimed at designing dis-
tributed systems over the World Wide Web and has been established as a pattern in indus-
try. According to Fielding [Fielding 2000], "the key abstraction of information in REST
is a resource", on which "REST components perform actions on a resource by using a
representation to capture the current or intended state of that resource". The action and
the intended state of a resource can be understood as a contract established between two
communicating parties.

Layered architecture. Layered architecture is a software architecture pattern
aimed at distributing responsibilities over different components in an application in order
to achieve high cohesion and low coupling among components [Fowler 2015]. According



Figure 1. Communication between relational actors

to Richards [Richards 2015], "components within the layered architecture pattern are or-
ganized into horizontal layers, each layer performing a specific role within the application
(e.g., business logic)". This way, a common approach for layered architecture is dividing
the application into the four layers described below.

The Presentation layer encodes a set of rules that enable external clients to com-
municate with the system. This layer thus abstracts the entry points of the system, e.g., a
REST API resource. The Business layer is composed of smaller subsystems. It is char-
acterized as the core of the system, being responsible for handling application logic. The
Repository layer is composed by a set of modules that primarily handle communication
with the database system. This layer commonly deals with data access and data manip-
ulation in SQL or through abstractions, such as provided by the Hibernate framework.1

Finally, the Database layer is the DBMS.

Monolithic Applications. Monolithic systems adopt an architectural style in
which modules and subsystems are integrated and cooperate in a centralized manner. By
contrast, in a microservices architecture, the system is subdivided into several services,
each of which usually represents a single concern within the system [Richards 2015].

3. Related Work

As there is no previous work on decomposing applications into reactors, we observe that
the work most related to our proposal is on decomposing modules into thin services, the
so-called microservices. As there is a substantial body of work on this topic, we focus on
those studies that present similar approaches in relation to our proposed technique.

Mazlami et al. [Mazlami et al. 2017] define an extraction model where the starting
point is the source code. Then, class files, change history, and developers that contributed
to source code are identified. Employing different coupling strategies (e.g., terms are
extracted from class files in order to enable a semantic coupling strategy), a graph repre-
sentation is created representing the degree of coupling among classes in the monolithic
system. A graph clustering algorithm is used to obtain candidates for microservices. The
authors [Mazlami et al. 2017] argue that “the unsolved problem of how to share or assign
pre-existing databases to different services remains a limitation” of their work.

1https://hibernate.org



Gysel et al. [Gysel et al. 2016] propose a service decomposition based on a set of
coupling criteria and system specification artifacts, such as domain models and use cases.
A supporting tool framework (Service Cutter) was developed and decomposed services
were “represented as an undirected, weighted graph to find and score”. For instance, the
authors [Gysel et al. 2016] define System Specification Artifacts, such as use cases and
domain models, as an input of Service Cutter. We consider these artifacts insufficient to
assess application workload, particularly in the context of OLTP applications. In con-
trast to our approach, their technique [Gysel et al. 2016] does not present primitives for
considering the workload of the application neither extraction of application logic.

Levcovitz et al. [Levcovitz et al. 2016] present a technique for decomposing mi-
croservices from a monolithic application that is organized into three parts: a client side
user interface, a server side application, and a database. The work of Levcovitz et al.
[Levcovitz et al. 2016] decomposes the application based on business areas, which they
describe as being "responsible for a business process". We consider this an inadequate se-
lection criterion since a business unit is an abstract concept and might not lead to optimal
decomposition, as our work does, in regard to workload and behavior distribution.

In addition to the above, numerous approaches have investigated horizon-
tal and vertical partitioning in object-oriented [Bellatreche et al. 2000] or relational
databases [Pavlo et al. 2012]. In contrast to our proposal, these approaches focus exclu-
sively on database access logic and do not consider layered architectures with application
code across tiers. Lastly, Wang et al. [Wang et al. 2019] discuss the modeling of Internet-
of-Things applications with actor-oriented databases. However, the work focuses on actor
databases with an object-oriented data abstraction, being thus only partially applicable to
relational actors. Furthermore, the modeling guidelines presented are aimed at the devel-
opment of new applications, as opposed to decomposition of existing monoliths.

4. Proposal
This work aims to extract reactors from a monolithic system. Therefore, we rely on
the concept of entry points of a system, which are contracts that external clients should
follow in order to communicate with the application. Several approaches, such as RPC
and SOAP, have been defined to enable distributed systems communication. Thus, in
order to establish a common pattern for systems communication, our technique targets
OLTP web applications that communicate through REST APIs.

To formalize the system under analysis, we extend the system formalization of
Levcovitz et al. [Levcovitz et al. 2016]. A monolithic system S is represented by a
quadruple (I;B;R;D), where I = { int1, int2, ..., intn } is a set of interfaces (REST re-
sources) from the presentation layer, B = { bf1, bf2, ..., bfn } is a set of business functions,
R = { rf1, rf2, ..., rfn } is a set of repository functions, and T = { tb1, tb2, ..., tbn } is a
set of database tables. Figure 2 depicts a representation of the layered architecture con-
sidered in this work. Our technique for extracting reactors from a monolithic application
comprises five phases, which are described as follows.

System dependency graph construction. This phase comprises building a de-
pendency graph G = (V, E) representing the execution flow for each interface described in
the presentation layer. An execution flow represents the branches associated with a given
interface, where vertices represent available functions and resources.



Figure 2. Layered architecture considered in this work

Vertices are represented by the following elements: (i) interfaces (inti ∈ I) ∀i;
business functions (bfi ∈ B) ∀i; repository functions (rfi ∈ R) ∀i; database tables (tbi ∈
T) ∀i. Furthermore, the edges represent: (i) interface calls to business functions; (ii) calls
among business functions; (iii) calls from business functions to repository functions; (iv)
calls among repository functions; and (v) table accesses from repository functions.

Profile data collection. After building the dependency graph, it is important
to know how frequently each REST resource (interface) is called. Profiling can be
achieved by introducing dynamic instrumentation in the application or by techniques such
as aspect-oriented programming, in a non-intrusive manner [Kiczales et al. 1997]. When
such profiling data are not available, we suggest reasoning about the resources and assign-
ing weights related to their expected frequency. Based on this step, vertices representing
interfaces are weighted by a frequency cost, the so-called access frequency.

Table coupling identification. In the context of software development, coupling
is commonly used for assessing source code structural quality [Olbrich et al. 2010]. On
the other hand, since relational actors operate on data, it is necessary to define coupling
in the context of tables.

Table coupling, as used in this work, thus concerns associations between tables.
Two tables are associated by a foreign key (FK) if a FK is present in one or both relations.
In case of a many-to-many association, we assume the FK is present on both relations
and discard the join table built in consequence of physical design. A formalization of the
information on table coupling is provided below.

coupi,j =

{
1, if tables i and j are associated
0, otherwise

∀(i, j) ∈ T × T

Reactor table identification. Towards identifying tables that would compose a
reactor, the information collected in previous steps is employed to identify an optimal
distribution of tables and interfaces among clusters. The formulation is based on the clus-
tering problem found in optimization studies [Du and Pardalos 1998], in which the goal
is to identify a set of clusters that respect a given connectivity measure among vertices.

It is necessary to establish a limit on the amount of workload a reactor can sus-
tain while properties, such as coupling, are maintained within reactors. Given the access
frequency, the table coupling, and the maximum workload limit, our technique aims to



divide workload among clusters by properly allocating tables and interfaces to reactors.
It is noteworthy that this work only considers interfaces that enable GET and POST oper-
ations. The parameters and the decision variables are defined as follows.

Parameters

accessi access frequency for interface i;
coupi,j coupling degree between tables i and j;
Q the maximum access frequency load a reactor can sustain.

posti,j =

{
1, if POST for table j is fulfilled through interface i
0, otherwise

∀i ∈ I, ∀j ∈ T

geti,j =

{
1, if GET for table j is fulfilled through interface i
0, otherwise

∀i ∈ I, ∀j ∈ T

Decision variables

tbk,i equals 1 if table i is allocated to reactor type k, and 0 otherwise;
intk,i equals 1 if interface i is allocated to reactor type k, and 0 otherwise.

Based on the parameters and decision variables, we introduce the model designed
to optimize the definition of reactors.

max
n∑

k=1

ωk (1)

The objective function (1) maximizes the coupling level among tables allocated
within each cluster. In order words, we aim to keep associated tables together as maxi-
mum as possible in order to reduce communication costs in case of JOIN operations.

n∑
k=1

tbk,i = 1 ∀i ∈ T (2)

n∑
k=1

intk,i = 1 ∀i ∈ I (3)

Constraints (2) and (3) limit the maximum number of clusters each table and in-
terface are allowed to be allocated to, respectively. We aim to allocate a given table (or
interface) to only one cluster.

intk,i − tbk,j = 0 where posti,j = 1 ∀k = 1, ..., n (4)
intk,i − tbk,j = 0 where geti,j = 1 ∀k = 1, ..., n (5)

n∑
k=1

∑
i∈I

∑
j∈T

intk,i + tbk,j = 2 where posti,j = 1 (6)

n∑
k=1

∑
i∈I

∑
j∈T

intk,i + tbk,j = 2 where geti,j = 1 (7)



Constraints (4)-(7) force the table that represents a resource to be allocated in
the same cluster that its respective GET and POST operations are allocated to (through
respective interfaces). In addition, constraints (4)-(7) force GET and POST interfaces to
be allocated in the same cluster.

αk =
∑
i∈T

tbk,i ∀k = 1, ..., n (8)

ωk =
∑
i∈T

∑
j∈T/i

tbk,i.tbk,j.coupi,j ∀k = 1, ..., n (9)

αk ≤ ωk + 1 ∀k = 1, ..., n (10)∑
i∈I

intk,i.accessi ≤ Q ∀k = 1, ..., n (11)∑
i∈I

intk,i ≥
∑
j∈T

tbk,j ∀k = 1, ..., n (12)

Constraints (8) represent the total number of tables a given cluster holds. Con-
straints (9) represent the level of coupling a given cluster holds. Constraints (10) force
tables in a cluster to have a positive coupling level. In other words, if there is more than
a table in the cluster, the tables must be associated through FK. Constraints (11) limit the
maximum access frequency a cluster can sustain. Constraints (12) restrict the existence
of a cluster with tables and no interfaces.

intk,i ∈ {0, 1} (13)
tbk,i ∈ {0, 1} (14)

Constraints (13-14) are integrality constraints.

Reactor function extraction. In order to identify application logic that would be
more efficiently executed by the DBMS, Cheung et al. [Cheung et al. 2012] assert that
"programmers must identify sections of code that make multiple (or large) database ac-
cesses and can be parameterized by relatively small amounts of input”. Based on this
observation, this step aims at identifying source code lines with: (i) high degree of data
access and manipulation, and (ii) low complexity. Thus, we seek the identification of
application logic in the business layer to be migrated to a reactor function (RAF). Equa-
tion 15 exhibits the formula for detecting methods from source code for migration.

RAF (M) =


1, CYCLE(M) < HIGH1 ∧ NOAV(M) < MANY ∧

DDLOC(M) ≥ HIGH2

0, otherwise
(15)

In the equation above, M is the business function being inspected; CYCLE(M) is
the cyclomatic complexity of M; NOAV(M) is the Number of Accessed Variables of M;
DDLOC(M) is the degree of Data-Driven Lines of Code (DDLOC) in M, which are those
lines of code that make access to and manipulation of data.

As mentioned by Cheung et al. [Cheung et al. 2012], "identifying sections of ap-
plication logic that are good candidates for conversion [...] is tricky". Thus, we suggest
that the thresholds HIGH1, HIGH2, and MANY must be adapted for each application,



taking into consideration characteristics such as average lines of code (LOC) of methods
present in each module of the business layer.

Reactor function allocation. Once reactor functions are identified, based on the
locality of their source methods in the dependency graph, it is possible to assign a function
that operates on a given table to the cluster holding it. For example, if table tbx is assigned
to reactor type Rk and method My manipulates tbx, then My is allocated to Rk. In case
of a method manipulating multiple tables, then the method is assigned to the reactor type
with the respective highest access frequency for the given interface.

5. Evaluation
Our technique is applied to the monolithic version of Petclinic,2 an OLTP open-source
demonstration project of the Spring Framework.3 The system adopts a three-tier layered
architecture and has been under development since 2016.

System dependency graph construction. Due to space constraints, we provide a
partial representation of the dependency graph for Petclinic. Figure 3 depicts the execu-
tion path for the /visits/new resource regarding a POST operation. A node is represented
by a rectangle, in which the header is the class name followed by method name. The
complete dependency graph for Petclinic can be accessed online.4

VisitController
processNewVisitForm

ClinicServiceImpl
saveVisit

JpaVisitRepositoryImpl
persist

visits

JpaVisitRepositoryImpl
merge

visits

Figure 3. Dependency graph of /visits/new interface POST operation in Petclinic

Profile data collection phase. Since Petclinic is a demonstration project, this
study relies on an artificial workload that aims at reproducing a real-world scenario for
the Petclinic domain. The workload decisions were taken based on characteristics of Pet-
clinic, e.g., the insertion rate into the pets table cannot be lower than that of owners (a pet
cannot exist without an owner), and table visits must incur the highest access frequency.
Note that access frequency was normalized to range from 1 to 100 per interface.

Table coupling identification. The entity-relationship (ER) diagram for the Pet-
clinic application is depicted in Figure 4. As can be seen, the relationships with coupling
equal to 1 are: types and pets, owners and pets, and visits and pets.

2https://github.com/spring-petclinic/spring-framework-petclinic
3https://spring.io
4https://zenodo.org/record/3237968



Operation Interface Table Access frequency
GET /owners/ownerId owners 10
GET /owners/ownerId/edit owners 10
PUT /owners/ownerId/edit owners 10
GET /owners owners 60

POST /owners/new owners 20
GET /owners/ownerId/pets/new pets 25

POST /owners/ownerId/pets/new pets 25
GET /owners/ownerId/pets/petId/edit pets 10
PUT /owners/ownerId/pets/petId/edit pets 10
GET /vets vets 10
GET /owners/ownerId/pets/petId/visits/new visits 100

POST /owners/ownerId/pets/petId/visits/new visits 100

Table 1. Workload scenario

owners own pets
1

N
have visits

1
N

is

types

N

1
vets

Figure 4. Petclinic ER diagram

Reactor table identification. In order to execute the model, the parameter Q
was set to 200, corresponding to the sum for the resource with the highest access fre-
quencies (visits). We aim to distribute workload among reactors, avoiding two or more
data-intensive entry points to be allocated to the same reactor type. Figure 5 exhibits
the result of the optimization allocating tables to clusters. The result of the allocation of
interfaces to clusters can be accessed online.4

vets ownerspetsvisits types

Figure 5. Optimization problem output

Reactor function extraction. For this step, a source code inspection was per-
formed in Petclinic. Based on the strategy discussed in Section 4, we have employed a
heuristic to define the thresholds: As the average Petclinic business layer LOC is 1, for
each 3 lines of code, HIGH1 is incremented. Also, as the average LOC of the repository
layer in Petclinic is 2, DDLOC must be greater than or equal 1. An excerpt of an extracted
reactor function based on the resource /visits/new is shown in Figure 6. The remaining
functions are available online.4



@Service
public class ClinicServiceImpl implements ClinicService {

// code ommitted for brevity
private VisitRepository visitRepository;
// code ommitted for brevity
@Override
@Transactional
public void saveVisit(Visit visit) throws

DataAccessException {
visitRepository.save(visit);

}
}

@Repository
public class JpaVisitRepositoryImpl implements

VisitRepository {
// code ommitted for brevity
@Override
public void save(Visit visit) {

if (visit.getId() == null) {
this.em.persist(visit);

} else {
this.em.merge(visit);

}
}

}

void upsert_visit(visit){
if visit.id IS NULL then

INSERT INTO
visits

VALUES (visit.date,
visit.description,
visit.pet_id);

return;
end if;

SELECT id
FROM visits
INTO v_id
WHERE visit.id = id;

if v_id IS NULL then
abort;

end if;

UPDATE visits
SET date = visit.date,

description = visit.description,
pet_id = visit.pet_id

WHERE visit.id = id;
}

Figure 6. Application logic (left) extracted to a reactor function (right)

Reactor function allocation. Following the technique, the method depicted in
Figure 6, for example, is assigned to the cluster that holds the visits table. Information
regarding the allocation of all identified methods can be accessed online.4

Based on the results, it is possible to correlate the distribution of relational actors
and the respective tables and interfaces to the project Petclinic microservices version.5

Table 2 depicts the tables presented in each microservice in the Petclinic microservices
application. We observe that the decomposition of tables provided by the expert develop-
ers of Petclinic microservices is the same as the decomposition provided by our technique
in terms of the tables and methods selected for each microservice.

Microservice Tables
customers-service owners, types, and pets

vets-service vets
visits-service visits

Table 2. Tables presented in each microservice for Petclinic

6. Limitations
One of the limitations of our technique concerns the assumption that the system adopts
a three-tiered layered REST-based architecture. However, this architecture is widely
adopted in industrial settings. Also, while our technique currently only considers in-
terfaces that enable GET and POST operations, we do not anticipate significant issues in
extending it with DELETE and PUT operations.

Regarding the evaluation, the prepared artificial workload may not provide suffi-
cient coverage for all cases in which the technique could be applied. Nevertheless, the
workload was defined based on reasoning about the application domain. It is noteworthy
to mention that the workload, its limits, and the source code metrics were verified by three
independent researchers. Additionally, to test the sensitivity of our model, we have also

5https://github.com/spring-petclinic/spring-petclinic-microservices



applied it to a different hypothetical workload, allowing us to observe sensitivity of model
output due to changes in the input specifications.

Finally, we chose a specific Java software project for applying our technique.
However, we believe the technique is generic enough to be applied to other object-oriented
programming languages (e.g., C#) and frameworks (e.g., .NET Core).

7. Concluding Remarks
This study proposes an exact optimal approach for allocating relational tables, REST
interfaces, and application logic to clusters, represented by reactors. To the best of our
knowledge, there is no identical work in the literature. Although our system formalization
is based on the work of Levcovitz et al. [Levcovitz et al. 2016], it goes much beyond in
both presenting a MIP-solver-based automatic method for distribution among clusters as
well as considering heuristics to identify application logic in source code to be extracted.

For evaluation purposes, the technique was applied to a REST-based application
and exhibited appropriate results. Indeed, the output yielded by our technique consisted in
a closely related reactor decomposition when compared to a microservices decomposition
conducted by the developers of the original application example.

It is noteworthy to mention that modules in larger applications might require dif-
ferent workload constraints. For instance, a module that presents heavily accessed REST
endpoints might need a higher workload threshold, when compared to those modules that
are composed by REST endpoints that are infrequently accessed. This observation calls
for not using a single parameter Q. Therefore, for large applications, we argue that the
restriction over the maximum workload per cluster should be defined per use case. For
instance, the maximum workload allowed in a cluster that primarily deals with payment
transactions (due to intensive insert rate) should be higher than a cluster that handles his-
torical analysis of user behavior (infrequent query-based workload).

Thus, as future work, we aim at conducting more in-depth empirical evaluations
of our technique to further understand its benefits and limitations, including applying it to
real-world systems.

References
Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, MA, USA.

Bellatreche, L., Karlapalem, K., and Simonet, A. (2000). Algorithms and support for
horizontal class partitioning in object-oriented databases. Distributed and Parallel
Databases, 8(2):155–179.

Bernstein, P. A., Dashti, M., Kiefer, T., and Maier, D. (2017). Indexing in an actor-
oriented database. In CIDR 2017, 8th Biennial Conference on Innovative Data Systems
Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.

Boner, J., Farley, D., Kuhn, R., and Thompson, M. (2019). The Reactive Manifesto.
https://www.reactivemanifesto.org/.

Cheung, A., Madden, S., Arden, O., and Myers, A. C. (2012). Automatic partitioning of
database applications. Proceedings of the VLDB Endowment, 5(11).



Du, D.-Z. and Pardalos, P. (1998). Handbook of Combinatorial Optimization. Combina-
toral Optimization in Clustering. Springer, New York, NY.

Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine.

Fowler, M. (2015). Presentation domain data layering. https://martinfowler.
com/bliki/PresentationDomainDataLayering.html.

Gysel, M., Kölbener, L., Giersche, W., and Zimmermann, O. (2016). Service cutter: A
systematic approach to service decomposition. In Service-Oriented and Cloud Com-
puting, pages 185–200. Springer International Publishing.

Hasselbring, W. and Steinacker, G. (2017). Microservice architectures for scalability,
agility and reliability in e-commerce. In IEEE ICSA Workshops, pages 243–246.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In ECOOP’97 — Object-Oriented
Programming, pages 220–242, Berlin, Heidelberg. Springer Berlin Heidelberg.

Levcovitz, A., Terra, R., and Valente, M. T. (2016). Towards a technique for extracting
microservices from monolithic enterprise systems. CoRR, abs/1605.03175.

Mazlami, G., Cito, J., and Leitner, P. (2017). Extraction of microservices from monolithic
software architectures. In International Conference on Web Services. IEEE.

Olbrich, S. M., Cruzes, D. S., and Sjøberg, D. I. (2010). Are all code smells harmful? a
study of god classes and brain classes in the evolution of three open source systems.
IEEE International Conference on Software Maintenance.

Pavlo, A., Curino, C., and Zdonik, S. B. (2012). Skew-aware automatic database partition-
ing in shared-nothing, parallel OLTP systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ,
USA, May 20-24, 2012, pages 61–72.

Richards, M. (2015). Software Architecture Patterns. O’Reilly, 1st edition.

Rowe, L. A. and Stonebraker, M. (1987). The POSTGRES data model. In VLDB’87,
Proceedings of 13th International Conference on Very Large Data Bases, September
1-4, 1987, Brighton, England, pages 83–96.

Shah, V. and Salles, M. A. V. (2018). Reactors: A case for predictable, virtualized actor
database systems. In Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD, Houston, TX, USA, June 10-15, 2018, pages 259–274.

Shah, V. and Salles, M. V. (2017). Actor database systems: A manifesto. CoRR,
abs/1707.06507.

Sutter, H. and Larus, J. R. (2005). Software and the concurrency revolution. ACM Queue,
3(7):54–62.

Wang, Y., dos Reis, J. C., Borggren, K. M., Salles, M. A. V., Medeiros, C. B., and Zhou,
Y. (2019). Modeling and building iot data platforms with actor-oriented databases.
In Advances in Database Technology - 22nd International Conference on Extending
Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019, pages 512–
523.


