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Abstract. Privacy concerns are growing fast because of data protection regula-
tions around the world. Many works have built private algorithms avoiding sen-
sitive information leakage through data publication. Differential privacy, based
on formal definitions, is a strong guarantee for individual privacy and the cut-
ting edge for designing private algorithms. This work proposes a differentially
private group-by algorithm for data publication under the exponential mecha-
nism. Our method publishes data groups according to a specified attribute while
maintaining the desired privacy level and trustworthy utility results.

1. Introduction
Nowadays privacy is a trending topic for consumers and companies. For companies,
privacy concern is growing fast because of data protection regulations around the world.
And for the consumers, since companies are leaking information about individuals, such
as Netflix leakage [Harmanci and Gerstein 2016]. To tackle privacy issues, the differential
privacy was proposed [Dwork 2011]. Differential privacy is a strong and measurable
guarantee that some method or mechanism do not leak information, depicted by equation
1. Intuitively, it ensures that the presence or absence of someone in the dataset does not
change the answer of a query at all. In equation 1, A represents a mechanism, o ∈ O
some possible output, ε symbolizes the privacy budget and x, y any neighboring datasets.
The definition of neighboring datasets is that two datasets differ only in one user, so
x, y : |x−y| ≤ 1. The differential privacy has been made to run interactively e.g. average,
count, sum. Someone submits a query to a database, and it returns via anonymization
algorithms an answer with noise [Mendonça et al. 2017]. Occasionally, it is necessary to
publish the data instead of statistics about it [Chen et al. 2011].

Pr[A(x) = o] ≤ expε Pr[A(y) = o] (1)

Pr[A(x) = o] ∝ exp(
εu(x, o)

2∆u
) (2)

∆u = max
o∈O

max
x,y:|x−y|≤1

|u(x, o)− u(y, o)| (3)

A widely known differential privacy mechanism is the exponential mechanism
[McSherry and Talwar 2007]. It works well with categorical answers. The set of all pos-
sible query answers is O. The utility function u maps each dataset element, i.e. a user,
and a possible result to a score number. The probability of the exponential mechanism
outputs o as the answer with utility function u applied in the dataset x is showed in equa-
tion 2. But it is necessary to calculate the global sensitivity of ∆u, which represents the
highest impact regarding the presence or absence of someone in the data.

This paper proposes two methods for grouped data releasing under differential
privacy framework. The first algorithm tries to find the optimal representation of the ac-
tual group but suffers from computational complexity. The second one reduces the space



search of the former method by a heuristic and achieves reliable results. The PINQ plat-
form [McSherry 2009] address a similar problem, however only to statistical aggregation
queries. In section 2 we introduce the two proposed methods TRIODE and TRIODE-H,
afterward the experimental results, and finally the conclusion.

2. Our Method
Our goal is to proposes a privacy-preserving method that group a dataset by an attribute
and release the groups. We intend to release data through a privacy-preserving group-by
algorithm. In other words, a group-by query q response over the dataset D must do not
leak information about individuals. To achieve our goal, we propose two methods via
differential privacy mechanisms.

Our first method, named as TRIODE1, finds each attribute-group applying the
exponential mechanism. It is necessary to evaluate the score of all possible subsets, com-
monly named as powerset of D and denoted by P(D). The P(D) has cardinality 2|D|. The
second proposed method is TRIODE-H, a TRIODE-based approach that implements a
new heuristic to assess the scores, circumventing the powerset complexity problem.

2.1. TRIODE

The TRIODE method groups the dataset by attributes and their values. In order to perform
it in a differentially private manner, our method applies the exponential mechanism. So,
our datasetD is composed by {a0, a1, . . . , ak} categorical attributes, and for each attribute
ai, such that 0 ≤ i ≤ k, it has κi categorical values, represented by Ci = {c0i , . . . , c

κi
i }.

When the group-by query is over the ai attribute, the method response must contain |Ci|
groups.

As aforementioned, a score function u : D×R→ R maps an individual from the
dataset and a possible result to a score. The TRIODE answers set are all possibles subsets
of D, since a group can be empty or the entire dataset either. The answers set size grows
exponentially with the dataset size, once |R| = 2|D|. It is necessary to evaluate the score
of each possible category ai separately. The score must measure a possible result r ∈ R
of a query q grouping over the attribute-value cji concerning the ground truth grouped set
Dcji ⊆ D, where 0 ≤ j ≤ κi. Consequently, an answer r ∈ R with higher similarity with
Dcji must imply in a higher score.

ucji
(r,D) = 2×

|r ∩ Dcji |
|r|+ |Dcji |

(4)

The score function is defined by equation 4. The fraction numerator is the number of
matches between two sets, and the denominator represents the cardinality sum of the sets.
Moreover, we need to calculate the global sensitivity of the utility function:

GSu = max
D,D′,r∈R:|D−D′|≤1

|u(r,D)− u(r,D′)| (5)

≤ 2

2|D| − 1
(6)

1Acronym for differenTially pRIvate grOup-by Data rEleasing



From equation 5 to 6 we assume that |r| is at most |D|, since r ∈ P(D). Once the scores
and global sensitivity were calculated, it is possible to get the group conforming to the
exponential mechanism. The method TRIODE is ε-DP.

2.2. TRIODE-H

The measurement task of all scores in P(D) is a computationally tough task. For this
purpose, we designed a TRIODE-based method, called TRIODE-H. The core concept
behind TRIODE-H is to firstly reduce the search space using a heuristic to achieve results
within larger datasets, timely. Furthermore, we find the group length through differential
privacy to build the groups.

To prune our search space we randomly split our dataset D into m disjoint frag-
ments, {F1, . . . , Fm}, which each fragment has a fixed length h. Evaluating it with the
score function π : Fv × Tv → R for all subsets, where 0 ≤ v ≤ m and Tv = P(Fv) is the
set of all possible results for Fv. It is defined as:

πcji
(t, Fv) = −

∣∣∣ |F cji
v | − |t|

∣∣∣ (7)

Where F cji
v represents the group Fv grouped by attribute Ci with a value equal to cji and

t ∈ Tv. Now we are capable to calculate the score s : D × D → R for each individual
d ∈ D separately. For this, we define the individual-based scoring function in equation 8,
which calculates the sum of scores, provided by π, for all subsets {g ⊆ P(Fv) | d ∈ g}.

scji
(d, Fv) =

∑
g ∈P(Fv)

ψ(d, g, πcji
(g, Fv)) (8)

ψ(d, g, π) =

{
π if d ∈ g
−|g| otherwise

(9)

It is important to notice that the scji (d, Fv) index describes the score function for the group

F
cji
v . Now it is necessary to compute the global sensitivity of s:

GSs = max
Fv ,F ′

v ,d∈Fv :|Fv−F ′
v |≤1
|s(d, Fv)− s(d, F ′v)| (10)

≤ |Fv| × 2|Fv |−1 (11)

= h× 2h−1 (12)

From equation 10 to 11, we explore that F ′v = Fv \ d where d ∈ Fv is an individual, and
P(F ′v) = 2|Fv |−1. Now each individual fromD has a score for cji , so we need to publish its
group. To do this, it is necessary to discover the size ofDcji in a private manner. Therefore,
we defined the set of possible answers for |Dcji | as L = {0, . . . , |D|} and a score function
λ : D × L→ R.

λ(D, `) = − | |D| − ` | (13)
GSλ = max

D,D′,`∈L:|D−D′|≤1
|λ(D, `)− λ(D′, `)| ≤ 1 (14)



Algorithm 1: 2ε-TRIODE-H

Input: D, cji ∈ Ci, 2ε
Result: group D̃cji published by the differentially private method
{F1, . . . , Fm} ← split(D)
foreach Fv ∈ {F1, . . . , Fm} do

Tv ← P(Fv)
foreach t ∈ Tv do

foreach d ∈ Fv do
scores[d]← s(d, Fv)

L = {0, . . . , |D|}
foreach ` ∈ L do

scoresL[`]← λ(Dcji , `)
`cji
← ExponentialMechanism(D, scoresL, ε, GS = 1)

foreach u ∈ 0, . . . , `cji
do

D̃cji [u]← ExponentialMechanism(D, scores, ε/`cji , GS = h× 2h−1)

return D̃cji

Where ` ∈ Lcji and to proof the GSλ ≤ 1 we used the triangle inequality. Once
the scores and global sensitivity were calculated, it is possible to get the group size `cji
conforming to the exponential mechanism. After all, we are capable to discover the group
of Ci with a value equal to cji via private way, i.e. the set D̃cji . To do this, it is neces-
sary get one individual `cji times from D via exponential mechanism with privacy budget
ε
`
c
j
i

to populate D̃cji . The algorithm 1 shows clearly the necessary flow for achieving a

diferentially private group-by data release. Finally, we reached that the TRIODE-H is
2ε-differential private. The ε budget for querying the group length, and ε for create the
group via sequential composition [McSherry 2009].

3. Results
Our experimented data are the Adult Dataset from UCI Machine Learning Repository
[Dua and Graff 2017] with 48,842 real individuals and 14 attributes. In this data, for this
work, we are interested only in the “sex” attribute, that has two possible value ‘’Female”
and “Male”. When the data are grouped, the size of the ‘’Female” group is 16,192 and
so, the size of the “Male” group is 32,650.

The chosen metrics are Precision, Recall, and F1-score [Powers 2011]. The pre-
cision is defined by the number of true positives divided by the sum of true positives
with false positives. Precision tells us what proportion of our private data are actually
relevant. The recall is the number of true positives divided by the sum of true positives
with false negatives, which expresses the proportion of actual positive cases that are in
the private answer. Finally, the F1-scores is the harmonic mean of precision and recall:
F1-score = 2 × precision×recall

precision+recall . The TRIODE method explained in section 2.1, has high
computational complexity due to the calculation of P(D). Besides, the dataset size for
this method was set as 20 individuals randomly chosen. Some experiments with 25 and
30 individuals lead to out of memory error, and as consequence, the dataset size is limited



to 20 persons.

All the experiments were made with 5 well-known privacy budgets:
{0.01, 0.1, ln(2), 1, ln(3), 10} [Dwork 2008]; and for each privacy budget, the experi-
ment was run 10 times. The privacy budgets tries to represent environments from high to
low privacy regime, where ε = 0.01 is a strong privacy parameter, and ε = 10 is a weak
privacy guarantee. The ε controls the trade-off between utility and privacy. The higher ε
more utility, and less privacy you have.

ε Precision Recall F1-score

0.0100 0.7625 0.8133 0.7871
0.1000 0.7438 0.7933 0.7677
ln(2) 0.7500 0.8000 0.7742
1.0000 0.7812 0.8333 0.8065
ln(3) 0.7750 0.8267 0.8000
10.0000 0.9375 1.0000 0.9677

Table 1. TRIODE average results for
the dataset with the length of
20 persons

ε Precision Recall F1-score

0.0100 0.6683 0.6682 0.6682
0.1000 0.6686 0.6685 0.6685
ln(2) 0.6728 0.6727 0.6728
1.0000 0.6738 0.6737 0.6738
ln(3) 0.6744 0.6743 0.6744
10.0000 0.7131 0.7129 0.7130

Table 2. TRIODE-H average results
applied to the entire Adult
dataset

Table 1 shows the results for the query: q = FROM D GROUP BY sex; where
D is the dataset D with only 20 individuals, randomly chosen. Thus, we achieved good
and trustworthy results. For the strict budget ε = 0.01 the mean of F1-scores is ≈ 0.79,
and for ε = 10 the average F1-score is ≈ 0.97. This is a fine result, but the TRIODE
bottleneck is the complexity (time and space), making the experiment with more data
unfeasible.
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Figure 1. TRIODE-H results applied to the entire dataset

For TRIODE-H method, the privacy budgets and the query q was the same used
in TRIODE experiments. The query q is over the entire data D. Firstly, was necessary to
differentially private choose the group length. Figure 1a shows the mean absolute error
for each privacy budget. It is worth mentioning that the mean absolute error axis is in
logarithmic scale. Once the group length is known, we can settle the answer for query



q via the TRIODE-H technique. The dataset D has 48,842 rows, and it was split into
disjoint fragments with size m = 10. The experiments with TRIODE-H was shown in
Table 2 and Figure 1 shows the average F1-score for each ε.

4. Conclusion
In this work, we proposed two differentially private data releasing techniques for group-
by queries. The first technique TRIODE achieved good utility results. However, the lack
of scalability makes the method unfeasible for a large amount of data. The second method
TRIODE-H addressed the scalability deficiency by splitting the entire dataset into small
fragments. The TRIODE-H was performed with the complete dataset D, and it attains
quality results with small privacy budget. For future works we expect to measure the
utility bounds for TRIODE and TRIODE-H and to find the optimal, or nearly optimal,
space search for TRIODE; It might be valable to experiment with attributes with more
than 2 possible classes and also to define an optimization problem to find the optimal set
of parameters.
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