
Integrating Machine Learning Model Ensembles to the
SAVIME Database System

Anderson Silva1, Patrick Valduriez2, Fabio Porto1

1Laboratório Nacional de Computação Cientı́fica (LNCC)
Petrópolis, Rio de Janeiro, Brazil

{achaves,fporto}@lncc.br
2Inria, University of Montpellier, CNRS, LIRMM

Montpellier, France

patrick.valduriez@inria.fr

Abstract. The integration of machine learning algorithms into database systems
has brought new opportunities in different areas from indexing to query opti-
mization. In this paper, we describe the integration of an approach for the au-
tomatic computation of model ensembles to answer a predictive query. We have
extended the SAVIME multi-dimensional array DBMS by adding a new function
to its query language and implementing the selection and allocation ensemble
model dataflow into the query processing component of SAVIME. We show some
initial experimental results depicting its performance against a pure Python im-
plementation of the ensemble approach. Interestingly enough the C++ imple-
mentation within SAVIME is up to 4 times faster than its competitor.

1. Introduction
The adoption of Machine Learning (ML) models in replace of different database manage-
ment techniques has been a hot research topic since the appearance of the Learned Index
paper by Kraska [Kraska et al. 2018]. Since then, a number of different applications of
machine learning in databases has been proposed, such as learning cardinality estimation
[Kim et al. 2022], a long time difficult problem to be solved algorithmically, as well as
join ordering selection and query optimization [Marcus et al. 2021], just to name a few.
Another area of intense activity, strongly pushed by the database systems industry, is the
integration of machine learning models as predictive functions receiving input from query
expressions [Fard et al. 2020][Jasny et al. 2020]. There has also been strong interest in
the investigation of the performance of training machine learning models in the database,
taking advantage of years of efficient data processing, specially for large input training
sets [Sandha et al. 2019].

In this paper, we present initial results on the integration of machine learning mod-
els ensembles into the SAVIME database system [L. S. Lustosa et al. 2021]. We consider
the DJEnsemble approach [Pereira et al. 2021] that combines a set of spatio-temporal
deep learning models automatically selected by a cost-based model. As in other works, we
argue that database systems already offer a declarative query language to which model in-
vocation can be easily integrated, as in SQL user defined functions [Duta and Grust 2020].
Once added to a query plan, all data transformation needed when preparing the model in-
put can be specified as a query expression placing ML model inference as part of an

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

231



efficient query processing framework. Moreover, we observe that the multidimensional
array model of SAVIME is particularly suited to model 3D input tensors, as required by
deep learning input data. We describe the decisions taken during the design of the inte-
gration of DJEnsemble into the SAVIME system and some challenges still remaining to
be solved. We highlight that by adding DJEnsemble to SAVIME, or any other DBMS, its
model selection and allocation problem can be solved as part of the query optimization
process.

We have run some initial experiments highlighting the overhead of invoking the
model integrated into SAVIME against its execution on pure ML engine/programming
language combination. The rest of this paper is organized as follows. Section 2 presents
the original DJEnsemble approach and the SAVIME DBMS system. Next, in Section 3,
we describe the implementation of the ensemble approach into SAVIME as a new query
operator. Section 4 presents some initial experimental results, and Section 5 discusses
previous works that intended to integrate ML into database systems. Finally, Section 6
presents some final remarks and points to future work.

2. Preliminaries

In this section we provide background on the DJEnsemble ensemble approach and on the
SAVIME multidimensional array database system.

2.1. DJEnsemble Approach

The machine learning ensemble approach is a technique to improve the accuracy of
predictions by using multiple models for the same prediction task and applying a lin-
ear function to combine their results. The assumption is that by combining differ-
ent models, the weaknesses of each one are compensated by the strengths of the oth-
ers. However, DJEnsemble takes a slightly different approach [Pereira et al. 2021].
As the traditional ensemble approach, it considers a set of available trained models
M = {M1,M2, . . . ,Mn} for the prediction of a spatio-temporal variable, i.e. a spa-
tial time series. Examples of spatio-temporal variables are temperature and precipitation.
However, instead of invoking all available models to compute a prediction, DJEnsemble
selects the best models to be applied to each data subdomain. We consider a domain the
dataset composed of time series of a variable. For instance, the domain of the precipita-
tion variable comprises the dataset of time series of a region. In this context subdomains
characterize regions sharing similar precipitation behavior.

DJEnsemble is applicable to answer spatio-temporal queries (SPTQ), which are
expressed as Q =< R, I, V, t >, where R is a spatio-temporal region where predictions
are desired, for instance the region of the Rio de Janeiro city in January 2022, I is a
tensor of input to the model, V is the predicted variable, for instance, precipitation, and
t is the number of time instances ahead for the prediction. The approach is integrated
into the SAVIME system (see section 2.2) in two parts: offline and online. The offline
stage structures the domain dataset into clusters and tiles. The former finds the time
series sharing similar behaviors in time, whereas the latter structures the dataset domain
into regular tiles i.e. rectangles with a high percentage of time-series of a single cluster.
Lastly, to each tile, we associate its representative, which is a time series elected as the
medoid of the cluster bearing the majority of time series in the corresponding tile.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

232



Figure 1 illustrates the process described. The image at the left shows the clusters
of a spatial domain containing precipitation readings, discretized in 7 x 7 regions. An
analysis using silhouette clustering index [Rousseeuw 1987] indicates 2 clusters. At right,
the results of the tiling process applied over the clustered spatio-temporal domain are
illustrated. At each iteration of the tiling algorithm, a position is chosen as the starting
point of a new tile. The tile area is then extended to the right and bottom, as long as the
number of regions from different clusters in the tile is not exceeded.

Figure 1. DJEnsemble clustering and tiling identified by the offline stage

The online stage is when the query processing happens. It considers a query Q
with a region Q.R, with Q.R representing a 3D region of a spatio-temporal tensor of
precipitation data. The input Q.I is the result of a spatio-temporal query expression. The
dataflow in Figure 2 depicts the various stages of the DJEnsemble online execution. We
identify tasks into colours blue(B), orange (O) and blue-orange (BO).

Figure 2. Dataflow for the execution of DJEnsemble

• B1: obtain from the catalog a set of trained models for forecasting a variable V ;
• B2: extract the model metadata informing the data used in training, identified by

the corresponding tiles;
• B3: obtain the representative for each tile identified in B2
• B4: obtain the learning function (LF) for the tile. A LF is a model that given a

distance predicts a model error;

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

233



• O1: obtain the set of the domain tiles whose spatial volume intersects with that of
the the query Q region R;

• O2: obtain the tiles representatives;
• BO5: for each query tile, compute its representative distance to the tiles represen-

tative of the candidate models;
• BO6: use the models learning functions to compute their estimated error for each

query tile and associate to each tile the model with the least estimated error
• BO7: invoke each of the selected models having as input the part of I correspond-

ing to its tile
• BO8: compose the predictions from each model into a single prediction volume.

The step BO6 runs an optimization weighted cost function that takes into account
the error estimate computed by the learning function and the estimated execution cost.
Thus, at the end of this process an ensemble of models has been selected and run for
computing the predictions as requested by the query Q.

2.2. SAVIME Array DBMS
The SAVIME multidimensional array database system is a NOSQL system developed at
the DEXL Laboratory [Lustosa 2020]. SAVIME logical data representation is modeled
by a Typed Array (TAR) data model. A TAR schema (TARS) specifies the arrays in a
database. A TAR definition holds a name that uniquely identifies the array, and counts
with two main data elements for an array definition: dimensions and attributes. There is
no restriction on the number of dimensions an array may specify. A typical dimension is
defined as d = ([1 : n], step), where the interval indicates integer indexing from 1 to n,
with integer steps between index values. For a k dimensional array, a cell is specified as
the array position indicated by a vector of dimensions v =< v1, v2, . . . , vk >, where vi
is an index of dimension i, for all 1 ≤ i ≤ k. A cell may hold a tuple of attributes of
simple types, such as: integer, float, double etc. SAVIME implements a functional query
language, inspired by AFL, one of the query languages adopted by the SciDB system
[Brown 2010]. A function in SAVIME is implemented by an operator that consumes TAR
objects as input, and produce a single TAR array as output. The list of current available
operators in SAVIME is depicted in Table 1.

Query optimization in SAVIME adopts a generalization of push down selection
approach, pushing down all operations that reduce the size of arrays: Where, Subset,
Select and Aggregate. The Predict operation specifies ML models to be executed with in-
puts produced by inner operations of a query expression. During optimization, the predict
operation is pulled up in the physical query plan. A TAR is redefined by one or multi-
ple SubTARs. The latter is an irregular partitioning of a TAR, such that the union of all
SubTARs S = {S1, S2, ..., Sn} reproduces in definition and in content the corresponding
TAR T . The SubTARs are the unit of processing of an operator. SAVIME uses the Sub-
TAR for parallelizing the computation of operators. Considering system characteristics,
SAVIME is an in-memory system that considers arrays to be allocated in main memory
for query processing. Moreover, the system reads data in raw file format, not requiring
an ingestion phase for processing it. Another interesting feature is its integration with the
Python language, through the Pysavime library. TAR arrays returned by queries in SAV-
IME are transformed into Numpy arrays for processing using the scripting programming
language.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

234



Operator Description

SELECT Projects dimensions and attributes

WHERE Filters data according to a predicate on dimensions and at-
tributes

SUBSET Creates a n-dimensional data slice according to specified
bounds

DERIVE Adds an attribute with derived values
CROSS JOIN Implements a cartesian product of cells in TARs

DIM JOIN Implements an equi-join by corresponding dimensions of
two TARs

AGGREGATE Summarizes data according to a subset of dimensions and
applying a common aggregate function

PREDICT Invokes a single ML model with input from a TAR

Table 1. SAVIME query language operators

3. Integrating DJEnsemble in SAVIME

We present the integration of DJEnsemble into SAVIME in order to support spatio-
temporal queries execution. To execute an inductive query, SAVIME makes use
of a predictive engine module external to the system based on tensorflow server
[Baylor et al. 2017]. This module allows SAVIME to answer predictive queries in gen-
eral.

Currently, SAVIME is capable of executing the entire online stage of DJEnsemble
within the system, through the ENSEMBLE operator built into the query language. The
syntax of ENSEMBLE operator is:

ENSEMBLE(<tar>, <query-region>, predictive-variable)

Figure 3 illustrates how this process is achieved. The results of the offline stage
must be previously registered in the system through metadata files, namely: the tiling
resulting of the time series categorization process and the error estimation function for
each predictive model, along with the time series that best represents the models training
data. Once a query is performed, SAVIME executes the error estimation functions in order
to choose the best candidate models to answer the query. The error estimated to each
model for each tile intersecting with the query region is based on the distance between its
representative time series and each model’s representative sequences. We utilize Dynamic
Time Warping to calculate the distances between sequences. The composition of each tile
paired with the model with the least estimated cost for it constitutes the query model
ensemble, which can be finally executed to return the result to the user.

It is worth mentioning that the Ensemble operator is part of SAVIME’s DML,
and thus the operator’s input TAR can be resulting from a previous executed nested query.
Similarly, to make use of the full potential of SAVIME’s query language, the data returned
by Ensemble can also be chained together as input to new queries.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

235



Savime

Query
File

DjEnsemble 
Metadata

TARs Data
(In-Memory)

DJEnsemble
Offline

Predictive
Engine

System
User

Figure 3. Overview of DJEnsemble integration into SAVIME

4. Experimental Evaluation
To analyze the algorithm performance when integrated to SAVIME, we performed a series
of experiments evaluating the execution time of the different steps. For reference, we also
measured the offline step execution time (already presented in [Pereira et al. 2021]). For
our experiments, we built a dataset from rain data from the city of Rio de Janeiro, provided
by 33 pluviometrical stations. The constructed dataset represents a 7 x 7 mesh over the
city, containing the precipitation values along 20 years, recorded at 15-minute intervals.
The experiments were run using the hardware configurations: Intel Core i5-5200U CPU
@ 2.20GHz and 8 GB RAM.

We synthetically partitioned the obtained data into 3 tiles, representing 3 different
regions of the city. We also built 3 Convolutional Long Short-Term Memory (ConvLSTM)
neural network model models, with input dimensions of 3x3, 4x4 and 7x7. The training
data for each model and corresponding representing sequences were defined in such a
way that the estimated error for each tile would be optimal by choosing a different model
by the algorithm.

Based on the described experimental scenario, we submitted 3 different predictive
queries to SAVIME, Q1, Q2 and Q3, using the Ensemble operator. In order to evaluate
the runtime variation as the number of tiles increases, each query is designed so that it
would intersect with one, two or three tiles of the domain. For comparison purposes,
we performed a test with the same data under the DJEnsemble version purely written in
Python, not integrated to SAVIME.

Figure 4. Comparative specification and results between DJEnsemble
and SAVIME. All times refer to average in seconds

Total results of the experiments can be seen in Figure 4. Note that the relation is
not linear, because two model executions are necessary for the tile 2 model, differently
than others.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

236



5. Related Work
The integration of machine learning algorithms into database systems initiated with the
now famous Learning Index [Kraska et al. 2018] paper by Tim Kraska. In that paper
Kraska and colleagues showed that a B+tree could be substituted by a learned model.
Since then, other areas of the database systems have been explored as opportunities for
ML algorithms. Computing cardinalities of operations has always been a difficult task
that is at the heart of query optimization. Many authors have been working in learned
techniques modeling it as a regression problem [Dutt et al. 2019][Woltmann et al. 2019].
A second approach involves applying ML models to data in databases. In this context,
ML algorithm are integrated to the system that may support ML models training and in-
ferencing [Fard et al. 2020]. Model inferencing is integrated to the system inheriting the
existing code to support user-defined function execution. Other systems such as Post-
greSQL [Pos 2022] and Greenplum [gre 2022] have added the support to the ML library
MADLib. The work we describe in this paper considers the integration of ML models for
inferencing and uses an external ML engine for model execution.

6. Conclusion
Machine learning algorithms have shown concrete results in a myriad of applications.
In the database system this has not been different. In this paper, we describe a new
opportunity for applying machine learning predictions by adding model ensembles as part
of a query specification. We integrate the DJEnsemble approach to the SAVIME query
engine. The approach automatically selects and allocates deep learning models to solve
a spatio-temporal predictive query. Our initial results show that the C++ implementation
of DJEnsemble in SAVIME is up to 4 times faster when compared against a typical data
science Python implementation. There are a number of opportunities for future work,
including integrating the cost function of DJEnsemble with the SAVIME query optimizer
and improving models’ results composition algorithm.

References
(2022). Greenplum. https://greenplum.org/. [Online; accessed 20-July-2022].

(2022). PostgreSQL. https://www.postgresql.org/. [Online; accessed 20-
July-2022].

Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y., Haque, Z., Haykal, S., Ispir,
M., Jain, V., Koc, L., et al. (2017). Tfx: A tensorflow-based production-scale machine
learning platform. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1387–1395, Nova Scotia, Canada.
Association for Computing Machinery.

Brown, P. G. (2010). Overview of scidb: Large scale array storage, processing and anal-
ysis. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’10, page 963–968, New York, NY, USA. Association for
Computing Machinery.

Duta, C. and Grust, T. (2020). Functional-style SQL UDFs with a capital ’F’. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’20, page 1273–1287, New York, NY, USA. Association for Computing
Machinery.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

237



Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., and Chaudhuri, S. (2019).
Selectivity estimation for range predicates using lightweight models. Proc. VLDB
Endow., 12(9):1044–1057.

Fard, A., Le, A., Larionov, G., Dhillon, W., and Bear, C. (2020). Vertica-ML: Distributed
machine learning in Vertica database. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, page 755–768, New
York, NY, USA. Association for Computing Machinery.

Jasny, M., Ziegler, T., Kraska, T., Roehm, U., and Binnig, C. (2020). DB4ML - An in-
memory database kernel with machine learning support. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD ’20, page
159–173, New York, NY, USA. Association for Computing Machinery.

Kim, K., Jung, J., Seo, I., Han, W.-S., Choi, K., and Chong, J. (2022). Learned cardinality
estimation: An in-depth study. In Proceedings of the 2022 International Conference
on Management of Data, SIGMOD ’22, page 1214–1227, New York, NY, USA. Asso-
ciation for Computing Machinery.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N. (2018). The case for learned
index structures. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD ’18, page 489–504, New York, NY, USA. Association for Comput-
ing Machinery.

L. S. Lustosa, H., C. Silva, A., N. R. da Silva, D., Valduriez, P., and Porto, F. (2021).
SAVIME: An array DBMS for simulation analysis and ML models prediction. Journal
of Information and Data Management, 11(3).

Lustosa, H. (2020). SAVIME:Enabling Declarative Array Processing in Memory. PhD
thesis, National Laboratory of Scientific Computing.

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., and Kraska, T. (2021). Bao:
Making learned query optimization practical. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, page 1275–1288, New York, NY,
USA. Association for Computing Machinery.

Pereira, R., Souto, Y., Chaves, A., Zorilla, R., Tsan, B., Rusu, F., Ogasawara, E., Ziviani,
A., and Porto, F. (2021). Djensemble: A cost-based selection and allocation of a
disjoint ensemble of spatio-temporal models. In 33rd International Conference on
Scientific and Statistical Database Management, SSDBM 2021, page 226–231, New
York, NY, USA. Association for Computing Machinery.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65.

Sandha, S. S., Cabrera, W., Al-Kateb, M., Nair, S., and Srivastava, M. (2019). In-database
distributed machine learning: Demonstration using teradata SQL engine. Proc. VLDB
Endow., 12(12):1854–1857.

Woltmann, L., Hartmann, C., Thiele, M., Habich, D., and Lehner, W. (2019). Cardinality
estimation with local deep learning models. In Proceedings of the Second Interna-
tional Workshop on Exploiting Artificial Intelligence Techniques for Data Manage-
ment, aiDM ’19, New York, NY, USA. Association for Computing Machinery.

Companion Proceedings of the 37th Brazilian Symposium on Data Bases September 2022 – Búzios, RJ, Brazil

238


