Prompting and Fine-tuning
Pre-trained Generative Language Models

Johny Moreira¹, Altigran da Silva¹, Luciano Barbosa²

¹Instituto de Computação – Universidade Federal do Amazonas (UFAM)
https://numeros.icomp.ufam.edu.br/altigran

²Centro de Informática – Universidade Federal do Pernambuco (UFPE)
https://www.cin.ufpe.br/~luciano

{johny.moreira, alti}@icomp.ufam.edu.br, luciano@cin.ufpe.br

1. Tutorial Type
This is an advanced tutorial planned to last 3 hours.

2. Intended Audience & Prerequisite
The tutorial is targeted to researchers, graduate, and senior undergraduate students, as well as industrial practitioners interested in applying the text generation capabilities of pre-trained Generative Language Models to downstream tasks. The tutorial will be presented in Portuguese on-site by Johny Moreira, one of the authors. Attendees are expected to have a basic understanding and experience in Machine Learning, Deep Learning, Natural Language Processing, and Python.

3. Abstract
There has been an explosion of available pre-trained and fine-tuned Generative Language Models (LM). They vary in the number of parameters, architecture, training strategy, and training set size. Aligned with it, alternative strategies exist to exploit these models, such as Fine-tuning and Prompt Engineering. However, many questions may arise throughout this process: Which model to apply for a given task? Which strategies to use? Will Prompt Engineering solve all tasks? What are the computational and financial costs involved? This tutorial will introduce and explore typical modern LM architectures with a hands-on approach to the available strategies.

4. Tutorial Outline

- INTRODUCTION (5 min)
- Generative LMs & Prompting (1h 25 min)
 - Pre-trained Large Language Models (40 min): With the abundance of newly introduced variations of Neural Language Models in both literature and industry, it is essential to understand the fundamentals. In this topic, we will briefly introduce the foundations of the Large Language Models (LLMs), mostly presenting the different existing architectures: Encoder [Devlin et al. 2019], Encoder-Decoder [Raffel et al. 2020], Decoder [Brown et al. 2020], and some variations of these models. We will highlight their functionality, pros, and cons in terms of training, evaluation, and deployment of applications based on closed models.
– **Prompt Engineering (15 min):** Discuss the Prompt Engineering approach [Liu et al. 2023], introducing In-Context Learning paradigm [Brown et al. 2020], how it can be applied and its limitations [Zamfirescu-Pereira et al. 2023].

– **Hands-On (30 min)**

 - **Break (10 min)**
 - **Open-source models and Fine-tuning (1h 20 min)**
 - **Open-source models (30 min):** The larger number of parameters and the requirement of a large-scale corpus for training aligned with the ever-increasing necessity for computational resources makes the training, evaluation, and deployment of LLMs expensive [Dettmers et al. 2023]. Even exploring closed models through their APIs with prompt engineering has its drawbacks. Hence, this topic discusses state-of-the-art efforts to build open-source models with fewer parameters and less training data [Gururangan et al. 2020, Dey et al. 2023, Hsieh et al. 2023]. These models have been demonstrated not to require too much computational power or large-scale training data to outperform popular closed-model LLMs.
 - **Fine-tuning (20 min):** Introduce the concept of fine-tuning, showing some applications from the literature that have surpassed traditional tasks [Ding et al. 2023].
 - **Hands-on (30 min)**

5. **Bio of Authors**

Johny Moreira: Postdoctoral researcher at the Federal University of Amazonas (UFAM) working in partnership with Jusbrasil. PhD in Computer Science, emphasizing Computational Intelligence, at the Federal University of Pernambuco (UFPE). He has also achieved his Master’s degree focusing on Databases at the same institution. Bachelor in Information Systems by the Federal Institute of Education, Science, and Technology of Ceará (IFCE). His fields of interest are Natural Language Processing, Language Modeling, Semantic Web, Data Science, and Information Extraction.

Altigran da Silva: Professor at the Instituto de Computação, Universidade Federal do Amazonas (IComp/UFAM), focusing on Data Management, Information Retrieval, and Machine learning. Since earning his doctorate from UFMG in 2002, he has contributed to more than 150 scientific publications and coordinated various research projects. His administrative experience includes roles such as the Dean of Research and Graduate Studies at UFAM and the Deputy Coordinator of the Computing area at CAPES. He also served on the Brazilian Computer Society’s (SBC) board and its Advisory Board. As an entrepreneur, he co-founded tech companies, which were later acquired by industry giants. He was recognized for his academic supervision and service, winning awards such as the SBC Distinguished Member Award and the Google Research Awards in Latin America.

Luciano Barbosa: Associate Professor at the Computer Science Department at Universidade Federal de Pernambuco. In addition to his academic experience, he held different positions in industry research labs as Visiting Scholar Researcher at Google AI (formerly Google Research), Research Scientist at IBM Research and AT&T Research Labs; and
a Ph.D. summer intern at Yahoo! Research (Europe and USA). His research interests include web mining, text mining, natural language processing, and data analytics.

6. Presenter
The tutorial will be presented in Portuguese on-site by the author Johny Moreira.

7. Support Materials
The tutorial will be assisted by presentation slides and projection of the presenter’s screen. Hence, it will be required a multimedia projector. Additionally, the attendees can bring their own computers so they can follow the practices using Google Collaboratory.

8. Acknowledgments
This work was supported by JusBrasil under the UFAM/Jusbrasil Postdoctoral Fellowship granted to Johny Moreira, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under funding grant No. 001, by the Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) under project POSGRAD, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under PQ funding grant to Altigran da Silva (Proc. 307248/2019-4).

References

