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Abstract. The prediction of time series has gained increasingly more attention
among researchers since it is a crucial aspect of decision-making activities. Un-
fortunately, most time series prediction methods assume the property of station-
arity, i.e., statistical properties do not change over time. In practice, it is the
exception and not the rule in most real datasets. Several transformation meth-
ods were designed to treat nonstationarity in time series. In this context, nonsta-
tionary time series prediction is challenging since it demands knowledge of both
data transformation and prediction methods. Since there are no silver bullets, it
leads to exploring a large number of data transformation and prediction method
combinations for building prediction setups. However, selecting a prediction
setup that is appropriate to a particular time series and application is not a sim-
ple task. Benchmarking of different candidate combinations helps this selection.
This work contributes by providing a review and experimental analysis of trans-
formation methods and a systematic framework (TSPred) for benchmarking and
selecting prediction setups for nonstationary time series. Suitable nonstationary
time series transformation methods provided improvements of more than 30% in
prediction accuracy for half of the evaluated time series. They improved the pre-
diction by more than 95% for 10% of the time series. The features provided by
TSPred are also shown to be competitive regarding prediction accuracy. Fur-
thermore, the adoption of a validation phase during model training enables the
selection of suitable transformation methods.

1. Introduction

Prediction is knowingly a crucial aspect of decision-making activities. The future states
of information about a problem can massively impact the success or failure of its solution.
Notably, the prediction of time series is an object of interest of many researchers due to
increasing importance and applications in science, business, and government [Han et al.,
2011]. As a consequence, a great variety of time series prediction methods have been
developed and can be found in the literature [Cheng et al., 2015]. Among them, the state-
of-the-art is based on machine learning.

Most methods applied for time series prediction assume that the behavior of a time
series presents a level of regularity over time. It is generally approached with the study
of the concept of stationarity [Gujarati, 2002]. Suppose a time series violates any of the
constraints imposed by a stationary process. In that case, it is considered a nonstationary
time series. Nonstationarity manifests in many different ways. Generally, it implies that
the time series mean or variance functions are non-constant and vary over time, i.e., de-
pendent on time. In practice, it is observed that the majority of real-world time series are
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nonstationary. Generally, any form of nonstationarity, if not adequately addressed, may
lead to misleading statistical inferences and bad or unexpected prediction results. When
observed the presence of nonstationarity in a time series, the state-of-the-art approaches
search for ways to transform them into a stationary process. In these cases, the known
time series prediction methods can be applied [Salles et al., 2019].

There exist several transformation methods in the literature for coping with non-
stationarity in times series. Such methods can have different features depending on the
implementation of the data properties they consider. They can address different kinds
of nonstationarity, such as trends and seasonality. Choosing an adequate method for a
particular time series application is not a simple task. The analysis of their features and
expected advantages is crucial. However, not many authors focus on studying transfor-
mation methods for nonstationarity treatment [Yang and Zurbenko, 2010; Cheng et al.,
2015].

Furthermore, there is a wide variety of models for time series prediction. Each
one has different properties and complexities, and many of them are generated by state-
of-the-art machine learning methods (MLM). Still, none of them is a silver bullet for the
prediction of time series. Additionally, nonstationarity leads to the possibility of exploring
different data transformation and model fitting methods for obtaining predictions. The
number of modeling alternatives and combinations may become very high. Finding a
transformation-model combination that solves a time series prediction problem is similar
to solving an optimization problem. In this context, a benchmarking process provides a
way of assessing the relative quality of predictions and selecting adequate transformation-
model combinations for a particular time series application.

Benchmarking frameworks and tools for MLM performance assessment have been
developed, as well as works to facilitate automatic time series prediction. Nonetheless,
there are no works that propose and implement a systematic benchmarking framework
that focuses on (i) time series prediction, (ii) addressing nonstationary properties, and
(i11) comparing and selecting adequate transformation-MLM combinations. This gap ag-
gravates the already intricate problem of selecting adequate transformation-model setups
for a particular nonstationary time series prediction application. Moreover, there are no
works that focus on the study of different ways to coerce a time series into stationarity
and their effects on time series prediction.

1.1. Theoretical Contributions
This work targets the gaps as mentioned earlier and contributes by providing:

* A thorough review of nonstationary time series transformation methods and their
features for time series prediction.

* A timeline of related works with the evolution of data transformation methods for
nonstationary time series prediction grouped by their application domain.

* A systematic framework for nonstationary time series prediction that enables
benchmarking data transformation methods and MLM.

* A benchmarking and experimental analysis of representative transformation meth-
ods for the time series prediction problem.

* A discussion on transformation methods whose adoption consistently provided
accuracy improvements in time series prediction.



* Use case examples of the framework usability for benchmarking transformation
methods and MLM modeling.

1.2. Research products

As a by-product of this dissertation, we also developed and published a the TSPred R-
Package [Salles and Ogasawara, 2018] which implements the proposed systematic frame-
work for nonstationary time series prediction. It is the first tool to seamlessly integrate a
broad range of transformation methods [Salles et al., 2019] and state-of-the-art MLM pre-
diction methods for addressing nonstationary time series. The framework encapsulated
in TSPred was made available worldwide on The Comprehensive R Archive Network
(CRAN). Currently, at version 5.1, it has been downloaded over 50,000 times, having
over 2,600 downloads per month (by May 2021), being in the 69th percentile of impact
compared to all research software on CRAN (according to depsy.org). These numbers
keep increasing, which indicates the overall interest and demand for TSPred. Moreover,
several papers (over 10) have been published as a consequence of this work. Among them,
we mention the main and most directly related to this research:

* Main dissertation paper, entitled “Nonstationary time series transformation meth-
ods: An experimental review”, published in the Knowledge-Based Systems jour-
nal (Qualis A1) [Salles et al., 2019]. Since its publication, it counts with 27 cita-
tions accumulated in the last two years.

* The features of the earliest versions of TSPred were presented in the paper “A
Framework for Benchmarking Machine Learning Methods Using Linear Models
for Univariate Time Series Prediction”. It was published in the International Joint
Conference on Neural Networks (IJCNN) (Qualis A1) [Salles et al., 2017]. It has
accumulated 11 citations.

* One of the reviewed models for coping with nonstationarity in time series was
applied for evaluating temporal aggregation for predicting the sea surface tem-
perature of the Atlantic Ocean, which resulted in a publication in the Ecological
Informatics journal (Qualis A2) with 10 citations [Salles et al., 2016].

* Best paper (category: short, vision, industry) presenting a novel model for non-
stationary time series (Autoregressive Adaptive Integration Model (ARAI)) pub-
lished in the proceedings of the XXXIV Brazilian Database Symposium (SBBD)
(Qualis B2) [Ronald et al., 2019].

* Nonstationarity concepts and methods were applied in order to develop a novel
framework (called Harbinger) for integration and analysis of event detection
methods for time series. It was presented in a paper published in the XXXV
Brazilian Database Symposium (SBBD) (Qualis B2) [Salles et al., 2020].

* The reviewed nonstationary preprocessing techniques and implemented frame-
work were applied to estimate COVID-19 under-reporting in the Brazilian States
through SARI in a paper published in the New Generation Computing journal
(Qualis B1). It has received 6 citations in only two months since it is publicly
available [Paixdo et al., 2021].

* Analogously, TSPred was applied in the development of a paper on the use of data
science to predict fertilizer consumption in Brazil published in the proceedings of
the XIV Brazilian e-Science Workshop (Qualis B4) [Andrade et al., 2020].
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2. Background Review and Developed Framework

Nonstationarity is pervasive in many real-world scenarios and poses challenges to time
series prediction. As a consequence, several methods for statistical analysis of nonsta-
tionary time series have been developed. This research presents a discussion of some of
the most researched time series transformation methods for handling nonstationarity. Fo-
cus is given to the state-of-the-art methods. To provide a better overview and for helping
the discussion of their particular features, a general categorization of the reviewed trans-
formation methods is introduced. Furthermore, the dissertation presents an overview of
the research scenario by providing a timeline table of publications presenting some of
the most researched methods for coping with nonstationarity grouped by their application
domain.

This research proposes the encapsulation of the knowledge acquired by reviewing
nonstationary time series transformation methods in a systematic benchmarking frame-
work. The framework enables the application of this knowledge together with the predic-
tive capabilities of the most commonly used MLM and linear models (LM). The frame-
work provides means of benchmarking nonstationary time series predictions. The bench-
marking results can be helpful either for indicating demands for prediction improvement
or for selecting adequate transformation-model combinations.

It differs from the mainstream frameworks since it establishes a prediction pro-
cess that seamlessly integrates nonstationary time series transformations with state-of-
the-art machine learning methods. It is made available in the T.SPred R-Package. It pro-
vides functions for defining and conducting time series prediction, including the tasks of
data pre(post)processing, decomposition, modeling, prediction, and accuracy assessment.
Besides, TSPred enables automatic parameterization and user-defined methods. These
features significantly expand the applicability of the framework. The source code and
documentation can be obtained from: https://CRAN.R-project.org/package=TSPred. The
package is also freely available at GitHub, where one can find its code and wiki pages:
https://github.com/RebeccaSalles/TSPred. The main functionality modules representing
the concept and structure of the framework are depicted in Figure 1.
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Figure 1. TSPred functionality modules and pre-implemented algorithms
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3. Main Experimental Results

The developed framework was used for performing the benchmarking and experimental
analysis of the reviewed transformation methods. The goal is to provide a practical per-
spective regarding their advantages and limitations to the time series prediction problem.
Although it was possible to note a somewhat consistency in the results of the evaluated
transformation methods, there was no uniquely best method across all datasets. Nonethe-
less, it was possible to observe better predictions when transformation methods based on
differencing and moving average smoothing were applied (Figure 2(a)). Transformation
methods that perform time series decomposition, which has been an object of increasing
attention, were among the best methods. As expected, among the worst methods was the
one where no data transformation is performed before prediction.

According to the experimental evaluation conducted, suitable nonstationary time
series transformation methods provided improvements of more than 30% in prediction
accuracy for approximately half (130/262) of the evaluated time series (Figure 2(b)). Ac-
curacy improvements reached more than 95% for over 10% of the evaluated time series
(Figure 2(c)). This observed outcome suggests the need to consider these transformation
methods and compare them during time series prediction. Additionally, the adoption of a
validation phase for exploring different transformation methods generally led to selecting
one of the top five most appropriate for a particular time series (Figure 2(d)).
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Figure 2. (a) the number of times (and percentage) the use of each method provided more accurate predictions
among the five evaluated datasets; (b) the prediction accuracy improvements provided by the best method; (c)
the number (and percentage) of time series for which at least a minimum percentage of prediction accuracy im-
provement was provided by their best method; (d) the (percentage) number of times the best method found during
validation was also present in the top five ranked methods found during testing.



4. Conclusions

This work focus on the study of nonstationary time series prediction and the benchmark-
ing of preprocessing and modeling options for time series applications. The main contri-
bution is a systematic framework for benchmarking transformation methods and models
for nonstationary time series prediction (7SPred R-package). It also includes a thorough
review of nonstationary time series transformation methods. An overview of the effects of
the evaluated methods regarding predictions and stationarity was produced based on ex-
perimental results. The nature and statistical properties of the time series were especially
relevant to the results. Overall, more accurate predictions were observed when transfor-
mation methods were applied before predicting the time series of the selected datasets.
The features provided by TSPred are also shown to be competitive regarding time series
prediction accuracy. Additionally, results indicate that the use of a validation phase for
exploring different transformation methods generally leads to selecting one of the most
appropriate for obtaining accurate time series predictions. In this context, the potential of
the developed framework for enabling the benchmarking of data transformation methods
and prediction models for a particular nonstationary time series application was indicated.

References

Adalberto Andrade, Rebecca Salles, Flavio Carvalho, Eduardo Bezerra da Silva, Jorge Soares, Cristina Souza, Pe-
dro Henrique Gonzalez, and Eduardo Ogasawara. Uso de ciéncia de dados para predi¢do do consumo de fertilizantes
no brasil. In Anais do XIV Brazilian e-Science Workshop, pages 9-16. SBC, 2020.

C. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Kong, and S.T.S. Bukkapatnam. Time series forecasting
for nonlinear and non-stationary processes: A review and comparative study. /IE Transactions (Institute of Industrial
Engineers), 47(10):1053-1071, 2015.

Damodar Gujarati. Basic Econometrics. McGraw-Hill/Irwin, Boston; Montreal, 4 edition, March 2002. ISBN 978-0-
07-247852-5.

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, Haryana,
India; Burlington, MA, 3 edition, July 2011. ISBN 978-93-80931-91-3.

Balthazar Paixdo, Lais Baroni, Marcel Pedroso, Rebecca Salles, Luciana Escobar, Carlos de Sousa, Raphael de Fre-
itas Saldanha, Jorge Soares, Rafaelli Coutinho, Fabio Porto, et al. Estimation of covid-19 under-reporting in the
brazilian states through sari. New Generation Computing, pages 1-23, 2021.

Arthur Ronald, Rebecca Salles, Kele Belloze, Dayse Pastore, and Eduardo Ogasawara. Modelo autorregressivo de
integracdo adaptativa. In Anais do XXXIV Simpdsio Brasileiro de Banco de Dados, pages 175-180. SBC, 2019.

Rebecca Salles, Patricia Mattos, Ana-Maria Dubois lorgulescu, Eduardo Bezerra, Leonardo Lima, and Eduardo Oga-
sawara. Evaluating temporal aggregation for predicting the sea surface temperature of the Atlantic Ocean. Eco-
logical Informatics, 36:94-105, November 2016. ISSN 1574-9541. doi: 10.1016/j.ecoinf.2016.10.004. URL
http://www.sciencedirect.com/science/article/pii/S1574954116301819.

Rebecca Salles, Laura Assis, Gustavo Paiva Guedes, Eduardo Bezerra, Fabio Porto, and Eduardo S. Ogasawara. A
framework for benchmarking machine learning methods using linear models for univariate time series prediction.
In 2017 International Joint Conference on Neural Networks, IICNN 2017, Anchorage, AK, USA, May 14-19, 2017,
pages 2338-2345, 2017. doi: 10.1109/1JCNN.2017.7966139. URL https://doi.org/10.1109/IJCNN.2017.7966139.

Rebecca Salles, Kele Belloze, Fabio Porto, Pedro H. Gonzalez, and Eduardo Ogasawara. Nonstationary time se-
ries transformation methods: An experimental review. Knowledge-Based Systems, 164:274-291, January 2019.
ISSN 0950-7051. doi: 10.1016/j.knosys.2018.10.041. URL http://www.sciencedirect.com/science/article/pii/
S0950705118305343.

Rebecca Salles, Luciana Escobar, Lais Baroni, Roccio Zorrilla, Artur Ziviani, Vinicius Kreischer, Flavia Delicato,
Paulo F Pires, Luciano Maia, Rafaelli Coutinho, et al. Harbinger: Um framework para integracdo e andlise de
métodos de deteccdo de eventos em séries temporais. In Anais do XXXV Simpdsio Brasileiro de Bancos de Dados,
pages 73-84. SBC, 2020.

Rebecca Pontes Salles and Eduardo Ogasawara. TSPred: Functions for Benchmarking Time Series Prediction Predic-
tion. Technical report, https://CRAN.R-project.org/package=TSPred, 2018.

W. a Yang and 1. b Zurbenko. Nonstationarity. Wiley Interdisciplinary Reviews: Computational Statistics,2(1):107-115,
2010.


http://www.sciencedirect.com/science/article/pii/S1574954116301819
https://doi.org/10.1109/IJCNN.2017.7966139
http://www.sciencedirect.com/science/article/pii/S0950705118305343
http://www.sciencedirect.com/science/article/pii/S0950705118305343

	Introduction
	Theoretical Contributions
	Research products

	Background Review and Developed Framework
	Main Experimental Results
	Conclusions

