
A modular approach to Hybrid Blockchain-based and
Relational Database Architectures

Rafael Avilar Sá1,2, Leonardo Oliveira Moreira (Coorientador)1,
Javam de Castro Machado (Orientador)1,2

1Laboratório de Sistemas e Banco de Dados (LSBD)
Departamento de Computação

Universidade Federal do Ceará (UFC) – Fortaleza, CE – Brasil

2Mestrado e Doutorado em Ciência da Computação (MDCC)
Departamento de Computação

Universidade Federal do Ceará (UFC) – Fortaleza, CE – Brasil

{rafael.sa,leonardo.moreira,javam.machado}@lsbd.ufc.br

Nı́vel: Mestrado.
Ingresso: Maio, 2021.

Previsão de Término: Maio, 2024.
Etapas concluı́das: Disciplinas, Definição do Problema, Revisão Bibliográfica

Preliminar, Definição das Tecnologias de Implementação, Metodologia de Avaliação
Preliminar

Defesa da Pré-Proposta: Outubro, 2022
Defesa da Proposta: Janeiro, 2023

Abstract. In this new cloud-powered web landscape, applications may find it
beneficial to focus on both efficient data storage and proper security enforce-
ment. Blockchains provides immutable and irrefutable data, but can be quite
slow, while relational databases show great efficiency. MOON is a tool de-
signed to act as a bridge between application and databases to create a hy-
brid approach to database management. It enables the use of both a Relational
Database and a Blockchain-based database. This paper analyzes and proposes
improvements to MOON’s architecture to increase compatibility, maintainabil-
ity, and help advance research into the area of convergence between blockchain
and traditional databases.

Resumo. Com a popularização da computação em nuvem, novas aplicações
neste cenário podem considerar importante focar em ambos segurança e
eficiência. Blockchains proporcionam imutabilidade e irrefutabilidade de da-
dos, mas pode ser bem lenta, enquanto bancos de dados relacionais demonstram
grande velocidade. MOON é uma ferramenta criada para atuar como uma
ponte entre aplicações e bancos de dados, para criar uma abordagem hı́brida
ao gerenciamento de multiplos bancos de dados. Ela permite o uso em conjunto
de tanto um banco de dados relacional como um baseado em blockchain. Esta
pesquisa analisa e propõe melhorias para a arquitetura MOON em prol de au-
mentar compatibilidade, manutenbilidade e ajudar a avançar pesquisas na área
de convergência entre blockchain e bancos de dados tradicionais.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

154



1. Introduction
The blockchain, originally conceived as part of the Bitcoin electronic cash system
[Nakamoto 2008], allows the storing of data without a trustworthy third party, focusing
on creating an immutable, irrefutable and tamper-proof distributed linked list. However,
this powerful security comes at a steep performance cost. Blockchains are characteristi-
cally slow at writing operations [Zheng et al. 2018], especially when compared to highly
efficient databases. This is, partly, done on purpose, due to the usage of computationally-
intensive security algorithms such as Proof-of-Work (PoW) [Gervais et al. 2016]. On the
other hand, while many traditional relational databases offer great performance, they can-
not easily produce the same security and integrity properties that blockchains do. There-
fore, one has to understand what kind of data they wish to store and utilize whatever
architecture best suit their storage needs.

Considering how much and how many types of information modern applications
collect and use, different types of data storage solutions are often implemented simultane-
ously. For example, web applications may use a simple key-value database such as Redis
for caching purposes, and a relational database like MySQL to store more complex types
of data. These hybrid architectures are becoming increasingly common, and alongside
them, we can also see the increase in abstract, high-level approaches to data manipu-
lation. For example, Prisma is an Object Relational Mapper (ORM) developed for the
Node.js environment which abstracts the need to construct database queries, allowing de-
velopers to write a single model representing a database entity, which can be easily used
with a number of different database engines, relational or otherwise.

The approach to data Management on relatiOnal database and blOckchaiN
(MOON) [Marinho et al. 2020] was a project inspired by such tools to act as a singu-
lar entry-point for database queries by applications utilizing both Blockchains and Re-
lational Databases. Developers write queries in the SQL (Structured Query Language)
format, which are then translated by the MOON’s middleware into an equivalent query
for either a Blockchain or Relational Database. This hybrid approach to database man-
agement simplifies development by eliminating the need for developers to use different
query languages, frameworks or libraries for each database, as well as know where each
entity is located.

However, MOON currently presents several restrictions. One such restriction is
that the use case provided in the original MOON article supports only BigchainDB and
PostgreSQL. This limits MOON’s scope, as well as its utility and interoperability. This pa-
per’s primary goal is to propose improvements to MOON’s current architecture, focusing
on enhancing compatibility and maintainability. The secondary goal of this work is to help
advance research into the area of convergence between traditional Database Management
Systems (DBMS) and the more recent blockchain-based databases (such as BigchainDB),
by observing the MOON middleware implementation, exploring its structure, analyzing
how it could be enhanced, and proposing improvements. This paper presents the initial
results of ongoing research.

2. Background
MOON was initially pitched as a hybrid approach to data management, for use in appli-
cations that could benefit from the properties offered by both blockchain and relational

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

155



databases, such as those in the e-health software field [Marinho et al. 2020]. Compared
to heterogeneous database systems, which aim to integrate divergent DBMS via a single
interface, there are some unique challenges in attempting the same with a DBMS and
blockchain. Blockchains are, by design, append-only, consequently they do not show
the same properties that databases do, like support for DELETE or UPDATE operations.
Some blockchains, however, do possess more database-like qualities. BigchainDB, for
example, permits queries to be written similarly to MongoDB [Bigchain and Gmb 2018].

Figure 1. Overview of the MOON architecture [Marinho et al. 2020].

In this context, to achieve integration, MOON’s architecture was designed as two
separate main components: the MOON Client and the MOON middleware. In short,
the client receives SQL requests from applications and users, forwarding them to the
middleware. The middleware analyzes those requests, identifies the type of request and
involved entities, processes the request and then sends it to the correct persistence model
(Blockchain-based or Relational). Upon receiving a response, the middleware fowards
it back to the client. To handle all this, the middleware was divided into a variety of
modules, each performing a different role. For example, the Scheduler, which queues
requests, and the SQL Analyzer, which translates requests into the specified persistence
model. A python program was later developed to evaluate the proposed architecture’s
response time and correctness.

3. Our Approach

In this section, we will present techniques which could serve to improve the MOON
middleware with two new features: Compatibility and Maintainability. We define com-
patibility as the capacity for two systems to work together without having to be modified
to do so. Compatible systems use the same formats, can be used together or interchange-
ably. Specifically, we will focus on compatibility on the database type subsystem. For
this work, we also define maintainability as the ability of a software system to support
changes, be adaptable to the environment, and having the quality of quick repairability in
case of failure or downtime.

The original MOON design (Figure 1), already shows these features to some de-
gree: by separating the middleware into several modules, we can increase maintainability.
On the other hand, the SQL Client promotes both compatibility and maintainability by

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

156



encapsulating drivers from several Relational Database Management Systems (RDBMS),
such as Oracle, MySQL and PostgreSQL [Marinho et al. 2020].

However, the existing SQL Client description is still somewhat vague in regards
to implementation, and the test case originally showcased only supports PostgreSQL.
Therefore, by developing the SQL Client, we would be making improvements to both
compatibility and maintainability. To this endeavor, we have drafted two options: (1)
by developing a custom database accessor that supports multiple database engines via
adapters or (2) by using ODBC Drivers.

3.1. Using custom interfaces

This approach is the closest in theory to the concept of the SQL Client as originally de-
scribed, and is reminiscent on the Django [Holovaty and Kaplan-Moss 2009] and Laravel
[Stauffer 2019] architectures for multiple database support. Essentially, it takes the form
of a group of entities that abstracts library function calls. In practice, this version of the
SQL Client contains adapters that abstract generic SQL database engine methods, like
connect and execute sql. Upon being instantiated, the SQL Client reads a configura-
tion singleton to know which library to use, and then instantiates the appropriate adapter.
When receiving function calls, it forwards those calls to the adapter, which itself calls the
library. See Figure 2 for an initial diagram of this structure.

Figure 2. Initial proposal of the new SQL Client architecture

While this approach can be considered inconvenient from a developer perspec-
tive, as it requires the development of multiple adapters, as well as several third-party
libraries, it could prove fruitful in regards to performance. Many well-supported and effi-
cient libraries for database manipulation have been developed, for a variety of languages.
It’s also not uncommon to see standardized interfaces for accessing databases within lan-

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

157



guages, such as PDO (PHP Data Objects) for PHP or the Python Database API Specifi-
cation format, which can minimize the potential structural overhead. However, there are
still some foreseeable drawbacks. There could still be some lack of compatibility between
the library function implementations and our own custom adapter structure, and for each
DBMS supported, more dependencies are required.

3.2. Using ODBC Drivers
ODBC drivers [Geiger 1995] use the Open Database Connectivity (ODBC) interface by
Microsoft that allows applications to access data in DBMS using SQL as a standard.
As a protocol, ODBC facilitates interoperability, allowing a single application to access
many different DBMS by consuming their ODBC drivers. There are already a plethora
of existing drivers, even some available for NoSQL databases like MongoDB. It is also
possible to develop custom ones by implementing the ODBC protocol.

Figure 3. ODBC driver architecture [Oracle 2016]

By incorporating an ODBC bridge into MOON, it could achieve a great degree of
database compatibility. Compared to the first proposal, this architecture is much easier to
implement and supports just as many, if not more, database types (any database that im-
plements an ODBC connector). It also shows greater benefits to maintainability and code
structure, by using a single entity, the ODBC bridge, to make all database calls. However,
it is also comparatively slower, as proper libraries are often built with performance in
mind. Additionally, ODBC drivers are not only often Windows-only, they are also to be
installed on the host machine, and then consumed via the ODBC bridge. Consequently,
they are not contained within MOON itself, creating an environmental prerequisite on the
middleware host.

3.3. Preliminary test results
Tests were conducted on a Windows 11 OS machine, sporting 16 GBs of DDR4 RAM and
a 3.6 GHz Intel i3-10100F CPU, using early prototypes of each approach, developed with

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

158



the Python scripting language. PostgreSQL and MariaDB were chosen for testing, due
to the stark differences between both RDBMS. Two sample tables were generated, each
with 1000 rows and a primary key. Table 1 contains ID, first name, last name, email and
gender. Table 2 contains simply ID and address. Queries were made based on common
database operations and executed first using the adapter prototype, then the ODBC proto-
type for comparison for each RDBMS. Each value below represents the average response
time in ms (milliseconds) for 500 executions.

Figure 4. Initial test results

Initial testing (Figure 4) indicates queries made using ODBC are indeed compara-
bly slower than queries made using proper library accessors, although speed varies greatly
depending on query structure and database environment, with some showing nearly the
same response time.

4. Related Work

This research builds upon the foundation laid out by [Marinho et al. 2020].
[Nathan et al. 2019] adds blockchain properties, such as smart contracts, immutable trans-
action logs and a replicated ledger, directly into the PostgreSQL relational database. On
the other hand, [Muzammal et al. 2019] introduces ChainSQL, a new blockchain struc-
ture with database properties that executes commands received via SQL or JSON format.
Both works either present a new blockchain with database properties or database with
blockchain properties, while ours attempts to better integrate preexisting blockchain-
based databases and relational databases via middleware, allowing them to be used to-
gether.

Considering the architectural overhauls detailed in this article, [Brandani 1998]
presents an SQL interface and ODBC driver for the Amos II system in order to simulta-
neously access multiple different database systems using the ODBC protocol, while we
use preexisting drivers and a custom adapter structure. [Mason and Lawrence 2005] uses
the Unity Java Database Connectivity (JDBC) driver to implement a system allowing for
scalable integration of different data sources with minimal overhead. Our work utilizes
ODBC, instead, as JDBC is only available for Java applications.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

159



5. Conclusion
In this paper, we’ve shown MOON, a hybrid approach to database management for
blockchain and relational systems, its current architectural foundation, and described
some initial results in our ongoing research to add new features to it, namely compati-
bility and maintainability. In the future, we mean to continue this research, perform more
in-depth testing of the architecture, and fully implement an updated version of the SQL
Client. One idea is to develop two prototypes, one for each approach, and then com-
pare their performance over real data. Lastly, another worthwhile experiment would be
to test whether the usage of C++, C#, or another highly performing language, rather than
Python, has any significant impact on operational performance.

References
Bigchain, D. and Gmb, H. (2018). Bigchaindb 2.0: The blockchain database. white paper.

Brandani, S. (1998). Multi-database Access from Amos II using ODBC. Linköping
Electronic Articles in Computer and Information Science, 3(19).

Geiger, K. (1995). Inside ODBC. Microsoft Press, USA.

Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., and Capkun, S. (2016).
On the security and performance of proof of work blockchains. CCS ’16, page 3–16,
New York, NY, USA. Association for Computing Machinery.

Holovaty, A. and Kaplan-Moss, J. (2009). The definitive guide to Django: Web develop-
ment done right. Apress.

Marinho, S. C., Costa Filho, J. S., Moreira, L. O., and Machado, J. C. (2020). Using
a hybrid approach to data management in relational database and blockchain: A case
study on the e-health domain. In 2020 IEEE International Conference on Software
Architecture Companion (ICSA-C), pages 114–121. IEEE.

Mason, T. and Lawrence, R. (2005). Dynamic database integration in a jdbc driver. In
ICEIS (1), pages 326–333.

Muzammal, M., Qu, Q., and Nasrulin, B. (2019). Renovating blockchain with distributed
databases: An open source system. Future generation computer systems, 90:105–117.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260.

Nathan, S., Govindarajan, C., Saraf, A., Sethi, M., and Jayachandran, P. (2019).
Blockchain meets database: Design and implementation of a blockchain relational
database. arXiv preprint arXiv:1903.01919.

Oracle (2016). Oracle Database Development Guide. Oracle.

Stauffer, M. (2019). Laravel: Up & running: A framework for building modern PHP
apps. O’Reilly Media.

Zheng, Z., Xie, S., Dai, H.-N., Chen, X., and Wang, H. (2018). Blockchain challenges and
opportunities: A survey. International Journal of Web and Grid Services, 14(4):352–
375.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

160


