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Abstract. Information Retrieval Systems usually employ syntactic search tech-
niques to match a set of keywords with the indexed content to retrieve results.
But pure keyword-based matching lacks on capturing user’s search intention
and context and suffers from natural language ambiguity and vocabulary mis-
match. The hypothesis raised is that the use of embeddings in a semantic search
approach will make the results more meaningful. Embeddings allow minimizing
problems arising from terminology and context mismatch. This work proposes
a semantic similarity function to support semantic search based on hyper rela-
tional knowledge graphs (KG). This function uses embeddings to find the most
similar KG entities to satisfy a user query.

Resumo. Sistemas de Recuperação de Informações geralmente empregam
técnicas de pesquisa sintática para combinar um conjunto de palavras-chave
com o conteúdo indexado para recuperar os resultados. Mas correspondência
baseada somente em palavras-chave não consegue capturar a intenção e o con-
texto de busca além de sofrer com a ambigüidade da linguagem natural e a in-
compatibilidade de vocabulário. Considerando esse cenário, a hipótese levan-
tada é que o uso de embeddings em uma abordagem de busca semântica tornará
os resultados mais significativos. Embeddings permitem minimizar problemas
decorrentes de incompatibilidade de terminológica e de contexto. Este trabalho
propõe uma função de similaridade semântica para apoiar a busca baseada em
grafo de conhecimento (KG) hiper relacional. Esta função usa embeddings para
encontrar as entidades do KG mais semelhantes que atendam uma consulta.



1. Context and Motivation
Information Retrieval (IR) Systems usually employ search techniques to match a set
of keywords from the user’s query, that represents their information need, with the
indexed content of extensive collections and scores these matches to ranking the re-
sult [Manning et al. 2008]. But pure keyword-based matching lacks on capturing user’s
search intention and context and suffers from natural language ambiguity and vocabulary
mismatch.

At BioBD Research Lab from PUC-Rio, we developed two keyword search ap-
plications: Quem@PUC and Busc@NIMA. Both access a single NoSQL database (a
TripleStore) that integrates academic and research information from different sources.
Quem@PUC aims to answer questions like Which researchers are related to subject X?
This relationship could be established through a research publication, a research project,
or even an academic discipline from a graduate course. Busc@NIMA has the same ob-
jective in a narrower scope since the subject of interest X belongs to the Environment
domain, which is interdisciplinary.

Keyword Search (KwS) is the ubiquitous approach to finding information in the
IR field. So why do we employ KwS over databases? To provide database user inter-
faces as simple as IR systems, without requiring query language knowledge. Due to the
increase in the number of knowledge bases (KB) published, new approaches for KwS
over KBs have been developed. Different from other KwS approaches over RDF, as those
analysed by [Dosso and Silvello 2020], here fixed SPARQL queries combined with text
search operators, based on inverted indexes, retrieve all matched sub graphs from the
database and build virtual documents at runtime. Currently, both applications perform
mainly a syntactic search to match the keyword list with the indexed content.

However, the terms used to describe resources by researchers and academic staff
may mismatch with the user keyword list. Variations of the same concept with different
words (synonymy) and multiple meanings for the same word (ambiguity) require that
the search engine considers meaning similarity. It is also essential to consider that when
users provide keywords into the search engine query box, sometimes, they precisely know
what they want to retrieve. In some other cases, users want to explore and extend their
knowledge about related topics or people. Semantic search approaches can tackle these
issues to improve the results.

From this context, the identified research problem is: Given an information source
modeled as a hyper relation Knowledge Graph(KG) H and a keyword list Q as input, re-
trieve the top-K subgraphs h from H that are the most semantic similar to Q considering
a context C. In order to convert a keyword list Q into a query over the KG H , first, we
need to semantic parse the keywords to understanding their meaning and context. The hy-
pothesis raised is that embedding in a semantic search approach will make search results
more meaningful. Embeddings allow minimizing problems arising from terminology and
context mismatch. The KG guides the knowledge acquisition user experience.

2. Background
For the scope of this research, we used the semantic search definition as stated bellow
[Cudré-Mauroux 2019]: ”Semantic Search regroups a set of techniques designed to im-
prove traditional document or knowledge base search. Semantic search aims at better



grasping the context and the semantics of the user query or the indexed content by lever-
aging natural language processing, Semantic Web, and machine learning techniques to
retrieve more relevant results from a search engine.”

Semantic search techniques can be applied to the query, indexed content, or rep-
resentation of the knowledge domain, a.k.a KB, to promote meaningful retrieval results.
According to [Bast et al. 2016], semantic search solutions can be classified using two di-
mensions: data type (text, KB, and combination of both) and search approach (keyword
list, structured query, natural language, and question and answering). Besides that, seman-
tic search also employs specific ranking and indexing criteria and may also use ontologies,
inference, and natural language processing (NLP).

Knowledge graphs

A simple graph G can be defined as a tuple (V,E), where V is its set of vertices, and
E ⊆ V × V is its set of edges. A directed graph has an edges e = u, v ∈ E as a tuple
whose first element u is the source and the second v is the target vertex. A weighted graph
can be modeled by a triple (V,E,w), where w : E 7→ R is function that gives the weight
of a given edge. And a hypergraph H generalizes G enabling edges to have any number
of vertices.

There are some semantic search systems target exclusively to KB, as can be found
in [Bast et al. 2016]. KB can be represented by KG and ontologies. A KG can be defined
as a multi-relational heterogeneous (more than one type of entity) graph composed of
nodes representing entities with their attributes and edges representing relations between
entities and connecting at least a pair of nodes. It is multi-relational because different
kinds of relations can relate to the same pair of entities. When two (or more) entities are
connected through a relation, we can call it a fact [Wang et al. 2017]. KG entities can
have arbitrary string literals associated with attributes.

KG can be represented using Semantic Web standards such as RDF1 and OWL.
RDF is, at its core, a collection of triples. Due to its triple nature, RDF is not suitable
to direct represent n-ary relations with n > 2. When this is necessary, reification can be
applied. Edges are described using three triples with the aid of blank nodes.

When a KG demands to represent tuples with more than three components, other
graph data models are needed. If n-ary relations are considered, with n > 2, the edges
become hyper edges (connecting more than two nodes). For hyper relational graphs, the
edges can be nodes of other edges. Hyper edges allow qualifiers on edges to represent
provenance, spatial or temporal information. Graph data models effectively represent a
KB, but their underlying symbolic nature usually makes KGs hard to manipulate.

Embeddings

Generally speaking, embeddings techniques convert any symbolic representation (Text,
Image, Graph) into low dimensional vectors. For example, word embeddings is a real-
valued vector, with dimension space much lower than the corpus vocabulary size, gener-
ated to represent each word from this corpus. Vector representations were developed to
quantify word semantics, not the exact meaning of the word, but contextual. The primary

1https://www.w3.org/TR/rdf11-concepts/



intuitions are that the co-occurrence of words in similar contexts indicates that these words
are semantically equal. The similarity between words, not in the sense of synonyms, but
the proximity in the vector space can be calculated using similarity metrics such as cosine
similarity. Semantic Search can use word embedding to capture keyword list semantic
and also represent the semantic of the indexed documents [Cudré-Mauroux 2019].

Graph embeddings can be seen as a generalization of word embeddings. The pur-
pose of knowledge graph embeddings is to represent KG components in continuous vector
spaces without losing their inherent structure to facilitate computational tasks. Graph em-
beddings techniques can use only observed facts from the KG or even incorporate addi-
tional information. According to [Wang et al. 2017], fact-based methods can be grouped
in two broader categories: translation-based, where relations are represented as a trans-
lation vector between connected two entities such as TransE [Bordes et al. 2013], and
semantic matching models, that generates the embeddings using similarity-based scoring
functions such as RESCAL [Nickel et al. 2011].

Such graph representations can simplify graph manipulation for in-KG tasks, such
as completion and entity resolution, as well as out-of-KG applications, such as keyword
search, question and answering (Q&A), and recommendation systems.

3. Related Work
Microsoft Academic Graph(MAG) [Shen et al. 2015] represents a heterogeneous KG
about scholarly communications with six types of entities: scientific publication (Pa-
per), their authors, institutions, journals, conferences, and Field of Study (FoS) Hier-
archy. It also contains entity relationships and attributes. Microsoft Academic (MA)
[Wang et al. 2019] is a semantic search interface target to query MAG. MA uses entities
navigation and keyword search. The keywords use synonyms to refer to the same entity,
for example, the acronym (acronym) and the conference name or the author’s full name
and citation names. The tool also allows term scope operators such as, for example, title:
”graph,” which will only match the title of publications. Search results ranking is based
on salience measure, which is calculated using the eigencentrality concept of Graph The-
ory. According to [Bast et al. 2016] MA can be classified as a Semi structured Search on
Combined Data.

Wikidata (WD) [Vrandecic 2012] is a community-built, multilingual, and general-
purpose human and machine-readable KG. Each WD item has a unique identifier, proper-
ties (at least a label and description), and one or more aliases (alternative labels) associated
with a language. Properties can be defined through statements composed of an item ID, a
property ID, and a value. A statement can be annotated with property-value pairs, which
can be qualifiers and references composed by a property ID and a value. Due to these
characteristics, Wikidata is a multi-graph since the same statement can occur more than
once with different qualifiers.

Scholia [Nielsen et al. 2017] is a semantic search interface target to query schol-
arly communications items from Wikidata. The purpose is to create academic profiles for
researchers, organizations, journals, publishers, individual literary works, and research
topics based on Wikidata. Scholia search interface by keyword shows matched items
based on label, description, or aliases using Wikidata Query Service (WDQS)2 Entity-

2Online available at https://query.wikidata.org/



Search, a full-text search API. According to [Bast et al. 2016] Scholia can be classified as
Keyword Search on Knowledge Bases (here the KB is Wikidata KG).

A TSA+BM25 and the TSA+VDP keyword search systems based on
the virtual documents approach and best-match assumption was proposed by
[Dosso and Silvello 2020]. The computational complexity to build text documents based
on the nodes (subjects and objects) and edges (predicates) from the RDF dataset is made
off-line. Text retrieval techniques and data structures such as inverted indexes are used to
speed up the search process for the on-line phase and to return a ranking of best answers.
Two methods were applied on how the document is ranked and mapped back to answer
subgraphs: BM25 and Virtual Document Pruning (VDP).

4. Expected Contributions

This research work proposes a semantic search based on hyper relational KGs. We will
use embeddings in order to find the most similar subgraphs that satisfy a user query ex-
pressed as a keyword list. This approach aims to simplify graph manipulation as well as
to promote meaningful retrieval of KG entity-centric results. A preliminary overview of
the proposal, without context and ranking, is depicted in Figure 1.

Figure 1. KG-based Semantic Search approach

In the offline phase, given a hyper relational graph H = {V, hE} as input: (1)
Compute KG embeddings for each entity node of H; (2) Calculate top-K most semantic
similar entities nodes of the same entity type based on the KG embeddings; (3) Select
descriptive attributes for each entity type that belongs to H; (4) Build virtual documents
for each entity node from H based on the values of previously selected attributes; (5)
Compute text embeddings of the virtual documents; and finally (6) Enrich the KG H with
one simple edge connecting each entity node with its text embeddings plus one hiper edge
connecting these node with the K most semantic similar ones.



In the online phase, given a keyword list Q = {q1, q2, ..., qn} as input: (7) Com-
pute text embeddings of the keyword list Q; (8) Calculate top-K most semantic similar
entities nodes based on the text embeddings previously computed and the query embed-
dings representation; (9) Return entities nodes, all their properties (attributes and values),
entity type and directed related entity nodes (neighbours) ordered by the similarity mea-
sure; and also (10) Return top-K most similar entities nodes based on KG embeddings,
as calculated in step 2 and stored in the KG H in step 6.

Different from MA[Wang et al. 2019] this approach don’t use KG structure to
rank the subgraphs, it uses the similarity measure between Q and entity nodes based
on their text embeddings. Different from Scholia [Nielsen et al. 2017], text embeddings
are used instead of classical IR approaches to match keyword list and entity nodes liter-
als. Similarly to TSA [Dosso and Silvello 2020] this proposal has two phases (offline to
compute KG embeddings and online to match and ranking) and also build virtual docu-
ments to represent entity nodes but it is target to any hiper relational graphs instead of
RDF model only.

5. Methodology
To achieve the previously mentioned contributions, we defined four research objectives:

a Define a similarity measure to answer questions such as Which individuals of an
entity type T are related to subject X (from context C)?

b Design a solution that, given a keyword list Q, retrieves a set of subgraphs h from
H corresponding (or closer) to that query limited by the searcher’s context C and
ordered by a weighting scheme of the subgraph’s properties.

c Implement a flexible solution where the context C is optional and can be defined
at search time.

d Evaluate the solution through experiments with hyper relational KGs.

6. Preliminary Results and Current Work Status
Currently, we are experimenting KGTK framework [Ilievski et al. 2020] for embedding
computation and, also to convert public available RDF datasets into KGTK format. In
parallel, we are building a hyper relational KG about scholarly communications based on
CV Lattes of PUC-Rio researches extracted from the CNPq platform.

We have chosen KGTK because its graph data model can represent a hyper rela-
tional graph since edges can be nodes of other edges. KGTK model3 represents an edge
as a tuple (Id, node1, label, node2). The Id is a unique identifier for an edge (every edge
has a unique identifier). It enables edges to have other edges asserted about them with-
out requiring adding extra triples to represent these edges. KGTK flexibility enables the
representation of an arbitrary number of levels of edges on edges.

KGTK is also a complete framework written in Python to facilitate KG manip-
ulation. RDF datasets can be converted into the KGTK model by the NTriples-import
command and any extra nodes previously generated by reification can be removed using
the unreify-RDF-statements command. KG embeddings can be computed based on the
structure of nodes and their relations using ComplEx[Trouillon et al. 2017] (by default),

3https://kgtk.readthedocs.io/en/latest/data_model/



TransE, DistMult[Yang et al. 2015], or RESCAL. Text embeddings can be computed for
nodes based on their properties and labels. A template is used to concatenate selected
properties into sentences. These sentences are embedded using at least one of the 16
currently supported variants of three state-of-the-art pre-trained language models: BERT,
DistilBERT, and Roberta.
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