
Machine Learning on Graph-Structured Data

Claudio D.T. Barros1, Daniel N.R. da Silva1, Fabio A.M. Porto1

1DEXL Lab – Laboratório Nacional de Computação Cientı́fica (LNCC)
Petrópolis, RJ – Brazil

{cdtb,dramos,fporto}@lncc.br

Abstract. Several real-world complex systems have graph-structured data, in-
cluding social networks, biological networks, and knowledge graphs. A con-
tinuous increase in the quantity and quality of these graphs demands learning
models to unlock the potential of this data and execute tasks, including node
classification, graph classification, and link prediction. This tutorial presents
machine learning on graphs, focusing on how representation learning – from
traditional approaches (e.g., matrix factorization and random walks) to deep
neural architectures – fosters carrying out those tasks. We also introduce rep-
resentation learning over dynamic and knowledge graphs. Lastly, we discuss
open problems, such as scalability and distributed network embedding systems.

1. Introduction

Graphs are a ubiquitous data structure and a universal language for describing complex
systems, representing a collection of objects and a set of interactions between pairs of
these objects. The graph formalism lies both in its generality and in its focus on the re-
lationship between data instances, offering a mathematical foundation to analyze, under-
stand, and learn from real-world networks. Given the ever-increasing scale and complex-
ity of graph datasets, including social networking platforms, massive scientific initiatives
to model biological networks, and billions of interconnected web-enabled devices, ma-
chine learning plays an important role in advancing the ability to model and predict from
graph-structured data [Hamilton 2020].

A graph G = (V , E) is defined by a set of nodes V and a set of edges E between
these nodes. An edge going from node vi ∈ V to node vj ∈ V is depicted as (vi, vj) ∈ E .
A graph is undirected if the existence of edge (vi, vj) ∈ E implies the existence of edge
(vj, vi) ∈ E , otherwise, the graph is directed. It is possible to represent graphs through an
adjacency matrix A ∈ {0, 1}|V|×|V|, whose element Aij denotes the existence of an edge
from node vi to node vj , i.e., Aij = 1 if (vi, vj) ∈ E , and Aij = 0 otherwise. Another
graph representation is given by an adjacency list – an array of lists in which each entry
ai represents the list of nodes connected to vi through an edge. Moreover, each edge in a
graph can be assigned to a unique weight whose meaning depends on the problem – from
distances between nodes and costs to reach them, to bond strength and link probability.

In real-world systems, nodes and edges are usually heterogeneous, i.e., they are
assigned to types: edges include a type τ , e.g., (vi, τ, vj) ∈ E , and nodes are partitioned
into k disjoint sets V = V1 ∪ V2 ∪ ... ∪ Vk. Furthermore, nodes, edges and even whole
graphs can be associated with additional feature information, i.e., numeric, categorical
or even other data structures such as strings, images or time series.

2. Machine Learning Fundamentals
Machine learning is broadly defined as computational methods using experience – past
information typically in the form of sample data collected and available for analysis – to
improve performance and to make accurate predictions. Two major learning paradigms
are (i) supervised learning, involving the observation of several examples of a random
vector x and an associated value y, then learning to predict y from x – hence target y is
understood as being provided by an instructor or teacher who shows the machine learning
system what to do –, and (ii) unsupervised learning, where is attempted to implicitly or
explicitly learn from data without target variable y [Goodfellow et al. 2016].

A typical supervised machine learning setting is composed by a domain set X
of instances represented by a vector of features, and a output set Y containing possible
outputs for each instance, which could be class labels, a regression score, a cluster or a
latent vector. The main learning task is to learn a mapping from the vector of features to
an specific output. The prediction model has access to training data, a finite sequence
of labelled domain points in X × Y , i.e., S = ((x1, y1), ..., (xm, ym)). The learner is
requested to output a prediction rule h : X → Y , which can be used to predict the output
of new instances [Mohri et al. 2018].

It is assumed that the instances are generated by some probability distributionD
over X , and that there is some correct output function f : X → Y and yi = f(xi) for all
i. Each pair in the training data S is generated by first sampling a point xi according to D
and then the output being calculated by f . The prediction model is blind to the underlying
distribution D over the world and to the labelling function f . In addition, the examples
in the training set are assumed to be independently and identically distributed (i.i.d.)
according to the distribution D [Mohri et al. 2018].

3. Machine Learning on Graphs
Traditional learning approaches over graphs follow the standard machine learning
paradigm: extract statistics or features based on heuristic functions or domain knowledge,
and then use these features as input to machine learning models. Classical node-level
features include node degree, representing the number ki of edges incident to a node vi,
node centrality, measuring the influence or the importance of each node vi in a graph;
and clustering coefficient, measuring how tightly clustered a node’s neighborhood is.
Edge-level features are usually expressed by similarity matrix, summarizing pairwise
node statistics and measuring how two nodes are similar in the network. Graph-level
features characterize an entire network, in general counting different smaller subgraph
structures called graphlets or using functions which measure similarity between graphs,
i.e., graph kernels [Hamilton 2020].

Machine learning tasks on graphs include: (i) node classification, whose goal is
to predict the label yi – which could be a type, category, or attribute – associated with
each node vi ∈ V , given the true labels on a training set of nodes Vtrain ⊂ V; (ii) rela-
tion prediction (a.k.a. link prediction, graph completion and relational inference), which
concerns to inferring the edges between nodes in a graph, and the standard setup is to
use the information about a set of nodes V and an incomplete set of edges between these
nodes Etrain ⊂ E to infer the missing edges E\Etrain; (iii) community detection, the graph
analogue of unsupervised clustering, grouping nodes into a finite number of partitions.

Furthermore, it is possible to execute tasks regarding the whole graph (i.e. treating the
entire graph as a single instance of a dataset containing several graphs), such as graph
classification, graph regression and graph clustering.

4. Graph Representation Learning
Hand-engineered features cannot adapt through a learning process, and designing them
can be a time-consuming and expensive process. Therefore, an alternative approach is to
learn representations that encode structural and functional information about the network
into latent vectors, i.e., embedding vectors. The graph representation learning problem
is described by an encoder model mapping graphs into low-dimensional vectors (i.e.,
embeddings), and a decoder model taking these embeddings to reconstruct structural
(e.g., node neighbourhood) or functional information (e.g., classifying nodes or graphs
on a supervised task) [Hamilton 2020].

Matrix factorization decomposes some similarity matrix in a graph using linear
algebra techniques including singular value decomposition, non-negative factorization
and locally linear embedding to obtain node embeddings, assuming that the input data
lie in a low-dimensional manifold. Random walk approaches generate node sequences
from a graph to create contexts for each node, and apply techniques similar to or inspired
by natural language processing to learn embeddings, preserving higher-order similarity
between nodes by maximizing the probability of occurrence of subsequent nodes in fixed-
length random walks. Approaches based on neural networks apply neural architectures
on graphs, including autoencoders (AEs), convolutional neural networks (CNNs), and
variational autoencoders (VAEs) [Cai et al. 2018].

Classical graph embedding methods assume that the encoder model is an embed-
ding lookup, i.e., ENC(vi) = zi = Zi, where Z ∈ R|V|×d (d is the embedding dimension)
is a matrix containing embedding vectors for all nodes, and Zi denotes the row of Z cor-
responding to node vi. These approaches lack any parameter sharing between nodes in
the encoder, meaning that the number of parameters necessarily grows as O(|V|), fail to
leverage node features and are inherently transductive, only generating embeddings for
nodes that were present during the training phase. Therefore, shallow encoders can be
replaced with more sophisticated encoders that depend more generally on the structure
and attributes of the graph [Hamilton 2020].

5. Graph Neural Networks
Deep learning over general graphs requires a new kind of neural architecture, whose op-
erations should be invariant to permuting the order of graph nodes. An important class of
neural networks that aims to obey these properties encompasses Graph Neural Networks
(GNNs). In short, they employ a form of differential message passing along graph edges
in which vector messages are exchanged between nodes and are updated using neural net-
works. During each message-passing iteration in a GNN, an embedding h

(k)
i correspond-

ing to each node vi ∈ V is updated according to information aggregated from vi’s graph
neighborhoodN (vi). This message-passing update can be expressed by [Hamilton 2020]:

h
(k+1)
i = UPDATE(k)

(
h
(k)
i ,AGGREGATE(k)

({
h
(k)
j ,∀vj ∈ N (vi)

}))
= UPDATE(k)

(
h
(k)
i ,m

(k)
N (vi)

) (1)

where UPDATE and AGGREGATE are arbitrary differentiable functions, i.e., neural
networks, and m

(k)
N (vi)

is the message that is aggregated from vi’s graph neighborhood
N (vi). After running K iterations of the GNN message passing, the output of the final
layer is used to define the embeddings for each node, i.e., zi = h

(K)
i for all vi ∈ V . Note

that K may be regarded as the number of GNN layers.

The basic intuition behind the GNN message-passing framework is that, at each
iteration, every node aggregates information from its local neighborhood, and as these it-
erations progress each node embedding contains more and more information from further
reaches of the graph. This approach captures both structural information and features
of each node. After k iterations of GNN message passing, the embeddings for each node
also encode information about features in their k-hop neighborhood. Many GNN variants
with different neighborhood aggregation and graph-level pooling schemes have been pro-
posed, these GNNs have empirically achieved state-of-the-art performance in many tasks
such as node classification, link prediction, and graph classification [Hamilton 2020].

6. Machine Learning on Dynamic Networks and Knowledge Graphs
It is possible to extend machine learning to handle dynamic networks, where nodes and
edges are being added or removed from the system, features are changing over time,
and diffusion processes are taking place. Embedding methods for time-varying graphs
improve tasks such as link prediction and node classification, while enabling novel appli-
cations, including event prediction, anomaly detection and diffusion prediction. Embed-
ding algorithms range from matrix factorization over graph snapshots, node sequence
sampling leveraging temporal order, neural networks and deep learning approaches,
tensor factorization approaches, and temporal point process based methods, which
handles similarity matrix changes as stochastic processes [Barros et al. 2021].

Moreover, machine learning models can be applied on knowledge graphs – graph
structured knowledge bases that store factual information in the form of relationships
between entities – to infer new facts about the world and to predict the existence or
the probability of correctness of facts (i.e., knowledge graph completion), to identify
which objects in relational data refer to the same underlying entities (i.e., entity resolu-
tion) and to cluster entities according to their features and links (i.e., link-based cluster-
ing) [Nickel et al. 2015].

7. Open Problems and Future Perspectives
This tutorial seeks to bring a comprehensive view of machine learning on graphs, dis-
cussing shallow and deep approaches, along with applications in static, dynamic and
knowledge graphs. Some important challenges in the field include the limitations and
scalability of graph neural networks. In practice, GNNs suffer from so called over-
smoothing, since node representations become indistinguishable when the number of
GNN layers increases. Moreover, the number of nodes in each node’s receptive field
grows exponentially, causing an over-squashing: information from the exponentially-
growing receptive field is compressed into fixed-length node vectors, and the graph fails
to propagate messages flowing from distant nodes, thus learning only short-range signals
from the training data [Alon and Yahav 2020]. In addition, the exponential growth of
neighborhood size corresponds to an exponential input-output overhead, and a common

strategy for scaling GNNs is to sample the graph structure during training, e.g. sample a
fixed number of nodes from the k-hop neighborhood of a given node to generate its pre-
diction. Since these approaches still rely on an expensive multi-hop message passing pro-
cedure, there is a trade-off between runtime and accuracy. Therefore, an efficient approx-
imation of information diffusion in GNNs resulting in significant speed gains while main-
taining state-of-the-art prediction performance is demanding [Bojchevski et al. 2020].

Moreover, a scalable and integrated database system with fully-functional training
and inference for machine learning on graphs presenting distributed network embedding
systems is also demanding. Existing systems require the in-memory storage of graph
data either in a single machine that could not handle real industrial-scale data, or in a
customized graph store that could lead to huge amount of communications between graph
stores and workers. Moreover, these systems do not exploit classical infrastructures, such
as MapReduce or parameter server, for fault tolerant purpose. As a consequence, they
focus on training rather than the optimization of inference over graphs, which makes
them an unintegrated system. Several efforts to design ingenious system architectures
for various graph machine learning techniques include PyTorch Geometric, Deep Graph
Library, AliGraph, and Ant Graph Machine Learning System (AGL) [Zhang et al. 2020].

References
Alon, U. and Yahav, E. (2020). On the bottleneck of graph neural networks and its prac-

tical implications. arXiv preprint arXiv:2006.05205.

Barros, C. D., Mendonça, M. R., Vieira, A. B., and Ziviani, A. (2021). A survey on
embedding dynamic graphs. arXiv preprint arXiv:2101.01229.

Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais, M., Rózemberczki, B.,
Lukasik, M., and Günnemann, S. (2020). Scaling graph neural networks with approx-
imate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2464–2473.

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering, 30(9):1616–1637.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 14(3):1–159.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of Machine Learn-
ing. MIT Press.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2015). A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.

Zhang, D., Huang, X., Liu, Z., Zhou, J., Hu, Z., Song, X., Ge, Z., Wang, L., Zhang,
Z., and Qi, Y. (2020). Agl: A scalable system for industrial-purpose graph machine
learning. Proc. VLDB Endow., 13(12):3125–3137.

