
Dsadvisor: A Tool to Support Predictive Tasks in Data Science
José Augusto Câmara Filho1, José Maria Monteiro1

1Universidade Federal do Ceará
Fortaleza – CE – Brasil

augusto95@alu.ufc.br, monteiro@dc.ufc.br

Abstract. Currently, professionals from the most diverse areas of knowledge
need to explore their data repositories in order to extract knowledge and create
new products or services. Several tools have been proposed in order to facili-
tate the tasks involved in the Data Science lifecycle. However, such tools require
their users to have specific (and deep) knowledge in different areas of Compu-
ting and Statistics, making their use practically unfeasible for non-specialist
professionals in data science. In this paper, we propose a tool, which aims to
encourage non-expert users to build machine learning models to solve predictive
tasks, extracting knowledge from their own data repositories. More specifically,
DSAdvisor1 guides these professionals in predictive tasks involving regression
and classification.

1. Introdução
Due to a large amount of data currently available, arises the need for professionals of dif-
ferent areas to extract knowledge from their repositories to create new products and servi-
ces. For example, cardiologists need to explore large repositories of electrocardiographic
signals in order to predict the likelihood of sudden death in a certain patient. Likewise,
tax auditors may want to explore their databases in order to predict the likelihood of tax
evasion. However, the volume and variety of data far exceed human capacity for manual
analysis. In response, complex algorithms have been developed which allow identifying
patterns hidden in these datasets. The convergence of these phenomena has driven the
development and popularization of data science [Provost and Fawcett 2013].

Data science is a multidisciplinary area involving the extraction of information and
knowledge from large data repositories [Provost and Fawcett 2013]. It deals with the data
collection, integration, management, exploration and knowledge extraction to make deci-
sions, understand the past and the present, predict the future, and create new services and
products [Ozdemir 2016]. Data science makes it possible to obtain new insights hidden in
these datasets. To extract knowledge from the data, we must be able to (i) understand yet
unsolved problems with the use of data mining techniques, (ii) understand the data and
their interrelationships, (iii) extract a data subset, (iv) create machine learning models in
order to solve the selected problem, (v) evaluate the performance of the new models, and
(vi) demonstrate how these models can be used in decision-making [Chertchom 2018].
The complexity of the above tasks explains why only highly experienced users can mas-
ter the entire Data Science lifecycle. On the other hand, several tools have been proposed
in order to support the tasks involved in the Data Science lifecycle. However, such tools
require their users to have specific (and deep) knowledge in different areas of Computing

1DSAdvisor’s video https://tinyurl.com/59bvafhu



and Statistics, making their use practically unfeasible for non-specialist professionals in
data science.

In this paper, we propose a tool, called DSAdvisor, which aims to encourage non-
expert users to build machine learning models to solve regression or classification tasks,
extracting knowledge from their own data repositories. DSAdvisor acts like an advisor
for non-expert users.

The rest of this paper is organized as follows. Section 2 briefly reviews related
works. The implementation of DSAdvisor is illustrated in section 3. Finally, in section 4
we present our conclusions and suggestions for future research.

2. Related Works

Traditional data mining tools help companies establish data patterns and trends by using
a number of complex algorithms and techniques. Some of these tools are installed on the
desktop to monitor the data and highlight trends, and others capture information residing
outside a database [Ramamohan et al. 2012]. As example of such tools, we can cite:
KEEL, Knime, Orange, RapidMiner and WEKA [Hasim and Haris 2015].

KEEL (Knowledge Extraction based on Evolutionary Learning) is a software that
facilitates the analysis of the behavior of evolutionary learning in different approaches of
learning algorithm such as Pittsburgh, Michigan, IRL (iterative rule learning) and GCCL
(genetic cooperative-competitive learning) [Alcalá-Fdez et al. 2009].

Knime is a modular environment that enables easy integration of new algorithms,
data manipulation and visualization methods. It’s interface is configurable allowing the
selection of different methods. Specifically, one can select data sources, data prepos-
sessing steps, machine learning algorithms, as well as visualization tools. To create the
workflow, the user drag some nodes, drop onto the workbench, and link it to join the input
and output ports.

The Orange tool has different features which are visually represented by widgets
(e.g. read file, discretize, train SVM classifier, etc.). Each widget has a short description
within the interface. Programming is performed by placing widgets on the canvas and
connecting their inputs and outputs [Demšar et al. 2013].

RapidMiner provides a visual and user friendly GUI environment. This tool use
the process concept. A process may contain subprocesses. Processes contain operators
which are represented by visual components. An application wizard provides prebuilt
workflows for a number of common tasks including direct marketing, predictive main-
tenance, sentiment analysis, and a statistic view which provides many statistical graphs
[Jovic et al. 2014].

Weka offers four operating options: command-line interface (CLI), Explorer,
Experimenter and Knowledge flow. The “Explorer” option allows the definition of
data source, data preparation, run machine learning algorithms, and data visualization
[Hall et al. 2009].

In this paper, we propose a tool called DSAdvisor, which aims to encourage non-
expert users to build machine learning models to solve regression or classification tasks,
extracting knowledge from their own data repositories. DSAdvisor acts like an advisor



for non-expert users and follow a well-defined guideline.

3. DSADVISOR
In order to evaluate the guideline proposed in this paper, we built a tool called DSAdvi-
sor to encourage non-expert users to build machine learning models to solve predictive
(regression or classification) tasks. DSAdvisor was developed in Flask [Grinberg 2018]
and Python. Besides, DSAdvisor follows all stages of the guideline proposed in
[Filho et al. 2021].

3.1. Phase 1: Exploratory Analysis

The first phase of the DSAdvisor aims to analyze a dataset, provided by the user, and next,
describe and summarize it. This first phase comprises the following activities: uploading
the data, checking the type of variables, removing variables, choosing missing value co-
des, exhibiting descriptive statistics, plotting categorical and discrete variables, analyzing
distributions, and displaying correlations [Filho et al. 2021]. Due to space limitations, we
will highlight just some of these activities.

DSAdvisor uses the following tests to check the normality (whether the data
follow a normal distribution or not) of each column (feature): Cramér Von Mises,
D’Agostino’s K-square, Lilliefors, Shapiro-Wilk. The Kolmogorov-Smirnov test is used
to assess which distributions is the one that most closely matches the column distribution
(best fit). The result of each test will be shown on the screen along with a histogram com-
bined with two probability functions, the first being the normal distribution and the other
the closest approximation by the Kolmogorov-Smirnov test. For each variable, the user
will have the option to choose between which of the distributions seems to fit a certain
variable, as shown in the Figure 1.

Figura 1. An Example of Dis-
tribution Analysis (”Best Fit”)
Screen applied to the column
”Length”from Abalone Dataset.

Figura 2. Correlation Matrix Ap-
plied to the Iris Flower Dataset.



In order to show the correletion between the dataset features, DSAdvisor uses a
combined graph called correlation matrix (Figure 2). This graph shows the Spearman’s
correlation coefficient for each pair of numeric variables and the Pearson’s correlation
coefficient for each pair of numeric variables that follows a normal distribution.

3.2. Phase 2: Data Preprocessing
Data preprocessing is an essential component to solve many predictive tasks. The purpose
of the second phase of the proposed guide is to prepare the data in order to use it to
build predictive models. This phase includes activities related to outlier detection, data
normalization, choose the independent variable, selection of attributes, data balancing,
feature selection, and division of training and testing sets [Filho et al. 2021]. Due to space
limitations, we will highlight just some of these activities.

There are two main techniques to detect outliers: interquartile range (a univa-
riate parametric approach) and adjusted boxplot (a univariate nonparametric approach).
DSAdvisor uses these methods in order to detect outliers, as shown in Figure 3. If the
user wishes to know precisely what these values are, they can go to the outliers table
option to check the position and value of the outliers for each variable.

Figura 3. An Example of the Ou-
tlier Detection screen applied to the
column ”Length”from Abalone Da-
taset.

Figura 4. An Example of the Fea-
ture Selection screen applied to the
Abalone Dataset.

Feature selection is referred to the process of obtaining a subset from an original
feature set according to certain feature selection criterion, which selects the relevant fea-
tures of the dataset. Feature selection methods fall into three categories: filters, wrappers,
and embedded/hybrid methods. The DSAdvisor tool will execute the following filters on
each variable: Chi Squared, Information Gain, Mutual Info, F-Value and Gain Ratio. For
indicating which variables are most relevant to proceeding with the tool, the following
heuristic is implemented (Figure 4), depending on the result of each variable in each
method they will be ranked from the highest score to the lowest, a sum column will be
added to show the sum of each variable in each method and, given the highest value di-
vided by two, the threshold will be given, which for values above it will be marked and
those below it will not. However, the tool leaves the final decision to the user to choose
which ones to select.



3.3. Phase 3: Building Predictive Models

This phase aims to generate predictive models and analyze their results. For this pur-
pose we introduce pipeline, pipeline is a Sklearn class [Pedregosa et al. 2011] to sequen-
tially apply a list of transformations and final estimator on a dataset. Pipeline objects
chain multiple estimators into a single one. This is useful since a machine learning work-
flow typically involves a fixed sequence of processing steps (e.g., feature extraction, di-
mensionality reduction, learning and making predictions), many of which perform some
kind of learning. A sequence of N such steps can be combined into a pipeline if the
first N1 steps are transformers; the last can be either a predictor, a transformer or both
[Buitinck et al. 2013]. For evaluating statistical performance in pipeline, we use a Grid-
Search with K-Fold Cross Validation. Cross-validation is a resampling procedure used
to evaluate machine learning models on a limited data sample. K-fold Cross-Validation
involves randomly dividing the set of observations into k groups, or folds, of approxi-
mately equal size. The first fold is treated as a validation set, and the method is fit on
the remaining k − 1 folds. For example, using the mean squared error as score function,
MSE1, is then computed on the observations in the held-out fold. This procedure is re-
peated k times; each time, a different group of observations is treated as a validation set.
This process results in k estimates of the test error, MSE1, MSE2,...MSEk. The K-Fold
Cross-Validation estimate is computed by averaging these values [James et al. 2013]. In
our case, we focus on making predictions in the data set for classification and regression
tasks, our models will have the algorithms chosen by the user according to the task to
be performed. In order to compare the models’ performance, it is necessary to use sui-
table metrics. After running the pipeline, just take the metrics previously chosen by the
user to be calculated and presented to the user in an explanatory way about each selected
metric.The last step in this phase consists on ensuring the experiment’s reproducibility
in order to verify the credibility of the proposed study. [Olorisade et al. 2017] have eva-
luated studies in order to highlight the difficulty of reproducing most of the works in
state-of-art. Some authors have proposed basic rules for reproducible computational re-
search, as [Sandve et al. 2013], based on these rules we save all the decisions made by
the user, the results obtained whether they are tables or graphs, the seed and settings of
the algorithms used, all in a final document. The activities that make up this phase are
described in [Filho et al. 2021].

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a tool, called DSAdvisor, which following the stages of the
proposed guideline. DSAdvisor aims to encourage non-expert users to build machine
learning models to solve predictive tasks, extracting knowledge from their own data re-
positories. More specifically, DSAdvisor guides these professionals in predictive tasks
involving regression and classification. As future works we intent to carry out usability
tests and interviews with non-expert users, in order to evaluate DSAdvisor.

Referências

Alcalá-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M. J., Ventura, S., Garrell, J. M., Otero,
J., Romero, C., Bacardit, J., Rivas, V. M., et al. (2009). Keel: a software tool to assess
evolutionary algorithms for data mining problems. Soft Computing, 13(3):307–318.



Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae,
V., Prettenhofer, P., Gramfort, A., Grobler, J., et al. (2013). Api design for ma-
chine learning software: experiences from the scikit-learn project. arXiv preprint ar-
Xiv:1309.0238.

Chertchom, P. (2018). A comparison study between data mining tools over regression
methods: Recommendation for smes. In 2018 5th International Conference on Busi-
ness and Industrial Research (ICBIR), pages 46–50. IEEE.

Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M.,
Polajnar, M., Toplak, M., Starič, A., et al. (2013). Orange: data mining toolbox in
python. the Journal of machine Learning research, 14(1):2349–2353.

Filho, J. A. C., Monteiro, J. M., Mattos, C. L. C., and Nobre, J. S. (2021). A practical
guide to support predictive tasks in data science. In Filipe, J., Smialek, M., Brodsky,
A., and Hammoudi, S., editors, Proceedings of the 23rd International Conference on
Enterprise Information Systems, ICEIS 2021, Online Streaming, April 26-28, 2021,
Volume 1, pages 248–255. SCITEPRESS.

Grinberg, M. (2018). Flask web development: developing web applications with python.
”O’Reilly Media, Inc.”.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).
The weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18.

Hasim, N. and Haris, N. A. (2015). A study of open-source data mining tools for forecas-
ting. In Proceedings of the 9th International Conference on Ubiquitous Information
Management and Communication, pages 1–4.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical
learning, volume 112. Springer.

Jovic, A., Brkic, K., and Bogunovic, N. (2014). An overview of free software tools
for general data mining. In 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages 1112–
1117. IEEE.

Olorisade, B. K., Brereton, P., and Andras, P. (2017). Reproducibility in machine
learning-based studies: An example of text mining.

Ozdemir, S. (2016). Principles of data science. Packt Publishing Ltd.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825–2830.

Provost, F. and Fawcett, T. (2013). Data science and its relationship to big data and data-
driven decision making. Big data, 1(1):51–59.

Ramamohan, Y., Vasantharao, K., Chakravarti, C. K., Ratnam, A., et al. (2012). A study
of data mining tools in knowledge discovery process. International Journal of Soft
Computing and Engineering (IJSCE) ISSN, 2(3):2231–2307.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E. (2013). Ten simple rules for
reproducible computational research. PLoS Comput Biol, 9(10):e1003285.


