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Abstract. With the growth of the Internet of Things (IoT) and Smart Homes,
there is an ever-growing amount of data coming from within people’s houses.
These data are intrinsically private and should be treated carefully, despite their
high value for analysis. In this work, we propose a differentially private strategy
to estimate frequencies of values in the context of Smart Home data.

1. Introduction

With the popularization of the Internet of Things (IoT) and the greater availability of var-
ious kinds of sensors in the market, there is an increasing amount of data being generated.
We expect that by the year 2021, the amount of data generated by IoT devices, people and
machines will reach the magnitude of zettabytes. These data can be beneficial for improv-
ing services, for example, by using Smart Meters data to gain a better understanding of
the energy use in a city. However, careful attention to the privacy of these data is becom-
ing more urgent. The lack of care with privacy can lead to severe problems, as shown in
[Molina-Markham et al. 2010], where, through relatively simple statistical methods, one
is able to identify crucial private information, such as if any household member watched
the game on a given night or if the household members were late for work.

Although many works in the literature implement privacy through a trusted entity
who has access to the raw data of a set of users, in real-world scenarios it is often not
reasonable to depend on such an entity. More recent works focus on the local perspective
of privacy, where the privacy process is done closer to the user without depending on a
trusted third party entity. Besides that, IoT data often appears as streaming data, which
brings some challenges due to its intrinsic characteristics, i.e., the data is potentially un-
bounded and happens in a non-predictable order.

In Differential Privacy (DP) [Dwork and Roth 2014], a mechanismM is said to
be differentially private if the probability of any output ofM does not vary significantly,
by a threshold of ε, independent of the input. DP was initially proposed to work as
an interactive model [Dwork et al. 2006], responding privately to statistical queries in a
database. In this interactive scenario, a trusted entity that has access to the raw data is
necessary. However, in more recent work, such as [Erlingsson et al. 2014], there has been
significant interest in the local version of this model, called Local Differential Privacy
(LDP), where a randomization process is done locally to ensure the definition of DP.

In this paper, we present a strategy that guarantees Local Differential Privacy for
estimating frequencies of values in the context of Smart Homes. To evaluate our work,
we have used real sensor data from Smart Meters [UK Power Networks 2015].



2. Related Works
The authors of [Molina-Markham et al. 2010] tackle the problem of privately charging en-
ergy consumption. In addition to proposing a statistical procedure capable of identifying
house activities in fine-grained measurements, showing that there must be a meticulous
privacy procedure to make use of smart meter data, they describe a protocol that allows
smart meters to report a bill without revealing how the energy was used. The procedure
uses cryptography and zero-knowledge proof to guarantee that the company will not have
access to the information from which house comes a given data, even though the company
will be able to charge for the energy used. A downside of this work is that they still have
access to what they call blinded data, which consists of the data from all houses with the
identification removed, and this is not enough for guaranteeing privacy.

The work [Ács and Castelluccia 2011] uses differential privacy to deal with the
problem of using consumption data to learn privately about users. The approach is based
on the Laplace Mechanism, which adds a noise sampled from a Laplace distribution to
the result of a numerical query. The authors propose a Distributed Laplace Mechanism
(DLM). The information they want to learn privately in this work is the consumption
summation of N houses in a given time. To do this, each house adds a small noise n to its
consumption c (which is not enough to guarantee DP), and encrypts the report r = c+ n
in a way that the server is not able to decrypt a report alone, but it is able to decrypt the
summation of the reports. The server, then, has S =

∑N
h=1 ch + nh =

∑N
h=1 ch + N ,

where N is a noise that follows the Laplace distribution as previously presented, i.e.
that is enough to guarantee DP. This strategy is useful for learning the summation of
consumption, but cannot be used to learn more information than that.

IoT data often appear as data streams. Works that deals with the problem of guar-
anteeing privacy in the context of streaming data deal with additional complexity because
streaming data is potentially unbounded and continuously generated at rapid rates. The
work [Leal et al. 2018] proposes a strategy to estimate the sensitivity and also presents
a microaggregation algorithm that is capable of enhancing the utility for publishing dif-
ferentially private data using the Laplace Mechanism in the context of streaming data.
This work depends on a trusted third party entity to achieve its privacy, which may not be
acceptable in the context of IoT data and smart homes.

The work [Cao and Yoshikawa 2015] uses differential privacy to publish statistics
about streaming of trajectories. The objective is to publish, for a defined set of possible
locations, how many people are in each location at a given time. The authors use the
concept of a l-trajectory, i.e., a trajectory of size l. They show that it is possible to guar-
antee that a l-trajectory is DP. The concept of l-trajectory proposed is relevant and gives
us an insight that to solve the privacy problem in streaming scenarios it may be useful to
simplify the problem in order to be able to achieve a solution. On the other hand, this
work, besides depending on a third party trusted entity, need to know beforehand the set
of locations, which may not be reasonable in real-world scenarios.

3. Proposal
Our proposal aims to provide LDP for users, in the context of Smart Homes, that agree
to provide their data to entities, so those entities can learn privately from data produced
inside peoples’ houses and, for example, provide better services. From now on, we will



consider that this entity is the Service Provider (SP ), but in real-world scenarios, it would
be possible that they were two separated entities. We do not tackle the problem of charg-
ing for consumption, as described in [Molina-Markham et al. 2010].

It is necessary to collect Smart Home data privately because those data are intrin-
sically sensitive and the lack of proper care in their management could lead to harmful
inferences, e.g., the energy producer entity could learn, using fine-grained energy mea-
surements, when a given house is empty.

The solution was thought to work over an edgeOS, i.e., a specialized operating sys-
tem that runs in an edge gateway, from now on called edgeBox, and manages smart things.
In this paper, we have omitted the full architecture of an edgeOS, but [Shi et al. 2016] can
be checked for more details. For our proposal, what is important about an edgeOS is that
there is a data abstraction layer in it that gathers data produced by things inside a house.
Our solution works between the data abstraction layer and all external communication to
guarantee that all data that goes outside the house is private. A possible exception for this
is that for the SP to be able to charge for the consumption, it may need to have access
to coarse-grained measurements. As shown in section 2, there are possible strategies to
charge privately.

Figure 1 illustrates the scenario where the SP has access to the total consumption
in order to charge for it (ideally in a private way) and uses the Privacy Gateway pro-
posed in this paper to learn from the data generated by things inside houses. The process
executed by the Privacy Gateway will be detailed next.

Figure 1. Communication between Service Provider and the N selected houses

The solution works as follows: the SP contacts a numberN of people (the greater,
the better) in different houses, and offers them something, e.g., a discount on the energy
bill, in exchange for a defined privacy budget ε to be consumed in a number k of reports.
Notice that a smaller budget means a more private output. The SP sends, then, a set H
of parameters to each participant p. Every participant must use these parameters in H , so
the SP can later decode the reports and get utility from them. The parameters are: the
number of bins, the ranges of each bin, the number k of reports and the time δ after which
each report will be sent. Given that the value to be sent is likely to be a real number in the
context of IoT data, we will transform this value into a discrete form, in order to be able
to make it private so that we can later get information from it. To do this, we will use a
histogram representation of the values.



Each pwill report, after some time δ, its private value v, as defined at the beginning
of the process. The method of privately reporting consists of encoding the value v in a
bit-array B of length equal to the number of bins, where only the bit corresponding to the
range that contains v is set to 1, and the other positions are set to 0. This procedure is
called Unary Encoding (UE) [Wang et al. 2017].

After encoding v into B, the next step is to bitwise perturb B in a differentially
private manner. LetB′ be the differentially private version ofB. The process of obtaining
B′ consists in keeping the bit value of B with a probability p and changing it with a
probability q = 1−p. In order for this process to achieve differential privacy it is necessary

that P [B|v1]
P [B|v2] ≤ eεi . As shown in [Wang et al. 2017], p = e

εi
2

e
εi
2 +1

and q = 1

e
εi
2 +1

are sufficient
for this property to happen.

Notice that, as we want to send a number k of reports privately, we cannot con-
sume all the privacy budget ε in a single report. Therefore, for each single private report,
we will use εi = ε

k
. This strategy will guarantee that, if continuously reported, any win-

dow of k consecutive reports is ε-differentially private. The guarantee comes from the
sequential composition property of differential privacy [McSherry 2009].

With B′ adequately generated, the Privacy Gateway can finally send the differ-
entially private version of v to the SP , which will then gather it with the reports from
the other N houses to obtain information from it. The process of obtaining informa-
tion from the differentially private reports consists in constructing the histogram Hist.
Each bin i of Hist is obtained with the summation of the ith element from all reports,
Hist[i] =

∑N
j=1Bj[i]. It is important to remember that each Hist[i] contains not only the

reports that were truly reported for the ith bin, but also some noise added by the differen-
tially private mechanism.

Therefore, the next step is to get an unbiased estimation for Hist, which we will
call Unb Hist. To calculate Unb Hist, we need to get rid of the noise added for each
bin, which can be done in the following way: Unb Hist[i] = Hist[i]−Nq

p−q , where p is the
probability of keeping the bit value and q is the probability of inverting a bit used in the
process of creating the private reports. N is the number of reports. For the sake of space,
we let the reader refers to [Wang et al. 2017] for the proof that this yields an unbiased
estimation. Notice that if we have an unpopular bin, i.e., the number of reports (Hist[i])
is small, our unbiased estimation can be negative. When this happens, the considered
value for Unb Hist[i] will be zero.

As the SP have selected N different participants to send k reports spaced by a
δ time, the process of calculating Unb Hist[i] could be performed in one of two ways:
(i) using each set of size N separately, which keeps the notion of time and (ii) using the
union of all data with size k ∗ N . This strategy may yield more accurate frequencies for
the generated histogram since there is a more significant number of reports, but the notion
of time is lost. In our evaluation, we have opted to use strategy (i), since we believe the
time attribute is essential in the context of IoT data and Smart Cities.

4. Evaluation
For the experimental evaluation, we have used real sensor data that consists of energy
consumption readings from 5,567 London households generated between 2011 and 2014



as part of the Low Carbon London project. There are 167 million rows. We have used the
attribute “KWH/hh (per half hour).”

In order to better evaluate our proposal, we have sampled rows from the data set
to simulate a fixed number N of houses. The number of samples k to be sent from each
house was fixed in 10, thus, the privacy budget εi used for a single report is equal to
ε
k
= ε

10
. We have tested the following values for ε: 1, 2, 3, 4, 10. Therefore, the values

used for εi were: 0.1, 0.2, 0.3, 0.4, 1. Notice that the choice of using a single value for k
does not have a significant impact on the results since it has a direct influence on ε, which
we have tested for different values.

The varying values for ε and N give us a better understanding of how these two
variables impact the utility, as can be seen in Figure 2. To measure the utility we have

evaluated the histogram intersection, given by
∑nb

i=1
min(Ori Hist[i],Unb Hist[i])∑nb

i=1
Unb Hist[i]

, where nb is

the number of bins, Unb Hist is the histogram generated by our strategy and Ori Hist
is the original histogram. The histogram intersection measures how similar does our
proposal generate the histogram compared with the histogram of the original data. The
number of bins used in the experiments was 100. The maximum and minimum values in
the data set are 0.0 and 10.76, respectively, and each bin used has equal width.
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Figure 2. Average histogram intersection by number of houses. Varying ε.

Figure 2 shows, for each value of ε, the average histogram intersection of 10 dif-
ferent execution of our proposal which simulates the process of each house reporting
k = 10 times and, after each set of reports (from N houses), the Service Provider calcu-
lates the unbiased histogram. It is possible to observe that for a small number of houses,
the solution outputs a low histogram intersection, but as N grows, we get more accurate
results. The reason why this happens is that when there are few reports, we cannot cancel
out the noise added by the differential privacy mechanism. Remember that, the higher the
ε, the weaker the privacy guarantee.

5. Conclusion

In this paper, we have proposed a practical solution for estimating the frequency of values
issued from houses’ IoT devices in a differentially private manner. It allows an energy



provider to collect house consumption for analytics and still provides privacy for individ-
uals living in the house. Data utility depends on the number of houses and the available
privacy budget. For one million houses, our preliminary results have reached around 80%
of data utility with a privacy budget of 3 to 4, which is very reasonable. For the next
steps, it might be valuable to adapt the strategy to work for consecutive windows. Notice
that this is not a trivial problem and could demand sophisticated adaptations in order to
be solved.
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